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Sign-problem free quantum stochastic series expansion
algorithm on a quantum computer
Kok Chuan Tan1,2✉, Dhiman Bhowmick 2 and Pinaki Sengupta 2

A quantum implementation of the Stochastic Series Expansion (SSE) Monte Carlo method is proposed, and is shown to offer
significant advantages over classical implementations of SSE. In particular, for problems where classical SSE encounters the sign
problem, the cost of implementing a Monte Carlo iteration scales only linearly with system size in quantum SSE, while it may scale
exponentially with system size in classical SSE. In cases where classical SSE can be efficiently implemented, quantum SSE still offers
an advantage by allowing for more general observables to be measured.
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INTRODUCTION
Quantum Monte Carlo methods have evolved to be indispensable
in the study of strongly correlated many-body systems where the
interplay between competing interactions result in quantum
phases that are not observed in their non-interacting counter-
parts. In the study of strongly correlated systems, computational
methods are vital, as standard analytical techniques based on
single particle picture or perturbation theory are often rendered
ineffective. Among the different numerical techniques, quantum
Monte Carlo methods have proven to be very powerful for their
ability to simulate a wide range of realistic microscopic
Hamiltonians on relatively large system sizes at all temperatures
and in all dimensions.
The phenomenal development of quantum information theory

over the past two decades and the advent of quantum computers
in the past couple of years have significantly broadened the
potential for simulating strongly interacting quantum many-body
systems. The ability to represent superposition of states directly on
a quantum computer promises exponential speedup of quantum
algorithms over their classical counterparts. Algorithms that
exploit quantum hardware to speed up simulations of the thermal
Gibbs state of many-body systems have previously been explored
in refs. 1–8, but we are still at a nascent stage of harnessing the
power of quantum computation in studying correlated systems.
The Stochastic Series Expansion (SSE)9–12 method is a widely

used Quantum Monte Carlo (QMC) method for simulating models
of quantum many-body systems. It is based on sampling the series
expansion of expð�βHÞ up to a sufficiently high order. A
significant advantage of SSE is that expectation values that are
obtained via this method are exact, up to statistical errors. Other
approaches include the world line method13–16, and the Density
Matrix Renormalization Group (DMRG) method16,17,18. In this
article, we propose an implementation of SSE on a quantum
computer and compare its efficiency to conventional SSE on a
classical computer. We refer to the former as quantum SSE and the
latter as classical SSE and demonstrate several advantages that
quantum SSE has over classical SSE. In particular, it will be argued
that the no-branching requirement19 from classical SSE can be
relaxed in quantum SSE, which leads to important consequences
for the simulation of many-body systems. This quantum

advantage stems from the ability of quantum processors to
prepare nontrivial superpositions of quantum states. In the
subsequent discussion, it is assumed the simulated object is a
quantum many-body system with N particles and k-local
interactions.
First, lifting the no-branching requirement in quantum SSE

means that we are no longer limited to basis states that permit a
diagonal representation. This has the effect of allowing more
general quantum observables to be measured in quantum SSE.
The second consequence is that quantum SSE always leads to

nonnegative weights, which are directly sampled from the
measurement probabilities of quantum circuits that scale linearly
with system size. By comparison, classical SSE by itself cannot
guarantee nonnegative weights without imposing strict condi-
tions such as no-branching. This implies that quantum computers
may be able to simulate many-body systems currently inaccessible
to classical SSE methods due to the famous sign problem20,21.
Notably, the Quantum Metropolis Sampling (QMS)3 algorithm also
avoids the sign problem by repeated use of the quantum phase
estimation algorithm22. However, quantum phase estimation
requires deep quantum circuits, and approximates the unitary
operation U ¼ expðiHtÞ via the Suzuki-Trotter decomposition23.
This necessarily introduces a systematic error, unlike exact QMC
methods such as SSE, which does not involve Trotterization. The
same argument applies to any putative quantum version of
Trotter-based algorithms such as the World Line QMC. Although
the Continuous Time (CT) World Line method16,24 avoids
Trotterization, the simpler structure of the SSE operator string
compared to CT QMC makes it better suited for implementation
on quantum architectures, especially on near term, noisy quantum
processors which require simpler quantum circuits in general.
This article is structured as follows: First, we introduce the broad

