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Autonomous quantum error correction in a four-photon Kerr
parametric oscillator
Sangil Kwon 1✉, Shohei Watabe 1 and Jaw-Shen Tsai1,2✉

Autonomous quantum error correction has gained considerable attention to avoid complicated measurements and feedback.
Despite its simplicity compared with the conventional measurement-based quantum error correction, it is still a far from practical
technique because of significant hardware overhead. We propose an autonomous quantum error correction scheme for a rotational
symmetric bosonic code in a four-photon Kerr parametric oscillator. Our scheme is the simplest possible error correction scheme
that can surpass the break-even point—it requires only a single continuous microwave tone. We also introduce an unconditional
reset scheme that requires one more continuous microwave tone in addition to that for the error correction. The key properties
underlying this simplicity are protected quasienergy states of a four-photon Kerr parametric oscillator and the degeneracy in its
quasienergy level structure. These properties eliminate the need for state-by-state correction in the Fock basis. Our schemes greatly
reduce the complexity of autonomous quantum error correction and thus may accelerate the use of the bosonic code for practical
quantum computation.
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INTRODUCTION
The most serious obstacle towards fault-tolerant quantum
computation is probably quantum error correction. The reason is
that quantum error correction requires a large Hilbert space as
well as high-fidelity measurement and control. The use of a
harmonic oscillator, i.e., a bosonic system, is one strategy to obtain
a large Hilbert space without too much hardware overhead1–4. In
this system, information can be encoded as a symmetric pattern in
phase space. Such a symmetry can be either translational
(Gottesman–Kitaev–Preskill code)5,6 or rotational (cat or binomial
code)7. In a superconducting circuit8–12, which is our working
system, another advantage of using a harmonic oscillator is that
the major loss mechanism is single-photon loss; thus, quantum
error correction in this system can be achieved by detecting the
number parity of the photon state13–15.
Recently, autonomous quantum error correction (AQEC)

schemes have gained considerable attention to avoid compli-
cated measurements and feedback16–25. Although AQEC is
considered to be much easier to implement than the conven-
tional measurement-based quantum error correction, there is still
a serious hardware overhead—the need for many microwave
tones. The origin of this problem is that the logical qubit states
are composed of multiple Fock states, and errors are corrected
by selective transitions induced by continuous microwave tones.
Since each transition requires a separate continuous microwave
tone, many microwave tones are required to handle all possible
transitions. For example, eight microwave tones are used in
ref. 24 although the logical qubit states in this reference are
composed of only four Fock states. Moreover, the amplitude of
each tone must be tuned independently to ensure identical
transition rates that prevent leakage of which-path information.
Thus, any scheme based on state-by-state correction in the Fock
basis is difficult to scale up.
In this study, we propose an AQEC scheme that requires only a

single continuous microwave tone—the simplest possible error

correction scheme that can surpass the break-even point. This
substantial reduction of hardware overhead is due to the
protection of the Hilbert space for encoding and error correction
such that the system remains in this protected Hilbert space under
single-photon loss/drive. Such a protection is provided by a four-
photon pump applied to a Kerr nonlinear oscillator—a system with
a small anharmonicity of <1% of its resonance frequency26. Since
this four-photon pump cannot be achieved by simple linear driving
and must be achieved by parametric modulation of the Josephson
junction energy27,28 (see Supplementary Note 1), we term this
system a four-photon Kerr parametric oscillator (KPO). Although a
KPO has received much attention very recently because of its use
for the generation and stabilization of the cat states29–38, gate-
based quantum computation30,34,38–42, measurement-based error
correction43,44, quantum annealing45–51, and other physically
interesting topics52–59, little attention has been paid to its
applicability to AQEC. Our study reveals that a KPO can be a
suitable system for AQEC.

RESULTS
System and encoding
Our system of interest is a KPO driven by a four-photon pump
whose frequency is ωp. In the rotating frame with the frequency
ωp/4, the Hamiltonian of the KPO is given by (see the section
“Gate operation and circuit implementation” and Supplemen-
tary Note 1 for circuit implementation and derivation of the
Hamiltonian)

ĤKPO ¼ _ΔKPOâ
yâ� _

K
2
âyâyââþ _

P
2
ðâyâyâyây þ ââââÞ: (1)

Here, â and ây are the ladder operators for the KPO, ΔKPO

(≡ωKPO−ωp/4) is the KPO-pump frequency detuning, where ωKPO

is the transition frequency of the KPO between 0j i and 1j i states,
K is the Kerr coefficient, and P is the amplitude of the pump.
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The four highest quasienergy states from Eq. (1) are energeti-
cally close and show fourfold rotational symmetry in phase space
as shown in Fig. 1a. These states are represented by the modulus
of 4 in the Fock basis:

kmodj i ¼ P1
n¼0

CðkÞ
n 4nþ kj i; (2)

where jCðkÞ
n j2 (k∈ {0, 1, 2, 3}) indicates the occupation probability

of each Fock basis, which is plotted in the upper panel of Fig. 1a.
We encode information on the states with the odd number

parity24— 1modj i as 0Lj i and 3modj i as 1Lj i, where the subscript L
denotes the logical qubit states. These two logical states comprise
the code space (warm colors in Fig. 1), whereas the remaining two
states with even number parity constitute the error space
(achromatic colors). In this work, we call the code space and
error space together the information space (the gray dash-dot
boundary in Fig. 1b).
Note that there is an energy gap, which we call the protection

energy gap, the size of which is about 3K at ΔKPO and P values
shown in the caption of Fig. 1a. This energy gap protects the
information space by suppressing the population leakage to states
outside of the information space, which we name ‘higher
excitation levels (HEL)’ although their quasienergies are actually
lower because of the minus sign in front of K [Eq. (1)]. (The
quasienergy level diagram showing the protection energy gap
and the HEL space are shown in Supplementary Fig. 4).
We can access 1modj i and 3modj i by increasing P in Eq. (1)

adiabatically from 1j i and 3j i, respectively32,34. In the section
“Unconditional reset”, we discuss another convenient way to reset
the state of the system to the logical qubit states unconditionally
by applying two continuous microwave tones.

Error correction scheme
Our autonomous error correction scheme is shown in Fig. 1b.
Our scheme corrects errors caused by single-photon loss and
thus relies on change in the number parity of the KPO state18.

The crucial observation is that if 1modj i ( 3modj i) loses one
photon, the final state is likely 0modj i ( 2modj i) because of the
protection by the four-photon pump. This means that we can
recover 1modj i from 0modj i ( 3modj i from 2modj i) by applying a
single-photon drive. