
ARTICLE OPEN

Closed-loop optimization of fast trapped-ion shuttling with
sub-quanta excitation
Jonathan D. Sterk 1✉, Henry Coakley1, Joshua Goldberg1, Vincent Hietala1, Jason Lechtenberg1, Hayden McGuinness1,
Daniel McMurtrey1, L. Paul Parazzoli 1, Jay Van Der Wall1 and Daniel Stick 1

Shuttling ions at high speed and with low motional excitation is essential for realizing fast and high-fidelity algorithms in many
trapped-ion-based quantum computing architectures. Achieving such performance is challenging due to the sensitivity of an ion to
electric fields and the unknown and imperfect environmental and control variables that create them. Here we implement a closed-
loop optimization of the voltage waveforms that control the trajectory and axial frequency of an ion during transport in order to
minimize the final motional excitation. The resulting waveforms realize fast round-trip transport of a trapped ion across multiple
electrodes at speeds of 0.5 electrodes per microsecond (35m·s−1 for a one-way transport of 210 μm in 6 μs) with a maximum of
0.36 ± 0.08 mean quanta gain. This sub-quanta gain is independent of the phase of the secular motion at the distal location,
obviating the need for an electric field impulse or time delay to eliminate the coherent motion.
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INTRODUCTION
Trapped ions are a leading technology platform for quantum
computing due to their long coherence times and high-fidelity
quantum operations. While current trapped-ion-based quantum
computers and simulators employ tens of trapped ions1,2, a
practical quantum computation may ultimately require upwards
of 106 ions3. The earliest proposed architecture for scaling trapped
ion systems relies on ion transport for connecting qubits and is
known as the Quantum Charge Coupled Device (QCCD) archi-
tecture4. All transport primitives required for moving ions within
the QCCD architecture (i.e., splitting, shuttling, merging, and
reordering) have been demonstrated in small systems5–12.
A time-budget analysis of experiments on the QCCD

architecture illustrates that ion-shuttling can consume a
significant fraction of the total algorithm operation time10,12,13,
thus highlighting the need for fast transport. Shuttling must also
not substantially excite ion motion, since the motional modes
mediate spin–spin interactions for entangling gates and
coherent excitation on the order of single quanta can lead to
a loss in fidelity14. For a many-ion array, these requirements
must be achieved in spite of imperfections in the environment
and control system.
An important metric for a shuttling-based architecture is the

number of electrode lengths shuttled per second, as this
represents the time to transport an ion to an independent
trapping site and is independent of the size of the ion trap. As a
rule of thumb, we use three full electrodes to represent the
distance an ion needs to travel in order to be confined by a
completely different set of electrodes. Earlier efforts15,16 have
demonstrated comparable or faster transport using high-speed
voltage waveform generators, albeit at lower electrode per second
rates due to the larger electrode sizes. These approaches require
precise timing in order to realize shuttling with low excitation,
such as synchronizing the transport with the axial frequency or
through the use of a diabatic electric field impulse at the correct
phase of axial motion to remove the excitation.

Theoretical research in shuttling protocols have used optimal
control theory5,17 and invariant-based engineering to realize
shortcuts to adiabaticity (STA)18–21. Such protocols can in principle
yield shuttling solutions that transport an ion with no motional
excitation with transport times much shorter than a period of the
axial motion. These techniques can be utilized to generate large
coherent states of motion22 as well as be extended for multi-ion
chains23, anharmonic traps24, and time-dependent axial frequen-
cies25. Recently, there has been some interest in performing open-
loop optimization of voltage waveforms to realize these proto-
cols26,27. While these theoretical results are promising, these
protocols rely upon accurate physical modeling as well as an
accurate realization of the controls.
Instead of relying upon the accuracy of our models and their