ideas underlying the SSE QMC method. Second, we will describe a
possible SSE implementation on a quantum computer, first for a
simpler special case, then for the more general case. Third, we
simulate the quantum SSE algorithm for one dimensional spin
chains and compare it with exact results. Finally, we discuss how
the no-branching condition and the sign problem affects classical
SSE, and evaluate the advantages that quantum SSE offers over
classical SSE.
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RESULTS
Stochastic series expansion
The canonical SSE is a finite temperature quantum Monte Carlo
algorithm based on the stochastic sampling of diagonal matrix
elements in the Taylor series expansion of the density matrix in a
suitably chosen basis19. For efficient implementation, it is
necessary to decompose the Hamiltonian as H=−∑bHb. The
partition function is written as

Z :¼ Trðe�βHÞ ¼ P
α

αh je�βH αj i

¼P
α

P1
n¼ 0

βn

n! αh jP
bn

Hbn

!
¼

P
b1

Hb1

 !
αj i

� PM
n¼ 0

P
b

P
α

βn

n! αh jHbn ¼Hb1 αj i;

(1)

where f αj ig is a complete set of states, b denotes the operator
string bn…b1 and M is some sufficiently large cutoff in the
expansion power. Assuming that each term αh jHbn ¼Hb1 αj i is
nonnegative, the algorithm proceeds by randomly sampling the
configuration space C :¼ fðn; b; αÞ 8 n; b; αg. The thermal expec-
tation value of any operator, O, is given by

hOi ¼ TrðOe�βHÞ=Z �
X
C

pCf ðO; CÞ (2)

where pC :¼ βn

n! αh jHbn ¼Hb1 αj i=Z. Finding 〈f(O, C)〉 for any O is
not necessarily trivial, but when O is diagonal in the chosen basis,
f ðO; CÞ :¼ αh jO αj i is an unbiased estimator that is readily
evaluated.
The SSE method is numerically exact up to statistical errors

because the truncation of the Taylor series expansion of the
density matrix does not introduce any systematic error. While in
principle, operator strings for every expansion power n should be
considered, their weight decreases rapidly with βn

n! for large values
of n≫ β, and is not reachable in practice when a finite number of
MC steps are performed. A finite simulation always has some
maximum operator string length that can be found empirically via
the Monte Carlo updating scheme described as follows: The
maximum expansion power depends on the values of the inverse
temperature, β, and the Hamiltonian parameters, and is deter-
mined empirically by dynamically adjusting the operator string
length during the equilibration stage of the simulation. M is then
set as some higher number that is never reached by the finite
simulation. Importantly, because no operator string length
sampled ever reaches M, the truncated terms do not contribute
to the final statistics of the simulation so there is no systematic
contribution to the error, i.e., the only errors are statistical. In
contrast, Trotterization with a finite number of steps always
contribute errors regardless of the number of samples obtained,
so the error contribution is inherently systematic.

SSE on a quantum computer
We now propose a method of implementing the SSE Monte Carlo
algorithm on a quantum computer. The classical implementation
of the SSE method requires that Hb satisfy a no-branching
condition in order for the algorithm to be efficient (see
Discussion). However, this requirement is no longer necessary
on quantum computers as they naturally allow for superpositions
of a large number of states. We can therefore choose a more
convenient decomposition. In general, it is always possible to
decompose any Hamiltonian as a sum of products of Pauli
matrices:

H ¼
X
b

hb �N
i¼1

σ
ðiÞ
bi
; (3)

where in general bi= 0, 1, 2, 3 and σ0 :¼ 1, σ1 := σx, σ2 := σy and
σ3 := σz. Note that in this notation, we used the upper index to
label the ith Pauli matrix in the product. This is different from the
lower index used to label the operator string b= bn…b1 in
Hbn ¼Hb1 .
In order to illustrate the quantum SSE method, we first consider

a special case where the operators hbi mutually commute, for
example, bi= 0, 1 (1 and σx). Specifically, we consider the
Hamiltonian

