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Slowing quantum decoherence of oscillators by hybrid
processing
Kimin Park1,2✉, Jacob Hastrup 1, Jonas Schou Neergaard-Nielsen 1, Jonatan Bohr Brask 1, Radim Filip 2 and Ulrik L. Andersen 1

Quantum information encoded into the superposition of coherent states is an illustrative representation of practical applications of
macroscopic quantum coherence possessing. However, these states are very sensitive to energy loss, losing their non-classical
aspects of coherence very rapidly. An available deterministic strategy to slow down this decoherence process is to apply a Gaussian
squeezing transformation prior to the loss as a protective step. Here, we propose a deterministic hybrid protection scheme utilizing
strong but feasible interactions with two-level ancillas immune to spontaneous emission. We verify the robustness of the scheme
against the dephasing of qubit ancilla. Our scheme is applicable to complex superpositions of coherent states in many oscillators,
and remarkably, the robustness to loss is enhanced with the amplitude of the coherent states. This scheme can be realized in
experiments with atoms, solid-state systems, and superconducting circuits.
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INTRODUCTION
Quantum information processing based on continuous-variable
(CV) resources1–5 represents an interesting alternative to a more
common discrete-variable (DV) approach based on photons6–8 or
other particles9–11. In particular, non-Gaussian states represented
by the superposition or entanglement of a finite number of
coherent states are useful resources in various protocols in both
approaches12. The interest in these states has been fueled by
various schemes for sensing13,14, computing15–18, and commu-
nication19,20 with promising merits in scalability and fault-
tolerance21–23. There have been significant efforts into the
generation of the superposition of coherent states (SCSs) and
entangled coherent states (ECSs), both in the optical24–28,
microwave29–35, and phononic domains36–38. Moreover, simple
CV quantum processing tasks have been carried out on optical
fields39,40, while more advanced processing has been demon-
strated in the microwave regimes including quantum error
correction41,42.
A formidable challenge associated with the faithful processing,

transmission, and storage of SCSs lies in the inevitable decoher-
ence by bosonic loss. Even a weak bosonic loss can still reduce the
usefulness of the large excitation SCS states. While non-
Gaussian43,44 or correlated45 noise sources can be circumvented
for any type of encoding in bosonic modes by means of simple
Gaussian transformations, the stationary bosonic loss—the
dominant decoherence source in most bosonic systems - is non-
trivial to correct for. To overcome the effect of loss in quantum
information processing, one could use the protocol of entangle-
ment distillation of resources46 in combination with deterministic
teleportation, or more advanced quantum error correction coding
schemes in which errors are corrected by encoding quantum
information into special bosonic codes such as
Gottesman–Kitaev–Preskill (GKP) states41,42,47–55, binomial
states50,56,57 or SCSs58–60. However, those “ultimate” approaches
require challenging large resources to universal loss correction.
Bosonic losses can be also partially but deterministically

compensated for by transforming the encoded quantum state

with a special symmetry into a state that is more robust against
losses. For example, by conditionally de-amplifying a coherent
state46,61–63, or unconditionally squeezing their superposition
states64–67 prior to a lossy bosonic channel, the coherence or
non-classicality can survive for a longer time. In these two
protective schemes enabled by pre-processing, the quantum
information has resided entirely in a bosonic quantum state.
However, Gaussian squeezing is challenging on bosonic hybrid
systems, such as mechanical systems68,69 and superconducting
circuits70,71.
Loss (or amplitude damping) on qubit states can be corrected

or re-amplified with smaller resources than on CV states spanning
infinite high-dimensional Hilbert spaces, due to the former’s low-
dimensional Hilbert space. A feasible example of such a lossless
qubit is found in hyperfine qubits in the manifold of two ground
states in trapped ion systems, which are extremely long-lived due
to the lacking mechanism for relaxation due to the absence of a
level with a lower energy72–74. In these systems, indeed qubit
dephasing is the main noise mechanism. Superconducting qubits
are also under extensive technical development to have extended
coherence time75,76.
In this article, we propose the next step in a deterministic hybrid