realization, we perform a closed-loop optimization where the
voltage waveform is optimized against experimental runs. In this
manner, a highly accurate model of the experimental apparatus is
unnecessary as it is the experimental performance of the voltage
waveform that is being optimized. The resulting waveform is able
to account for imperfections that excite ion motion during
transport, such as fabrication and geometry differences across a
device, imperfect simulations, background electric fields, and
disparities in filter components that modify the temporal proper-
ties of the voltage waveforms. The optimization was applied to the
round-trip transport of a single ion to a separate trapping site and
back. The one-way distance of 210 μm (three electrodes) was
shuttled in 6 μs (15 periods of oscillation) for an average speed of
35m·s−1. The technique we describe constitutes a tool that could
be used to tune shuttling protocols for many ions within a
trapping array and is agnostic to deviations from the model
resulting from environmental effects and variations in the
fabrication process. Furthermore, we note that this procedure
could be applicable to tuning up other experimental quantum
technologies, such as neutral-atom quantum computing28 and
atom interferometry29–32.
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RESULTS
Optimization procedure
In the experiment, a 40Ca+ ion is initially trapped at location A
(Fig. 1a) with an axial trap frequency of ωt/2π= 2.5 MHz and
radial frequencies ω1,2/2π= (5.6, 6.0) MHz. At this location, the
ion is spin-polarized to the electronic state 0j i ¼ S1=2;� 1

2

�� �
and

the axial motion is sideband cooled to the motional ground
state (mean quanta n � 0:03). Next, using a transport waveform
derived from the optimization state, the ion is shuttled three
electrodes to the distal location B, 210 μm away, corresponding
to a separate and independent trapping site. The ion is held at
B for a variable dwell time of at least 12 μs before being
returned to A with the reversed waveform. After the round-trip
transport, the amount of axial excitation is probed through a
frequency scan over the first- and second-order red sidebands
on the S1=2;� 1

2

�� � $ D5=2;� 5
2

�� �
( 0j i $ 1j i) transition. This

procedure is illustrated in Fig 1d. The loss function is a
combination of the integrals of these sidebands (Eq. (1)), acting
as a pseudo-energy for values up to hundreds of quanta
(Fig. 1b and c). Similar pseudo-energies have been used in
other shuttling experiments12,16, exhibiting a relation to the
mean quanta up to tens of quanta. At faster speeds, where
motional excitations may exceed several hundred quanta,
higher-order motional sidebands may be needed to construct a
suitable pseudo-energy. Reference 22 utilized such a method in
order to measure the creation of large coherent states. In our
experiments, we found utilizing the first- and second-order
motional sidebands to be a reasonable tradeoff between the
number of measurements and motional quanta.
Given a constant axial frequency during transport, the final state of

motion is a coherent state of motion33,34. Unitary transformations can
reduce this quantum control problem to controlling the classical
trajectory33,35. The coherent excitation of the ion at the distal location
is revealed by changing the dwell time of the ion at B, as it exhibits a
periodicity in the final excitation. Therefore, these measurements are
repeated with the same waveform, with additional offsets to the hold
time at the distal location inserted. These time offsets are chosen to
equally sample the phase of axial motion at the distal location. The
value of the loss function for the optimization state, X, is the worst
performing of all the hold offsets h,

LðXÞ ¼ max
h

LðXjhÞ ¼ max
h

α1
R
B1

dΔ1
2π r1ðΔ1jX; hÞ

h

þ α2
R
B2

dΔ2
2π r2ðΔ2jX; hÞ

� �2
� (1)

where rm(Δm∣X, h) is the m-th order red sideband for hold offset h
given the state X. The hyperparameters αm are chosen to be the
same, α1= α2= 2 kHz−1. For an ion in the state 0j i 0h j � ρðX; hÞ
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Fig. 1 Geometry of the system and loss function. a An ion is trapped at location A where it is prepared in the axial (x̂) ground state of motion
and in the electronic state S1=2;� 1