H ¼ �
X
hj;ki

Jjkσ
ðjÞ
x σðkÞx ; (4)

Such problems can already be nontrivial. For instance, in ref. 25,
the Hamiltonian (4) was considered as an example of a many-body
system that is NP hard to simulate for certain lattice
configurations.
We first define Hb :¼ hb�N

i¼ 1σ
ðiÞ
bi

þ jhbj1, which ensures that
Hb is always positive semidefinite. We can readily verify that {Hb}
forms a set of mutually commuting semidefinite operators:

HbHb0

jhbhb0 j
¼ Hb0Hb

jhb0hbj
(5)

where we used the fact that bi= 0, 1 and σ
ðiÞ
bi

can only be either be
1 or σx and they mutually commute. The positive semidefiniteness
and commutativity of Hb guarantees that a product of such
operators Hbn ¼Hb1 is also positive semidefinite (see Supplemen-
tary Information under “Positive semidefiniteness: special case”).
Making Hb positive semidefinite is equivalent to adding a constant
to the Hamiltonian H ! H þ k1 where k:= ∑b∣hb∣, such that the
total Hamiltonian is also positive semidefinite. With the positivity
of αh jHbn ¼Hb1 αj i assured, we need a method of sampling the
relative weight of a given configuration (n, b, α). In classical SSE,
positive weights cannot be assured except for some special
choices of αj i (see Discussion). Here, we describe a quantum
implementation which ensures positivity for arbitrary αj i.
A quantum algorithm relies on defining appropriate states and

unitary operations that can be implemented efficiently on a
quantum computer. In the following, we outline how to develop
an efficient estimator of the relative weight of a configuration. Let
us consider a state with (N+ n) qubits of the form:

ψin
�� � ¼ αAj i þB1j i¼ þBnj i; (6)

where þj i :¼ ð 0j i þ 1j iÞ= ffiffiffi
2

p
, N is the number of particles in the

system we are simulating, n is the expansion power in SSE, A=
A1…AN denotes the simulated system, and Ai with i∈ {1, 2,…N}
denotes the ith particle in the simulated system. Observe that

Hb ¼ jhbj sgn ðhbÞ�N
i¼ 1σ

ðAiÞ
bi

þ 1A

h i
is a superposition of 2

unitary operators sgn ðhbÞ�N
i¼ 1σ

ðAiÞ
bi

and 1A. We define the
following controlled unitary operation:

UA;Bi αAj i 0Bij i ¼ 1A αAj i 0Bij i (7)

UA;Bi αAj i 1Bij i ¼ sgn ðhbÞ �N
j¼ 1

σ
ðAiÞ
bj

� �
αAj i 1Bij i: (8)

By calculating the expectation value hψinjUA;Bi jψini, one can
evaluate an estimator for the relative weight

qðn; b; αÞ :¼ jhψinjUA;Bi jψinij2 � αAh jHbn ¼Hb1 αAj i
2nhbn ¼ hb1

����
����
2

: (9)

The spectrum of Hbi=jhbi j lies in the range [0, 2] and so the
spectrum of Hbn ¼Hb1=jhbn ¼ hb1 j is within [0, 2n]. The projected
amplitude is therefore not necessarily exponentially small due to
the 1/2n factor even for relatively large expansion orders n. In order
to find a bounded error estimate for q(n, b, α), quantum circuits are
repeatedly prepared and then measured in the computational
basis t times. An example of the type of quantum circuit being
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measured is shown in Fig. 1b. Each of these measurements yield a
classical bitstring that is a series of 0s or 1s and out of these t
bitstrings, we count the number of bitstrings that are all 0s. The
ratio to the total number of samples t estimates q(n, b, α). Since this
is a binary distribution, the sample variance scales with ~1/t, so
estimating q(n, b, α) to target precision ε requires t ~ 1/ε2 samples
in general. In this way, the configuration weights can be estimated
to any target degree of numerical precision.
Alternatively, we can also perform a quantum subroutine called

amplitude estimation26 (see Supplementary Information under
“Amplitude estimation”). In general, to estimate the probability p
to any desired precision ϵ with success probability 1− δ, the
subroutine needs to be invoke certain unitary operations a total of
t= t(ϵ, δ) times, where t(ϵ, δ) only depends on the desired
precision ϵ and success probability 1− δ. In this case, the variance
scales with ~1/t2, where t is now the number of times the unitary
operations are applied rather than the number of independent
samples.