protection strategy for SCSs and ECSs, or a qubit bypass strategy,
where the quantum information of these states does not reside
fully in the lossy bosonic mode - as in previous schemes - but is
substantially converted into a lossless two-level system. The
quantum information is by large protected from bosonic loss by
such a hybrid strategy, albeit being traded for phase decoherence
of the two-level system. Our protection scheme is enabled by a
strong coherent coupling—the Rabi coupling—which can be
implemented in superconducting systems, ion systems, or
photonic or molecular crystal systems77–87 where the bosonic
mode is represented by a microwave, a phononic, or even an
optical field. This bypass strategy is more economical than a full
conversion of large CV states to many qubits and back. Our
approach uses only a minimal number of low-loss qubits sufficient
to perform efficient protection of the given class of CV states
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under boson loss. In this scheme, the number of used two-level
systems and Rabi couplings is kept at a minimum, while the
coupling strength is dictated by the amplitudes of the coherent
states of the SCSs and ECSs. Our approach is therefore
complementary to an approach where the available number of
Rabi gates and ancillas are unlimited which in principle would
allow for a complete transfer of the information from the bosonic
mode to the two-level systems88. We analyze our protocol using
different measures (i.e., fidelity, coherence in phase space, and
entanglement), with respect to the simple protection scheme of
pre-squeezing64. We find that the robustness to losses is
significantly increased in all these measures, remarkably for
large-amplitude SCSs. Our strategy can be extended to states
with higher complexity, e.g., with more coherent state compo-
nents or modes, thereby indicating that further extensions of the
method to general CV states might be viable.

RESULTS
Qubit bypass protocol
Our qubit bypass protocol is based on the quantum Rabi
model77,78. This model incorporates a CV-DV hybrid non-
Gaussian interaction, where an electromagnetic field or mechan-
ical oscillator strongly couples to a two-level system, e.g., an atom.
The unitary evolution operator associated with the coupling in the
model is written as exp½iτσ̂θX̂Φ� with strength τ (the strength of
the Hamiltonian is combined with the duration time), where a
Pauli operator σ̂θ with θ= {x, y, z} acts on the two-level system,

and the generalized quadrature operator X̂Φ ¼ âe�iΦþâyeiΦffiffi
2

p with

arbitrary angle Φ governs the field. The rotating-wave approxima-
tion is not valid within this model, and the unitary operator
contains both rotating and counter-rotating terms. Strong Rabi
coupling has been achieved experimentally in cavity QED systems
such as trapped ions82 or superconducting systems89,90 among
many other systems. It can be used to create diverse classes of
non-Gaussian effects such as nonlinear phase gates91,92, which are
essential in CV quantum information processing3. The use of weak
Rabi coupling for a longer time is vulnerable to large noises, and
the free evolution effects are actively canceled by external
drives77.
The unitary Rabi gate executes a controlled displacement

operation, where the conjugate generalized momentum,
P̂Φ ¼ X̂Φþπ

2
, of an oscillator is displaced depending on the state

of an ancillary qubit encoded in σ̂θ-eigenstates. Here, we will drop
the subscript for Φ= 0 below for these operators. The Rabi gate is
particularly suitable for the generation of SCSs77,78. These
controlled displacement operations have been used in numerous
experiments to generate superpositions of two and four coherent
states (for example, as in ref. 93). In the current work, we will
reverse the generation process by mapping the SCSs onto a two-
level ancilla, or more precisely, partially converting the complex
coefficients of SCSs onto the complex coefficients of a qubit,
addressing the possibility to manipulate the SCSs by Rabi gates.

Two coherent state superposition
Throughout the paper, we will refer the superposition of n
coherent states as n-SCSs. We start with the simplest SCSs, namely
the arbitrary superposition of two coherent states (2-SCS) of
opposite amplitudes, ψ0j i ¼ Nðμ αj i þ ν �αj iÞ. We describe here
the case of pure states, but the protocol works on the mixed states
that might have been affected by noises in an equivalent way. The
normalization factor is given by N�2 ¼ jμj2 þ jνj2 þ ðμ�ν þ
μν�Þe�2α2 but will be omitted below for simplicity in the
description. While the unknown complex coefficients of the
superposition μ; ν 2 C are carrying encoded information, the
amplitude α 2 R is typically assumed to be known. We focus

primarily on nearly orthogonal coherence states with large α≫ 2
when this state can be considered as a qubit of basis ± αj i.
Before going to the details of our protocol, let us first consider the

decoherence of an unprotected 2-SCS undergoing bosonic loss

channel Γη. Any density matrix ρ under Γη evolves as Γη½ρ� ¼P1
l¼0

1�ηð Þl
l! ηn̂=2âlρâylηn̂=2 with the loss parameter η ¼ e�γt 2 0; 1ð �

and γt is the dimensionless damping parameter, equivalent to Kraus
operator notation in ref. 94. This is equivalent to the solution of the
Lindblad equation ∂tρ ¼ LρLy � 1