2

�� �
. It is then shuttled to B in 6 μs and held there for at least 12 μs before being shuttled back. The drawing

shows the rf rails and interior control electrodes (but not the outer control rails). The relationship of the loss function to the mean quanta for
both thermal and coherent motion is shown in (b) and (c) using experimentally relevant probe times. Probe time tm corresponds to the m-th
order red sideband; b shows the relationship for (t1, t2) = (3 μs, 10 μs) and c shows the relationship for (25 μs, 45 μs). d A cartoon of the
experimental transport sequence. The ion is prepared at A, then shuttled to location B and held there for a variable hold time before returning
to A for a probe on the sidebands and detection.
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Fig. 2 Optimization procedure. Given an optimization state X= (f,
b), the constraints on the state are first checked and if satisfied are
used to generate the waveform from the base solution (1). This is
achieved by scaling the axial frequency and modifying the trajectory
to realize the forward transport solution (2). The full waveform
consists of the forward solution followed by a hold and then
followed by the time reversal of the forward waveform to return the
ion to position A (3). The loss function consists of a loop over a set of
DAC offset steps that are inserted into the hold time. The loss is
calculated for each offset by measuring the first- and second-order
red sidebands. The final loss is the worst performing of these offset
losses and is sent to the optimizer which generates the next
trial state.
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after transport, the sideband lineshapes after a probe time tm are

rmðΔmjX; hÞ ¼
X1
n¼m

ρnnðX; hÞ
4 gnmj j2
Ω2
nm

sin2
Ωnmtm

2

� �
; (2)

where Ωnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jgnmj2 þ Δ2

m

q
is the detuned Rabi frequency, Δm is

the detuning from the m-th sideband, and the sideband coupling
strengths are gn1 ¼ �iηg0

ffiffiffi
n

p
and gn2 ¼ � 1

2 η
2g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

(here,
g0 is the coupling strength to the carrier transition, and η is the
Lamb–Dicke parameter). A quadratic penalty for the integral of the
second-order sideband emphasizes the minimization of the
second-order sideband over the first-order sideband. In Fig. 1b
and c, the relation between the value of the loss function and
mean quanta are plotted for both the case of a thermal and
coherent excitation for the probe times used for a particular
experiment. The resulting measurement of the total loss is passed
to a derivative-free optimizer, which uses the Nelder–Mead
algorithm. The optimizer then determines the next state X, which
is then passed to the experiment for voltage synthesis and test.
Figure 2 illustrates the optimization procedure.
The initial probe times for the first- and second-order red

sidebands were chosen to be slightly less than the effective π-
times so as to not overdrive the sidebands and saturate the
measurement. After 150 function evaluations of the Nelder–Mead
optimizer, the loss function became insensitive to improvement
and leveled off (Fig. 3a). Therefore a second round of the
optimization was performed using longer probe times and
starting from the final state of the first stage. The longer probe
times effectively increase the sensitivity of our loss function to
lower mean quanta (Fig. 1c).

Optimization state and waveform generation
For each optimization state X in the experiment, the shuttling
waveform is synthesized just prior to the test. The waveforms are
all derived from a base trapping voltage set which consists of 211
individual trapping solutions equally spaced along the 210 μm
path from A to B. Each solution is generated through a
constrained optimization problem to generate the least-norm
voltage array with a fixed 2.5 MHz axial frequency for a 40Ca+ ion
with a unique well location along the path. These solutions are
derived with respect to a boundary element model of the device,
which yields trapping solutions with axial frequencies within 10%

of the experimentally measured value. First, a forward transport
waveform is constructed to transport the ion to the distal location
at a speed of 35m·s−1. The full waveform in the experiment is the
concatenation of this forward solution followed by a hold at the
distal location for 12 μs (plus an additional offset) and finally
the time reversal of the forward waveform to bring the ion back
for measurement.
The optimization state consists of a list of nf axial frequency