Stochastic sampling of operator space
Once the relative weight of a configuration C is sampled, the
Monte Carlo simulation proceeds by stochastically sampling the
operator space via the Metropolis method. This consists of
randomly selecting some new configuration C0, and then
accepting the newly chosen configuration with probability
PacceptðC ! C0Þ :¼ min WðC0Þ=WðCÞ; 1½ � where W(C) is the weight
of a configuration C= (n, b, α). It is given by the following
expression

WðCÞ :¼ βn

n! αh jHbn ¼Hb1 αj i
¼ βn

n! j2nhbn ¼ hb1 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðn; b; αÞp

;
(10)

where q(n, b, α) is the probability sampled in Eq. 9. In the
Metropolis algorithm, it is implicitly assumed that the probability

of selecting C0 when the current configuration is C is the same as
the probability of selecting C when the current configuration is C0,
i.e., PselectðC ! C0Þ ¼ PselectðC0 ! CÞ. Each of the variables n, b, α
is updated separately using the ratio WðC0Þ=WðCÞ as the
probability of accepting an update. In quantum SSE, the update
probabilities are determined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðn0; b0; α0Þ=qðn; b; αÞp

, which are
obtained by sampling the probabilities q(n, b, α) from the
quantum circuit (see Eq. 9). Explicit expressions for the update
probabilities are provided in the Supplementary Information
under “Metropolis acceptance weights”. The calculation of the
update probabilities does not involve the 2n multiplicative factor
in Eq. 10, so an exponential blowup in the sampling error does
not occur.

Quantum implementation of SSE for general Hamiltonians
In the section “SSE on a quantum computer” we demonstrated a
special case implementation of quantum SSE where the quantity
αh jHbn ¼Hb1 αj i is guaranteed to be non-negative. For general
Hamiltonians, this may not always be possible because the
operator Hbn ¼Hb1 may not be Hermitian. In this section, we
discuss an implementation for more general Hamiltonians.
Recall the expression for the expectation value of an operator:

hOi ¼
X
n;b;α

βn

n!
αh jHbn ¼Hb1 αj i αh jO αj i=Z:

Note that the summation over all possible strings b contain
αh jHbn ¼Hb1 αj i, as well as its complex conjugate αh jHb1 ¼Hbn αj i.
Since αh jHbn ¼Hb1 αj i þ αh jHb1 ¼Hbn αj i ¼ 2Re αh jHbn ¼Hb1 αj i,
only the real part of each term contributes to the expectation
value. Hence we can equivalently write

hOi ¼
X
n;b;α

βn

n!
Re αh jHbn ¼Hb1 αj i αh jO αj i=Z: (11)

Fig. 1 Quantum SSE simulation of 1D antiferromagnetic spin-1/2 chain. a 1D spin-1/2 chain with antiferromagnetic interaction and periodic
boundary condition. For N= 3, the sites are labeled 1, 2, 3 and the corresponding bonds b1, b2, b3. b An example schematic of the quantum
circuit calculating the expectation value of string of unitary operators Ub1

A;q1
Ub2
A;q2

Ub3
A;q3

. Further details are given in the main text.
c, d, e Illustrates the convergence of the mean energy (blue-line with circles) determined by quantum SSE at β= 1. The finite temperature
energy of the system represented by the red horizontal line is obtained via exact diagonalization. The x-axis indicates the number of
Metropolis iterations Niter for N= 3, 4, 5 respectively.
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Therefore, in order to implement quantum SSE, we only need to
sample the real portion of αh jHbn ¼Hb1 αj i and ensure that it is
nonnegative. We show that this can be done by adding a
sufficiently large constant to the Hamiltonian (see Supplementary
Information under “Positive semidefiniteness: general case”).
Suppose M ≥ n is the cutoff in the expansion power (see Eq. 1).

For a fixed M, let Hb :¼ jhbj sgn ðhbÞ�N
i¼ 1σ

ðAiÞ
bi

þ 2M1A

h i
. We

note that this is an unequal superposition of 2 unitary operations
that depends on the cutoff value M.
We introduce the state

ψin
�� �

:¼ αAj i ϕB1

�� �
¼ ϕBn

�� � þCj i; (12)

where

ϕBi

�� �
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2MÞ=ð2M þ 1Þ

p
0Bij i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=ð2M þ 1Þ

p
1Bij i

and þCj i :¼ 1ffiffi
2

p ð 0Cj i þ 1Cj iÞ. As before, by introducing appro-
priate unitary operators, the relative weight of the configurations
can be evaluated. In addition to UA;Bi , we further define the unitary
VAB,C, which is controlled by qubit C:

VAB;C αAj i ϕB1

�� �
¼ ϕBn

�� �
0Cj i

:¼ UA;B1 ¼UA;Bn αAj i ϕB1

�� �
¼ ϕBn

�� �
0Cj i

VAB;C αAj i ϕB1

�� �
¼ ϕBn

�� �
1Cj i

:¼ UA;Bn ¼UA;B1 αAj i ϕB1

�� �
¼ ϕBn

�� �
1Cj i

(13)

For any given expansion power n, we can verify the expression:

ψinh jVAB;C ψin
�� � ¼ αAh jHb1 ¼Hbn αAj i þ αAh jHbn ¼Hb1 αAj i

2ð2Mþ 1Þn jhbn ¼ hb1 j

¼ Re αAh jHbn ¼Hb1 αAj i
ð2Mþ 1Þn jhbn ¼ hb1 j

;
(14)

which allows us to define an estimator for the relative weight:

qðn; b; αÞ :¼ j ψinh jVAB;C ψin
�� �j2

� Re αAh jHbn ¼Hb1 αAj i
ð2Mþ 1Þn jhbn ¼ hb1 j

���
���
2 (15)

Note that the spectrum of Hbi=jhbi j is in the range [0, 2M+ 1] so
the absolute value of Re αAh jHbn ¼Hb1 αAj i=jhbn ¼ hb1 j is within the
range [0, (2M+ 1)n]. The configuration weights, and hence
Re αAh jHbn ¼Hb1 αAj i, are always nonnegative.
From the above arguments, we see that the configurations can

be sampled by measuring the probability q(n, b, α). The Metropolis
portion of the simulation then proceeds as before, where the
acceptance probability depends on the ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðn0; b0; α0Þ=qðn; b; αÞp

. Note that the above argument finds a
sufficiently large constant to add to the Hamiltonian to avoid
negative weights. This constant may be too large for many specific
problems. We expect that the minimum constant that is required
can be optimized on a case by case basis. We also highlight that
adding a constant to the Hamiltonian is only necessary when the
initial Hamiltonian contains negatively weighted configurations.
The above arguments show that quantum SSE is able to avoid
negative weights for general Hamiltonians and arbitrary basis
states αj i, which is not possible in general for classical SSE except
for special cases.

Example: 1D antiferromagnetic spin-1/2 chain
To demonstrate the proposed algorithm, we simulated the
Hamiltonian of one dimensional periodic spin chains with N= 3,
4, 5 sites. The algorithm was implemented using the quantum
simulation toolkit Qiskit27 and the measured observables were
compared with results from exact diagonalization. The Hamilto-
nian with antiferromagnetic exchange is given by

H0 ¼ J
X
b

σbð1Þ
x σbð2Þ

x ; (16)

where J > 0 and b(i) is the i-th site of the b-th bond (see Fig. 1a).
The classical SSE implementation violates the no-branching
condition and suffers from the sign problem if we do not use
the eigenstates of σx to construct the basis states, αj i. In quantum
SSE this constraint no longer exists as the no-branching
requirement is lifted and the string of bond operators have
positive-semidefinite weights. To illustrate this, we choose the
basis states αj i to be product states of σz eigenvectors (i.e.,
products of "j i; #j i) rotated by Hadamard gates and non-Clifford
phase gates T ¼ 100eiπ=4