2 fLyLρg with a Lindblad operator
with L ¼ ffiffiffi

γ
p

â. 2-SCS evolves by this loss simply as

Γη½ ψ0j i ψ0h j� ¼ μj j2 ffiffiffi
η

p
α

�� � ffiffiffi
η

p
α

� ��þ νj j2 � ffiffiffi
η

p
α

�� � � ffiffiffi
η

p
α

� ��
þ μν�e�2α2ð1�ηÞ ffiffiffi

η
p

α
�� � � ffiffiffi

η
p

α
� ��

þ μ�νe�2α2ð1�ηÞ � ffiffiffi
η

p
α

�� � ffiffiffi
η

p
α

� ��:
(1)

The off-diagonal elements carrying the quantum coherence in
this nearly orthogonal coherent state basis, are rapidly decreasing
for a large α by the factor e�2α2ð1�ηÞ. This rapid decoherence can
be avoided if α is effectively reduced, e.g., by mapping the
information onto a two-level system, which will be the virtual
effect of our protocol on the coherent states in the oscillator.
Our bypass protocol illustrated in Fig. 1a consists of a set of two

Rabi gates ÛT ¼ ÛDÛR applied before the lossy channel, effectively
reducing the coherent amplitudes in two steps. The first weak
unitary Rabi gate, ÛR ¼ exp½iϵσ̂xX̂� with ϵ ¼ π=4

ffiffiffi
2

p
α, rotates the

initial ancillary qubit state gj i controlled by the amplitudes in the
coherent states to have an entangled state while only weakly
disturbing the coherent states as:

exp½iϵσ̂xX̂� gj iðμ αj i þ ν �αj iÞ ¼ μD̂½α� exp½iϵσ̂xðX̂ þ ffiffiffi
2

p
αÞ� gj i 0j i

þ νD̂½�α� exp iϵσ̂xðX̂ � ffiffiffi
2

p
αÞ� �

gj i 0j i ¼ i
2 μD̂½α� �ij i iϵffiffi

2
p

þ

��� E
� i þij i iϵffiffi

2
p

�

��� E� 	n

� νD̂½�α� þij i iϵffiffi
2

p
þ

��� E
þ i �ij i iϵffiffi

2
p

�

��� E� 	
g�!α�2

i μ �ij i αj i � ν þij i �αj ið Þ;
(2)

where an ordering relation D̂½α�X̂D̂½�α� ¼ X̂ þ ffiffiffi
2

p
α was used on

the first equality. The approximation used on the last line is
βþ iεj i � exp½iβε� βj i, for ε≪ 1. Here, the unnormalized coherent
superposition states are denoted as δ±j i ¼ δj i± �δj i and the
qubit states ± ij i denote the eigenstates of σ̂y with eigenvalues
±1. In the limit of a large amplitude α≫ 289,95, the odd

superpositions states vanish iϵffiffi
2

p
�

��� E
! 0 and the even super-

positions approach the vacuum iϵffiffi
2

p
þ

��� E
! 0j i. In total, eq. (2) can

be interpreted as an entangling process of the 2-SCS and the
qubit ancilla.
The second Rabi gate ÛD ¼ exp½�i

ffiffiffi
2

p
ασ̂yP̂� ¼ D̂½iασ̂y� acts as a

controlled displacement, i.e., the ancilla qubit encoded in ± ij i
from (2) as the control and oscillator as the target, which transfers
the information to the qubit ancilla, at which stage the reduction
of the amplitude actually takes place. Applying ÛD on (2), we
obtain the state which will undergo the noise channels:

exp �i
ffiffiffi
2

p
ασ̂yP̂

� �
exp½iϵσ̂xX̂� gj iðμ αj i þ ν �αj iÞ

¼ iμ �ij i iϵ=
ffiffi
2

pj iþ �iϵ=
ffiffi
2

pj i
2 þ þij i e

�iπ=4 2αþiϵ=
ffiffi
2

pj i�eiπ=4 2α�iϵ=
ffiffi
2

pj i
2i


 �

� iν þij i iϵ=
ffiffi
2

pj iþ �iϵ=
ffiffi
2

pj i
2 � �ij i e

iπ=4 �2αþiϵ=
ffiffi
2

pj i�e�iπ=4 �2α�iϵ=
ffiffi
2

pj i
2i


 �

�!α�2
i μ �ij i � ν þij ið Þ 0j i:

(3)