points f ¼ ff jgj21:nf and nt trajectory control points b ¼ fbjgj21:nt
to control the axial frequency of the ion along the path and the
harmonic well trajectory. Each frequency point fj fixes the axial
frequency at a spatial position xj= xA+ jδx, where δx= (xB− xA)/
(nf+ 1) so that they are equally spaced between A and B. Between
these points, the axial frequency is linearly interpolated and each
trapping solution in the base solution is scaled by a factor to
match the desired frequency at that position. We constrain the
axial frequencies with an exponential penalty for values outside
the range [1.5, 3.5] MHz; this ensures reasonable voltages and
potential wells throughout the shuttling procedure. The trajectory
s:[0, 1]→ [0, 1] determines the harmonic well location via xwell(t)=
xA+ (xB− xA)s(t/tf) where xA,B are the spatial location of A and B
and tf= ∣xB− xA∣/v= 6 μs is the transport time for the desired
velocity v= 35m·s−1. It is constrained to be symmetric (i.e.,
s(1− τ)= 1− s(τ), τ= t/tf) and have fixed endpoints with zero
initial and final velocities. The trajectory is defined through a
Bézier curve, or Bernstein interpolation,

sðτÞ ¼
XN
j¼0

sj
N
j

� �
τjð1� τÞN�j: (3)

The choice of such an interpolation makes it easy to automatically
satisfy the trajectory constraints: s0= s1= 0, sN= sN−1= 1, and
sj+ sN−j= 1. The trajectory control points correspond to the
lowest non-zero Bézier coefficients, bj= sj+1, resulting in an
N= 2nt+ 3 order polynomial. The STA trajectory designed in
ref. 18 for a rigid harmonic oscillator corresponds to a single
trajectory control point, nt= 1, near the boundary of the feasible
space. To account for non-uniform axial frequencies during
transport, we include extra degrees of freedom and start from
an initial point deeper within the feasible space in order to
provide more room for exploration.
The forward waveform is formed by determining the position of

the trajectory at each digital-to-analog converter (DAC) step and
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Fig. 3 Experimental results of the optimization procedure. a This plot illustrates how the loss function proceeds over function evaluations
for the axial frequency optimization for the first and second stages (blue and orange, respectively). The trajectory and trajectory-plus-axial
optimizations display similar behavior. For each evaluation of the total loss for a given state X, we plot the loss for each hold offset, the
maximum of which is sent to the optimizer. b Measurement of the mean quanta via sideband thermometry at the end of the optimization for
both the axial and trajectory-plus-axial optimization as a function of the phase of the axial motion at the distal location B. Error bars represent
the standard error. c Representative plots of the first (left) and second (right) order red sidebands for the initial (blue) and final (orange)
optimization states. Error bars represent the standard deviation. N.B. The scans for the final optimization were performed with much longer
probe times than the initial state.
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determining the voltages from the base solution through linear
interpolation. If the voltage waveform does not exceed the
voltage budget of the electronics, the waveform is applied and the
lineshapes of the first- and second-order red sidebands are
measured. Violation of the voltage budget also leads to an
exponential penalty in the value of the loss function that is sent to
the optimizer.

Data
We applied our optimization routine to transport waveforms
parameterized by (1) Bézier trajectories defined by three control
points, (2) linear trajectories defined by six intermediate axial
frequencies, and (3) a combination of the two. The number of
trajectory control points was chosen to provide flexibility while
maintaining a reasonable order polynomial (here, nt= 3 corre-
sponds to a 9-order polynomial). Likewise, the number of axial
control points was found to be sufficient for our experimental
velocity; other velocities might require a different number of axial
control points. As seen in Fig. 3a, a strong periodicity in the
integrated sidebands over the various dwell times was observed
at the beginning of the optimization. However, as the optimiza-
tion proceeded the performance tended to become uniform
across the hold offsets, indicating insensitivity to the dwell time.
Due to the different probe times, the overall value of the loss
functions between different optimizations and runs are not
directly comparable without relating the loss to the mean quanta.
The initial π-time for the optimizations with the Bézier parameters
were found to be longer than a linear trajectory (used in the axial-
control-only optimization), indicating an initial lower motional
excitation.
The absolute performance of the resulting optimized waveform