� �
. In general, quantum circuits with

non-Clifford gates are known to be difficult to simulate
classically28,29.
The energy calculations from quantum SSE as a function of the

number of Metropolis iterations are shown Fig. 1c–e for site
numbers N= 3, 4, 5 respectively at β= 1. For all the cases
considered, it was observed that the mean energy computed via
quantum SSE converges towards the exact finite temperature
energy of the system obtained from exact diagonalization, thus
demonstrating the validity of the algorithm.

DISCUSSION
Recall that implementing SSE Monte Carlo requires each term
αh jHbn ¼Hb1 αj i in the expansion to be nonnegative. In general,
this cannot be always guaranteed except for special cases. This
results in the infamous sign problem20,21 which severely restricts
the applicability of QMC methods.
In the classical implementation of SSE, the sign problem arises

from the so-called no-branching condition. This is the requirement
that Hb αj i / α0j i, where α0j i is also a basis vector. In other words,
we always have to use a decomposition of H= ∑bHb such that Hb

does not create superpositions of basis states. For any given basis,
this means that every Hb satisfying the no-branching requirement
can be classified as a diagonal operator satisfying Hb αj i / αj i for
every α, or an off-diagonal update satisfying Hb αj i / α0j i where
α≠ α0 for some α.
A diagonal update can always be made positive by adding a

sufficiently large constant. This is because if Hb is a diagonal
update, then H0

b αj i :¼ ðHb þ k1Þ αj i / αj i is also a diagonal
update.
On the other hand, we see that if Hb is an off-diagonal update,

adding a constant will necessarily create a superposition of basis
states, since ðHb þ k1Þ αj i / hb;α α0j i þ k αj i where α≠ α0. This
means that we cannot guarantee that Hb is always positive
semidefinite for off-diagonal updates, without violating the no-
branching condition. This in turn implies that αh jHbn ¼Hb1 αj i is
not necessarily positive, which is the sign problem.
From the above, we see that the sign problem exists because of

the no-branching requirement. If we avoid the sign problem by
lifting no-branching requirement, one will have to keep track of all
the off-diagonal elements of Hbn ¼Hb1 αj i. In the worst case, the
computational resources required to keep track of an arbitrary
superposition of basis states is of the order OðexpðNÞÞ, where N is
the number of particles.
The primary benefit of the quantum SSE method is that it does

not require the no-branching condition, as quantum computers
naturally allows for the creation of superpositions of quantum
states. This allows us to sample the relative weights of a given
configuration directly, without needing to keep track of all the off-
diagonal elements. By lifting the no-branching requirement, we
can always ensure that the relative weights are nonnegative, thus
also avoiding the sign problem. We have shown this for the
special case where the Hamiltonian can be decomposed into
products of 1 or σx, as well as for more general Hamiltonians.
We now discuss several advantages that quantum SSE offers

over classical SSE. The first advantage is that a much wider range
of observables can be measured using quantum SSE. Both
quantum and classical SSE compute statistical averages most
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easily when the observable O is diagonal in the basis αj i. Unlike
classical SSE, however, quantum SSE does not require the no-
branching condition so there is no longer any limitations on the
choice of basis states αj i. For any given operator O, we can now
choose any basis f αj ig that diagonalizes the observable O, as long
as the the basis state αj i can be efficiently prepared on the
quantum computer. The corresponding estimator for the obser-
vable O is then f ðO; CÞ :¼ αh jO αj i. Consequently, quantum SSE
allows more general quantum observables to be measured
compared to classical SSE. An example of this is when O ¼
ϕj i ϕh j for a known quantum state ϕj i. In this case, O is the
projector onto the state ϕj i and hOi ¼ ϕh je�βH0