This state contains an even superposition of coherent states
± iϵ=

ffiffiffi
2

p�� �
close to a vacuum state and erroneous states

± 2α± iϵ=
ffiffiffi
2

p�� �
far from the phase space origin. We note that

only the erroneous terms are affected heavily by loss due to their
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large amplitudes while the terms with small amplitudes are less
affected by loss, and it can be still advantageous to keep the
bosonic channel. For a finite α, the information is still shared
between the oscillator and the qubit as is evidenced from the
entangled form, and we can still exploit the information
transferred to the erroneous terms to help maintaining high
fidelity when the loss is weak. This equation shows that the
information of the input states at with a large α are nearly
transferred onto the qubit states, and thus can have enhanced
robustness to the boson loss in the oscillator.
We consider qubit ancilla to be lossless without amplitude

damping while the effect of qubit loss is considered in
Supplementary Sec. VIII, but sensitive to small phase damping9,10

as the main threat to robustness. We model the phase damping as
Γp½ρ� ¼ ð1� p

2Þρþ p
2 σ̂zρσ̂z for any state ρ with dephasing para-

meter p. This channel is an identity channel at p= 0, and the
maximal dephasing channel at p= 1. The same dephasing
channels act independently on all physical qubit ancillas involved
through the paper. Note that it is also possible to correct this
dephasing error actively by transferring the information into
multiple ancillas for conventional DV error correction meth-
ods96,97, or by a hybrid qubit protection scheme using the Rabi
type of interactions as in the Supplementary Sec. IV. In the
following section, we show that after the error channels Γη and Γp,
the original state is substantially restored by the inverse
operations Û

y
T. We also note that in principle, the entire protocol

can be achieved by dispersive interaction and displacement which
transforms a dispersive coupling into a synthetic Rabi cou-
pling98,99 in traveling-wave microwave/optical platforms for future
experiments extending the scheme in ref. 28. We note that our
scheme has a similarity and can be replaced with a conversion
based on dispersive couplings22,42. However, our bypass scheme
has an advantage in terms of fidelity due to the approximate
nature and fragility of noises of the dispersive interactions,
especially in a large α limit.

Four coherent state superposition
This methodology can be scaled up to cases of more coherent
state components in the superposition, e.g., to 4-SCS μ1 αj i þ
μ2 α

�j i þ μ3 �αj i þ μ4 �α�j i for α ¼ αr þ iαi 2 C100. This class of
states are of particular interest recently, due to its ability for high

precise sensing13 and a fault-tolerant encoding it42. Gaussian
operations such as squeezing cannot protect such states at all, as
the broken symmetry in phase space by squeezing leads to more
severe decoherence. Therefore, these states can be an advanced
testbed for the extension of the bypass strategy to general SCSs.
We note that a single qubit will not be sufficient for the bypass
due to the existence of 4 unknown coefficients μj’s, and we need
to extend the circuit to two ancilla qubits for the minimal
complexity. Similarly, as in the 2-SCSs, we demonstrate the
protocol for pure states, while it can work equivalently for mixed
states.
To protect a general 4-SCS with our hybrid bypass scheme, two

ancillas with indices j ¼ 10; 20 couple respectively to the quad-
rature variables X and P of an oscillator by four Rabi gates forming
ÛTX;P as depicted in Fig. 1b. The two quadratures are indepen-
dently coupled to each of the ancillas similarly to the two-step

protocol for 2-SCSs by the operations Û
ð10Þ
R ¼ exp½iϵr σ̂ð10Þ

x X̂� and

Û
ð20Þ
R ¼ exp½iϵiσ̂ð20 Þ

x P̂� with a single Pauli operator acting on j0-th
qubit ancilla σ̂ðj0 Þ

x , approximated in the large-amplitude limit αr,i≫
2 as:

Û
ð20Þ
R Û

ð10Þ
R gj i10 gj i20 αr þ iαij i � exp½iϵiσ̂ð20Þ

x P̂� sgn½αr �i
�� �

10

gj i20 αr þ iαij i � sgn½αr �i
�� �

10 sgn½αi�i
�� �

20 αr þ iαij i:
(4)