was measured using sideband thermometry36. Figure 3b shows
the mean quanta gain versus phase at the distal location for the
axial control and the trajectory-plus-axial optimization routines,
which both exhibit sub-quanta performance. The final waveform
of the trajectory-only optimization did not yield sub-quanta
performance and could not be probed reliably with sideband
thermometry (a minimum of 1.4 ± 0.4 quanta was observed). This
could be due to an insufficient exploration of the parameter space,
inability to escape a local minimum, or an insufficient number of
parameters. A background heating rate of 295 ± 24 quanta·s−1

adds a negligible amount of heating (~0.01 quanta) to the ion
over the course of the transport.
Since it is possible that the optimization could generate a non-

shuttling waveform to achieve low excitation, a Ramsey measure-
ment is used to verify that the ion is transported all the way to the

distal location with the optimized waveform (Fig. 4). Prior to
shuttling a π/2 pulse is applied to the ion on the S1=2;� 1

2

�� � $
D5=2;� 3

2

�� �
quadrupole transition. Our typical transport and hold

shuttling procedure is performed, followed by a final π/2 pulse.
Such a Ramsey sequence has been used to show preservation of
coherence over thousands of shuttling operations37. In order to
use the Ramsey sequence for transport verification, we illuminate
the distal location with a 397 nm laser resonant with the S1/2↔ P1/2
dipole transition to destroy the coherence if the ion is successfully
shuttled to that position. Ramsey phase scans were performed for
the four combinations of shuttling on/off and probe on/off. We see
that only when the probe is on and the ion is transported that
coherence is lost.
To determine whether the high-speed electronics are necessary

at this transport velocity, a slower-speed DAC was emulated by
decimating the trial waveform and upsampling it through a zero-
order hold, resulting in an effective 300 ns DAC step. The same
trajectory-plus-axial optimization procedure as above was applied,
achieving only minimal improvement over the initial transport. No
waveform was generated with the same number of function
evaluations that could achieve a mean excitation below a single
quantum with these artificially slow electronics. A long blue-
sideband Rabi measurement was performed after shuttling with
these decimated waveforms and found to be consistent with a
highly excited motional state. Figure 5 shows this data in
comparison to a similar measurement for the trajectory-plus-
axial optimized waveform. Fitting the trajectory-plus-axial Rabi
oscillation data to a displaced thermal state results in a mean
quanta of ncoh þ nth ¼ 0:26, in agreement with the sideband
thermometry measurement (0.31 ± 0.08 quanta for this particular
hold offset). It was difficult at this sub-quanta level to discern the
relative contributions of the thermal and coherent excitation from
a maximum likelihood estimate fit to the Rabi data, as this method
is only sensitive to motional state populations and not coherences
between the motional states.

DISCUSSION
Another approach that was considered for optimizing the
waveform involved pre-compensating the voltage waveform to
account for the low-pass filter attached to the chamber13. This
approach was investigated in the context of the optimization
procedure through the insertion of a digital filter prior to analog
voltage synthesis. In this approach, the filter coefficients served
as the optimization state. We found an infinite impulse response
(IIR) filter to generally be unstable, while an inherently stable FIR
filter consistently resulted in voltage waveforms exceeding the
range of the DACs during an attempted optimization. This
approach was therefore unsuitable for the optimization loop
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Fig. 4 Ramsey phase scans to verify ion transport. We illustrate a
Ramsey measurement of the ion coherence for four cases. The
baseline case, with neither shuttling nor probe, is in blue. In orange,
the ion is shuttled without a probe at B, showing that coherence is
maintained throughout the procedure. To show the probe has no
effect when the ion is at A, the ion is held stationary while the probe
is turned on (red). Coherence is only lost (green) when the ion is
shuttled to B and the probe is turned on. Error bars represent the
standard deviation.