=Z ϕj i is the
overlap between ϕj i and the thermal state e�βH0

=Z. In general,
finding the state overlap is not easily implementable using
classical SSE. In the Shastry-Sutherland model30–32 for instance,
this can be used to directly verify that the ground state is a
product of singlet pairs. This is achieved by by letting ϕj i be a
product of singlets and then sampling the expectation values
using quantum SSE.
A second advantage of quantum SSE is the low circuit complexity

required to estimate the configuration weight. Consider the
computational cost of implementing quantum SSE for the special
case discussed in the section “SSE on a quantum computer”. Here,
sampling αAh jHbn ¼Hb1 αAj i given some operator string b requires a
total of n unitary operations to be performed, multiplied by the
number of samples t for any target numerical precision. Combine
this with the fact that 〈n〉, the average expansion power in SSE, is
proportional to the system energy and scales with βN, and the end
result is that the total number of quantum gates required to sample
the configuration weight requires OðnÞ � OðNÞ number of
operations, i.e., it scales linearly with system size. A similar argument
can also be made if we employ the amplitude estimation algorithm
(see Supplementary Information under “Amplitude estimation”). An
analysis for general Hamiltonians will lead to the same conclusion,
since essentially the same set of unitary operations are performed,
except with an additional control operation. We therefore expect
the size of the quantum circuits in quantum SSE to scale with OðNÞ
in general.
Compare this to the classical SSE algorithm. In classical SSE, the

cost of sampling the configuration weight is OðNÞ only when the
no-branching condition is satisfied and there is no sign problem. As
previously discussed, a consequence of this is that the no-branching
condition fixes the basis αj i, which limits the kinds of observables
that classical SSE can measure. More generally, without the no-
branching condition, classical SSE encounters the sign problem and
the computational cost of avoiding negative weights is generally
� OðexpðNÞÞ. By comparison, the complexity of the quantum circuit
isOðNÞ if the basis state αj i is generated by a circuit of size OðNÞ, or
poly(N) if αj i is generated by a circuit of size poly(N). Taking into
account all such possible basis states, we expect the improvement in
terms of computational complexity to be exponential.
The third advantage of quantum SSE is that it can be efficiently

parallelized to a short depth quantum circuit. Short depth circuits
belong to the quantum complexity class QNC, which is the class of
quantum circuits with polylogarithmic depth. In order to see this,
observe that the unitary operations UA;Bi and VAB,C are composed
of layers of controlled-Pauli operations. In general, such operations
are known to belong to the quantum complexity class QNC133,
which has depth complexity OðlogNÞ. This means that the depth
complexity of quantum SSE belongs to QNC1 for any αj i
generated in logarithmic depth, or more generally QNC if αj i is
generated in polylogarithmic depth. In particular, the example in
Fig. 1 belongs to QNC1. Note that this circuit contains non-Clifford
T gates and that non-Clifford gates are not efficiently simulable on
classical computers28,29. Such short depth quantum circuits are
also especially well suited for implementation on NISQ proces-
sors34 with limited coherence times. To the best of our knowledge,
we are not aware of a similar result for classical SSE.

In summary, we proposed a quantum implementation of the
SSE Monte Carlo algorithm and compared it to its classical
counterpart. It was shown that the cost of implementing a single
Monte Carlo update in quantum SSE scales linearly with the
number of particles N. We compare this to the classical
implementation of SSE, where certain many-body systems exhibit
the sign problem and incurs an additional cost that scales
exponentially with N. The quantum algorithm was able to avoid
this by ensuring that the weight of the configuration is always
positive, regardless of the chosen basis. This suggests that
quantum computers can significantly speed up the simulation of
complex quantum many-body systems. Even when the sign
problem is not present in classical SSE, quantum SSE can still be
advantageous, since it allows for more general observables to be
measured. This was demonstrated via a numerical simulation of a
1D spin-1/2 chain using the quantum SSE algorithm in combina-
tion with a basis that is typically hard to implement in classical
SSE. In all cases considered, it was shown that quantum SSE
converged to the correct results obtained from exact
diagonalization.
It is known that estimating the ground state energy of a k-local

Hamiltonian is QMA complete25,35,36. Here, we have shown that
quantum SSE can perform bounded error estimates of the
configuration weights in polynomial time, which is not always
possible in classical SSE. While this quantum speedup removes a
major bottleneck in classical SSE, it does not necessarily imply an
exponentially fast rate of convergence to the ground state energy,
nor that QMA complete problems can be solved in polynomial time
in general. Nonetheless, the quantum SSE algorithm shows that
quantum computers are promising tools for accelerating the SSE
Monte Carlo simulation in many scenarios. This may provide a
pathway for probing the quantum properties of many-body systems
that are currently inaccessible to existing classical techniques.