Here, sgn½x� denotes the sign of the argument x. Coupling
strengths are set respectively as ϵr;i ¼ π=4

ffiffiffi
2

p
αr;i . The coherent

peaks are then shifted toward the phase space origin by the

controlled displacement Û
ð1Þ
D ¼ exp½i ffiffiffi

2
p

αr σ̂
ð10Þ
y P̂� and Û

ð2Þ
D ¼

exp½�i
ffiffiffi
2

p
αiσ̂

ð20Þ
y X̂� by the ancillary states before the erroneous

channels as

Û
ð2Þ
D Û

ð1Þ
D sgn½αr �i
�� �

10 sgn½αi�i
�� �

20 αr þ iαij i � Û
ð2Þ
D sgn½αr �i
�� �

10

sgn½αi�i
�� �

20 iαij i � sgn½αr �i
�� �

10 sgn½αi�i
�� �

20 0j i:
(5)

After the error channels, the original state can be substantially
restored by the inverse operations Û

y
TX;P . This example demonstrates

that complex n-SCSs can be protected by the qubit bypass in similar
ways; for other examples see Supplementary Information VII.
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Fig. 1 Bypass protocol. a Schematic of the protection protocol for a superposition of two coherent states in a bosonic mode (thick),
exploiting a single qubit bypass (thin). The oscillator and the ancillary qubit interact by a unitary coupling ÛT made of two Rabi gates, i.e.,
controlled qubit rotation ÛR ¼ exp½iϵσ̂xX̂� ¼ R̂x½2ϵX̂� where qubit rotation is denoted as R̂x½ϑ� ¼ exp½iϑσ̂x=2�, and controlled displacement
ÛD ¼ exp½�i

ffiffiffi
2

p
ασ̂yP̂� ¼ D̂½iασ̂y�. This bosonic channel undergoes linear damping in a lossy channel, whereas a lossless qubit channel degrades

only by a phase damping; the bosonic damping and phase damping are represented with trace-preserving maps Γη and Γp, respectively. The
qubit bypass is intrinsically protected against the amplitude damping by the qubit encoding to two ground states. After ÛT, the quantum
information is transferred to the qubit substantially, but keeping the CV channel is still beneficial. After decoherence by the error channels, the

input state is restored by the inverse unitary process Û
y
T. An extension of the protocol exploiting two bypass qubits b to a single-mode

superposition of four coherent states, and c to bipartite entangled states where the protocol is applied locally on each mode.
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Two-mode entangled coherent states
Our scheme can be extended to multi-mode ECSs in a
straightforward way, for the simplest example to the two-mode
state ECS±j i ¼ N ± ð αj i1 αj i2 ± �αj i1 �αj i2Þ with oscillator indices

J= 1, 2 with a normalization factor N ± ¼ ð2 ± 2e�4α2Þ�1=2
. Without

any protective scheme, the two-mode ECS will decohere at
approximately double decay rate of single-mode superposition
states as

Γ
ð2Þ
η ½Γð1Þη ½ ECS±j i ECS±h j�� ¼ N2

± α0j i1 α0h j � α0j i2 α0h j þ �α0j i1
�

�α0h j � �α0j i2 �α0h j± e�4α2ð1�ηÞ α0j i1 �α0h j � α0j i2
�α0h j± e�4α2ð1�ηÞ �α0j i1 α0h j � �α0j i2 α0h j

	
;

(6)

where α0 ¼ ffiffiffi
η

p
α. For this state, our scheme utilizes two local

bypasses of ancillary modes 10; 20 acting on both CV modes. The
state ECS±j i then evolves by ÛT1 ÛT2 to a loss-robust state

ÛT1 ÛT2 ECS
±j i ¼ i ϕþ

�� �
1;10 ϕþ

�� �
2;20 ∓ i ϕ�j i1;10 ϕ�j i2;20 (7)

where ϕþ
�� � ¼ �ij i iϵ=

ffiffi
2

pj iþ �iϵ=
ffiffi
2

pj i
2 þ þij i e

�iπ=4 2αþiϵ=
ffiffi
2

pj i�eiπ=4 2α�iϵ=
ffiffi
2

pj i
2i

and ϕ�j i ¼ þij i iϵ=
ffiffi
2

pj iþ �iϵ=
ffiffi
2

pj i
2 � �ij i e

iπ=4 �2αþiϵ=
ffiffi
2

pj i�e�iπ=4 �2α�iϵ=
ffiffi
2

pj i
2i .

For an n-mode ECSs, we can similarly apply local schemes to all n
modes to transform into more loss-robust states. These examples
explain well the logical steps to be applied to any specific
superposition of finite number of coherent states in different
modes. Again, the effect of qubit loss in the protection of these
states was analyzed in Supplementary Sec. VIII.