0 100 200 300 400 500
Pulse duration [ s]μ

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

 D
5/

2

Fig. 5 Blue sideband Rabi oscillations after transport for the
optimized decimated (blue) and non-decimated (orange)
trajectory-plus-axial optimizations. The green curve is a maximum
likelihood estimation for a displaced thermal state illustrating sub-
quanta excitation. For the decimated version the ion is in a highly
excited state after transport and did not achieve sub-quanta
transport. Error bars represent the standard deviation.
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since most of the optimization was spent in a region that violated
the voltage budget. Although a more complex constrained
optimization procedure might be suitable for the pre-
compensation approach, the performance of the trajectory and
frequency control indicates that such complexity is unnecessary
to achieve sub-quanta shuttling.
This closed-loop optimization procedure was used to generate

voltage waveforms that transport an ion across multiple electro-
des to a separate trapping well at a speed of 0.5 electrodes per
microsecond or 35 m·s−1. By tuning three trajectory parameters
that define a Bézier curve and six axial frequencies at discrete
points in the ion’s path, the motional excitation following
transport was limited to 0.36 ± 0.08 mean quanta. The Bézier
potential well trajectory initially performed better than a linear
trajectory, however, we suspect that it was close enough to a local
minimum such that the local optimizer was unable to find a
solution that exhibited a mean quanta gain below one. On the
other hand, we observed that axial frequency control alone was
sufficient for sub-quanta transport.
For our experiments, we were able to utilize a loss function

based on a pseudo-energy derived from measurements of the
first- and second-order red sideband and a Nelder–Mead
optimizer. More complex loss functions and optimizers may be
more suitable to increase the speed and complexity of the
shuttling operation. At higher speeds, we expect larger coherent
excitation and thus higher-order motional sidebands need to be
probed in the loss function. While our experiments indicated that
trajectory control alone was insufficient with our simple protocol,
an initially good trajectory (such as one derived from STA
techniques, even imperfectly) could be essential as the shuttling
times reduce to a single period of motion. Our experiments also
revealed that high-speed electronics are an enabling technology
for fast shuttling with low-excitation, since the optimization
procedure on the emulated slower DAC was unable to make
sufficient progress in developing a suitable voltage waveform.
Generalizing this transport optimization technique to related

QCCD operations has the potential to dramatically improve the
performance and robustness of larger scale trapped ion quantum
computers. Some operations can entirely leverage the work
described here, like shuttling single ions in a large trap array
where local variations yield different optimal waveforms. Other
operations may require different loss functions or more sophis-
ticated optimization algorithms, like split and join operations with
multiple relevant motional modes and adjacent ions that must not
be excited. In both cases, replacing human-in-the-loop tuning
with closed-loop optimization will be essential to extending the
performance currently demonstrated in trapped ion quantum
computers with few ions to larger and more complicated systems.

METHODS
Experiment
A single 40Ca+ ion is trapped in the linear section of a High-Optical-Access
surface-electrode radiofrequency (rf) Paul trap38. The ion is trapped
~70 μm above the surface of the trap and is tightly confined in the
transverse direction by applying a 140 V amplitude rf signal at 51 MHz to rf
rail electrodes. Axial confinement is provided through voltages applied to
specific interior control electrodes which have a pitch of 70 μm while a
60 μm gap in the substrate provides an open slot below the ion (Fig. 1a).
Control rails outside the rf electrodes provide principal axis rotation in the
transverse plane.
Permanent magnets provide a 9.5 G vertical magnetic field in order to

split the ground-state Zeeman levels S1=2; ± 1
2

�� �
. Doppler cooling and state

readout are performed with a laser addressing the S1/2↔ P1/2 transition at
397 nm, while internal state manipulation of the ion is performed with a
narrow 729 nm laser addressing the S1/2↔ D5/2 transition. In addition, two
repump lasers at 866 nm (D3/2↔ P1/2) and 854 nm (D5/2↔ P3/2) are used.
The ion is spin-polarized to the 0j i ¼ S1=2;� 1

2

�� �
state by coherently driving

the S1=2;þ 1
2

�� � $ D5=2;� 3
2

�� �
transition, followed by a repump pulse to the

P3/2 manifold and spontaneous emission back to the S1/2 manifold. Ground
state cooling of axial motion is achieved in a similar fashion, where the
coherent drive is tuned to the motional red-sideband of the S1=2;� 1

2

�� � $
D5=2;� 5

2

�� �
transition.