METHODS
We describe in detail how the simulation in Section “Example: 1D
antiferromagnetic spin chain” was performed. After adding identity
operators to the bond operators to make them positive-semidefinite, the
effective Hamiltonian for J= 1 in the quantum SSE simulation is

H ¼
X
b

Hb; (17)

where Hb ¼ 1 � σ
bð1Þ
x σ

bð2Þ
x .

The controlled unitary operator Ub
A;Bi performs the map,

Ub
A;Bi αAj i þBij i ¼ 1ffiffiffi

2
p αAj i 0Bij i � σbð1Þx σbð2Þx αAj i 1Bij i
	 


: (18)

that were introduced in the section “SSE on a quantum computer”. The
expectation value of operator strings Hb1Hb2 ¼Hbn—needed to evaluate
the partition function—is related to Ub

A;Bi according to (∣hb∣= 1 ∀ b since
J= 1):

αAh j þB1h j¼ þBnh jUbn
A;Bn ¼Ub1

A;B1 αAj i þB1j i¼ þBnj i ¼ 1
2n

αAh jHbn ¼Hb1 αAj i:
(19)

An example quantum circuit performing this measurement is shown in
Fig. 1b. In this example circuit, there are six physical qubits where qubits
q0, q1, q2 are ancillae, and qubits q3, q4, q5 represent the system. The
quantum circuit determines the expectation value of string of
Ub3
A;q2

Ub2
A;q1

Ub1
A;q0

for a three site periodic system when n= 3. We will
describe in detail the steps involved in the circuit in Fig. 1b.
In Step I, the ancilla qubits q0, q1 and q3 are prepared in the states

�q0

�� �
; �q1

�� �
; �q2

�� �
respectively, using Hadamard and Pauli X gates.

In Step II the system qubits q3, q4 and q5 representing the spin-1/2 sites
of the physical spin chain are prepared in some initial state αj iA by
applying either the identity or the Pauli X-gate followed by a Hadamard
and the non-Clifford T-gate. This generates basis states via a constant
depth, non-Clifford quantum circuit.
In Step III the unitary operations Ub3

A;q2
; Ub2

A;q1
and Ub1

A;q0
are completed by

sequentially applying CNOT operations onto αj iA �q0

�� � �q1

�� � �q2

�� �
.
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Finally in Step IV, the qubits are rotated using Hadamard, X gates,
inverse T gates and then measured in the computational basis. The
probability of measuring all qubits with the outcome 0 gives the square of
the expectation value of Ub3

A;q2
Ub2
A;q1

Ub1
A;q0

. All of the quantum gates used to
construct the quantum circuit are standard quantum gates included as
part of the Qiskit library.
After evaluating the expectation value for a given operator string and

spin state, the relative weight is computed from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðn0; b0; α0Þ=qðn; b; αÞp

.
The Metropolis algorithm, as described in the section “Stochastic sampling
of operator space”, is then implemented accordingly to update the
quantum state and the operator string. In SSE, the finite temperature
energy of the system is evaluated using the expression19,

E ¼ � nh i
β

þ N; (20)

where nh i is the average length of operator string per Metropolis loop.
Note that the contributing term N in Eq. 20 is due to adding a constant to
the Hamiltonian to ensure positive semidefiniteness.
The Metropolis sampling is initialized with some arbitrary string of

operators. The average operator string length nh i is then calculated after
an initial 104 Metropolis steps, and the mean energy is evaluated using Eq. 20.
The simulation was performed for site numbers N= 3, 4, 5 at a fixed inverse
temperature β= 1.
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