Single-mode superposition states
As a measure of performance of the protocol, we can first look at
fidelity101,102. Fidelity is defined as Fðρin; ρoutÞ ¼ trð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρin
p

ρout
ffiffiffiffiffiffi
ρin

pp Þ2
between input ρin and output ρout. For large α≫ 2, the super-
positions of coherent states represent a qubit space that is well
characterized by fidelity. The average performance of the schemes
on 2-SCSs μ αj i þ ν �αj i with a fixed α but arbitrary μ and ν over the
“Bloch sphere" of coherent states can be measured by the channel
fidelity94. It is defined as the fidelity between an input virtual
entangled state 2�1=2ð 0j i αj i þ 1j i �αj iÞ and the output state after
the noise channels, where f 0j i; 1j ig are fictitious qubit basis. We
note that in contrast to a conventional qubit, the statistical weight of
states represented in the channel fidelity is not homogeneous over
all coefficients μ, ν. For example, the weight of balanced super-
position states αj i± �αj i has the extrema values, but this
inhomogeneity is negligible for α≳ 2. Compared to the original
definition of channel fidelity which calculates from a state
2�1=2ð 0j i þj i þ 1j i �j iÞ where ±j i ¼ N ± ð αj i± �αj iÞ, the difference
between the two methods is very small, less than 10−9 in this regime.
We compared the strategy of Gaussian squeezing strategy prior

to transmission through the lossy channel64,67 as a benchmark.

The optimization of the Gaussian strategy was with respect to the
average photon number in the CV modes at each α. The optimal
squeezing parameter ropt for the initial state μ αj i þ ν �αj i is given
as

ropt ¼ 1
4 log 4e2α

2
α2μ�

e2α2μ�þν μ�ð Þ2þμ2ν
þ 1

h i�

� log 1� 4α2ν μ�ð Þ2þμ2ð Þ
e2α2 μ�þν μ�ð Þ2þμ2ν


 ��
:

(8)

In Fig. 2, we show the effectiveness of our strategy quantified by
the channel fidelity for general 2-SCSs of various amplitudes
against bosonic loss (fidelity for individual states are calculated in
Supplementary Sec. I. This is well evidenced by the decay rate γ of
the fidelity model Fc(η)= Fc(1)e−γ(1−η), where a larger γ represents
a faster decay. Fig. 2a clearly shows the qualitative difference of
our qubit bypass strategy showing decreased γ approximately
described as 0.65− 0.025α1.2. In contrast, the γs for no protection
and Gaussian squeezing protection are described by increasing
trends respectively as 0.17+ α1.92 and 0.29+ 0.96α. In Fig. 2b, we
can see that the channel fidelity of the bypass scheme
significantly surpasses the Gaussian strategy for a mild level of
dephasing for a large amplitude α≫ 2, and loss is not critically
detrimental to our scheme. At complete lossy case η= 0 for p= 0
corresponding to the complete blockage of the oscillator, the
channel fidelity of our scheme can be approximately given in the
large α limit as

Fc � e�
3π2

64α2 þ e�
π2

64α2

2
: (9)

We can see in Supplementary Fig. 1a, b that keeping the
oscillator is still beneficial even though it carries little information.
The negative part of the Wigner functions can serve as a

quantitative measure of the non-classical features, highly sensitive
to both losses and noises103,104. The equal-weight 2-SCSs αj i þ
eiϕ �αj i have interference fringes around the origin of the phase
space. In Fig. 3a, these interference fringes along P-axis in phase
space are shown for various ϕ under various levels of loss and
dephasing. We note that the negativity of all interference fringes
are preserved, not only in the largest one. The bypass scheme
protects the interference fringes even under a large dephasing,
especially for a large α≫ 2. Although the input state αj i þ i �αj i is
not fully protected in terms of fidelity under dephasing, the
interference fringes are not critically destroyed, although not
immune. Mathematically, the value of the Wigner function at the
phase space origin is proportional to the average value of the
parity operator as Wð0; 0Þ ¼ 2

π hρð�1Þn̂i. The bypass scheme
protects the interference fringes even under a large dephasing,
especially for a large α≫ 2. The deepest negative peak of the
initial state αj i � �αj i is located at the phase space origin, and its
first-order approximation for our protocol vs. the loss parameter

Fig. 2 Performance of bypass protection protocol in Fig. 1a for a superposition of two coherent states in a bosonic mode compared to
the Gaussian strategy under various dephasings. a The logarithmic decay rate log γ of channel fidelity is modeled as Fc(η)= Fc(1)e−γ(1−η) for
various cases. The curves for different p's are overlapped. b Channel fidelity vs. loss parameter for α= 6. This result shows the qualitative
difference between bypass and Gaussian strategies.
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1− η and the dephasing parameter p scales approximately in the
large α limit as