After shuttling, the first- and second-order red sidebands are probed by
pulsing the 729 nm laser for a given probe time t1 and t2 prior to applying the
detection beam at 397 nm. The lineshape of the m-th order red sideband,
rm(Δm,X) (Eq. (2)), is defined as the probability of the ion transitioning to the
state 1j i ¼ D5=2;� 5

2

�� �
,

rm Δm;Xð Þ ¼ tr 1j i 1h jχm Δm;Xð Þ½ �
where χm(Δm, X) is the density matrix of the qubit–motion coupled system
after transporting and then probing the m-th order red sideband with a
laser detuned by Δm from the sideband for a duration tm.

Lineshape
To calculate the lineshape, we assume the ion is initially in the state
χð0Þ ¼ 0j i 0h j � ρðXÞ immediately after transport and prior to the probe.
The system coherently evolves under the probe according to the
Hamiltonian

H ¼ ωta
ya� Δ0σ

yσ þ gmσa
my þ g�mσ

yam

where the sidebands are well-resolved and the ion is in the Lamb–Dicke
regime. Here, a corresponds to the phonon annihilation operator for
the axial mode and σ ¼ 0j i 1h j. The detuning Δ0=ωL−ω0= Δm−mωt is
the detuning of the laser from the carrier transition, which is expressed in
the second equality in terms of the detuning from the m-th order red

sideband, Δm. The sideband coupling strengths are given by gm ¼ ð�iηÞm
m! g0,

where g0 is the carrier coupling strength.
The excitation operator N̂ ¼ ayaþmσyσ is a conserved quantity for this

Hamiltonian, and thus any eigenstate of N̂ preserves the excitation
number. This results in a collection of closed manifolds whose dynamics
are independent of one another. The dimensionality of each manifold is
either one-dimensional (for eigenvalues n <m) or two-dimensional
(eigenvalues n ≥m). For the case n <m, the basis state is 0; nj i, while for
n ≥m the states 0; nj i and 1; n�mj i are coupled.
Each subspace can be diagonalized (for n ≥m) in terms of the dressed

states,

n;þj i ¼ cos θn2 1; n�mj i þ ei arg gm sin θn
2 0; nj i

n;�j i ¼ �e�i arg gm sin θn
2 1; n�mj i þ cos θn

2 0; nj i
where tan θn ¼ �2jgnmj=Δm. Here we define the m-th order sideband
coupling strength for the n-th manifold, gnm ¼ gm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!=ðn�mÞ!p

. These
states are eigenstates of the Hamiltonian with eigenenergy

ϵ± ¼ �1
2

Δm ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
m þ 4 gnmj j2

q
 �

The probability for measuring the ion in 1j i after probing the m-th
sideband is found by expressing the initial state in terms of the dressed
states, applying the phase accumulated over time tm, projecting onto 1j i,
and taking the trace. Such a procedure yields Eq. (2),

rmðΔmÞ ¼
X1
n¼m

ρnnsin
2θnsin2

tm
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2
m þ 4 gnmj j2

q� �

where sin2θn ¼ 4jgnm j2
Δ2
mþ4jgnm j2

.

Electronics
The voltages applied to the trap electrodes are derived from a custom
96-channel high-speed arbitrary waveform generator. Signals are specified
in 30 ns steps and filtered on the digital side with finite impulse response
filters that result in a normalized pass band frequency of 12 MHz and a
stop band frequency of 15MHz with >100 dB attenuation.
A DAC for each channel outputs a ±2.5 V signal which is amplified to

±10 V by a power amplifier with low-distortion and high-speed current
feedback. Anti-alias low-pass filters are used to reject unintended signal
generation in higher-order Nyquist domains and yield a 12 MHz analog
bandwidth. These voltages are then delivered through sixth-order low-pass
filters at the vacuum chamber feedthrough with 3 dB cutoff at 1.3 MHz, in
order to reduce heating from electrical noise at the axial frequency. The
timing of the system is governed by a temperature-compensated voltage-
controlled crystal oscillator that is phase-locked to an external 10MHz
reference clock.
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