Wð0; 0Þ � � 2� 4e�2α2

π
þ ð1� ηÞ 2e

�2α2α2

π
þ p

1� e�
π2

8α2

2π
: (10)

Here the effect of loss and dephasing evidenced in the second
and third terms is weakening for a large α, therefore remaining
nearly constant for all α, η and p. This is because the state αj i �
�αj i is mapped onto the oscillator ground state (Eq. (3)), which is
unaffected by both boson loss and dephasing. Fig. 3b shows that
our scheme protects this negative peak better than the Gaussian
squeezing protection, especially at large α, whose negative peak
at the origin is described approximately by � 2

π þ 0:61ð1� ηÞα1:60.
In comparison, without any protection, the negative peak at the

origin scales as 2e2α
2 ð1�ηÞ�2e2α

2η

π e2α2�1ð Þ , which is influenced more harshly

than the others.
In Supplementary Sec. II, we calculated the Wigner functions

and channel fidelity of the 4 SCSs for a special encoding as in22,42

under various levels of loss and dephasing. Similarly, as for 2-SCSs,
we can also protect the negative peaks of 4 SCSs with an
increased fidelity in large α limit against loss under a modest level
of dephasing on the ancilla.

Two-mode entangled states
Entangled coherent states12,105 were engineered experimentally
from trapped ions106,107 and superconducting circuits35,108. We
briefly note that in terms of fidelity, similar tendencies, e.g.,
enhancement at large α beyond Gaussian strategies, can be
obtained as single-mode states. An important question is whether
a non-local property such as entanglement of these states can also
be protected by the local bypass schemes as in Fig. 1c, which
cannot be simply predicted by the fidelity. For our protocol,
intuitively we expect this to be the case, as we transfer the
entanglement from the bosonic modes to the ancillas, thus
bypassing losses. As a measure of entanglement which can
characterize the bipartite states ρ, we choose logarithmic

negativity NL½ρ� ¼ log jjρPTjj with partial transposition PT and the
trace norm ∣∣ ⋅ ∣∣, which operationally is connected to the upper
bound on the distillable entanglement109. The even superposition
state ECSþj i has 0 logarithmic negativity at small α as it is close to
the vacuum and thus has no entanglement. On the other hand,
the odd superposition state ECS�j i possesses a value ln 2 at all α.
At each α, the squeezing parameters for Gaussian strategies

were optimized to minimize the average photon number before
the lossy channel. The Gaussian squeezing protection can be
applied on both modes, with the optimal squeezing parameter
with respect to the average photon number is given as

ropt ¼ 1
4 log 2α2 þ 2α2 coth 2α2ð Þ þ 1½ �ð

� log �2α2 þ 2α2 coth 2α2ð Þ þ 1½ �Þ: (11)

In addition, we optimized the Gaussian protection numerically
at each α as well.
The scaling of the logarithmic negativity vs. α and η can be

described by a fitted function log 2� ð1� ηÞf ½α� when the
dephasing is absent. The loss effect functions are approximately
given as f[α]= 1.59α2+ 0.12α+ 0.59 for no protection, f ½α� ¼
�0:26þ 1:34α� 0:70 log α for Gaussian squeezing protection,
and f ½α� ¼ 0:44� 0:22 log α for bypass protocol. In Fig. 4, the
curves for the logarithmic negativities of ECS�j i after various noise
channels were drawn numerically. We notice again that the
entanglement of the bipartite states suffers a weaker effect by
qubit bypass protocol than the Gaussian strategies, with enhanced
performance in large α limit under a moderate qubit dephasing.
Additionally, the negative Wigner function of the projected state

by a local detection shows a sensitive witness of the entanglement.
If the bipartite state becomes factorizable in coherent basis due to
decoherence as αj i1 αh j � αj i2 αh j þ �αj i1 �αh j � �αj i2 �αh j, no
measurement in mode 1 can create a negative peak in the phase
space of mode 2. In contrast, ECSs allow measurement-induced
preparation of coherent superposition states which possess
negative Wigner function. As the simplest examples, we can
consider homodyne measurements Pj i1 Ph j or Xj i1 Xh j with X= 0 or
P= 0, or a projection on vacuum state 0j i1 0h j. For an ideal

Fig. 3 Protection of negative peaks of Wigner functions of superposition of two coherent states as in Fig. 1b. a, b Interference fringes in
cross-section of the Wigner function for αj i þ eiϕ �αj i at α= 6 with ϕ= π/2, π under 1− η= 0.01 of loss and p= 0, 0.05, 0.1 of dephasing. The
interference fringes for complete lossy channel η= 0 and under various p's are overlapped largely with the initial curve. c The depths of the
negative peak located at phase space origin vs. loss parameter 1− η at α= 6 for the initial state αj i � �αj i (curves with p > 0 are overlapped),
d and the logarithm of slopes of the curves in c vs. α.
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entangled state ECS±j i, all projections will prepare superposition
states αj i2 ± �αj i2.
In Fig. 5, we compared how the deepest negative peak of the

Wigner function behaves for different α and η. Without protection,
the formula for the largest negative peak depth is given as

w0 ¼ 2 e�4α2 ðη�1Þ�e2α
2η

� �
π e�2α2ðη�2Þ�1ð Þ , and by squeezing protection approximately

as ðw0Þe
�0:18

. The approximate formula for the qubit bypass

scheme is given as � 2 exp½� 1:46α2�7:14αþ11:0ð Þð1�ηÞ�
π . We can see that

our protocol is clearly superior to the Gaussian squeezing
strategies in protecting the locally induced negativity of of Wigner
functions in all parameter regions of αs and ηs. Interestingly, the
squeezing is not highly effective in protecting the negative
interference fringes here.
Notably, for a large α, this Wigner function negative peak of the

local projected state is impacted by loss even though the
entanglement itself is preserved by our protection. This discre-
pancy is caused by the effect of loss on local projection in the
control mode. It might limit some applicability of the protected
states to non-local tasks in multi-modes, and further evaluation of
the loss tolerance of conditional states may be needed. We
speculate that certain non-local protocols may enhance the
protection of non-local aspects.

DISCUSSION
In this work, we proposed a deterministic bypass protocol utilizing
Rabi couplings to lossless qubit ancillas under a low level of
dephasing, to mitigate decoherence by stable loss on the
unknown single-mode and two-mode superposition of coherent
states with a various number of components. Our method
depends on the experimental realization of the Rabi couplings:
high strengths of the coupling, and the existence of counter-
rotating terms in the Hamiltonians. The generation of high

strength gate can be in principle assisted by inline squeezings (see
Supplementary Sec. V). This protocol can be implemented in
various cavity QED systems which support the precise control of
Rabi couplings77–82,99,110. The adjustment of the proposal to
moving platforms is still possible. Optical experiments to achieve
Rabi interactions by using stationary atoms coupled dispersively
to a cavity have been already proposed99 and the first
experimental tests towards this future are recently presented28.
Still, the high spontaneous decay rate needs to be improved by a
better qubit for applications in the future. In such setups, light can
be potentially transmitted directly through a lossy channel, while
states of stationary qubit systems, instead of directly traveling with
the oscillator, can be teleported using the DV type of the
teleportation scheme111. We analyzed the performance by various
measures in comparison to optimal Gaussian strategies and
confirmed the superiority of our protocol.
Our protocol possesses the following characteristics: (i) it utilizes

a minimal number of resources in contrast to ultimate but
challenging quantum error correction schemes, (ii) the perfor-
mance improves for larger α in contrast to existing protocols
optimal in the opposite regime, and (iii) CV channel plays non-
negligible role except for a very large α≳ 10, and (iv) it can be
combined with conventional error correction schemes on
qubits41,42,47–56,58,59 or a Gaussian protection scheme on CV
states64–67. Our work implies that robust qubit channels can be
exploited for future extension of the method to various classes of
CV quantum non-Gaussian or non-local resources.

DATA AVAILABILITY
The numerical data presented in this study is available from the authors upon
request.
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Fig. 5 Protection in Fig. 1c of the Wigner function negative peak depths at the phase space origin of ECS�j i after a projective vacuum
measurement on one mode. a vs. loss parameter 1− η at α= 6 (curves for p > 0 are overlapped), b the logarithm of the slope of the curves in
a. The curves for the protection by squeezing were calculated numerically. The dephasing noise does not affect the depth of the negative
peaks, as is evidenced by the overlap of the curves.

Fig. 4 Protection of entangled coherent states ECS�j i in Fig. 1c quantified by numerically calculated logarithmic negativities. a vs. α for
1− η= 0.01 and b vs. 1− η for α= 3.
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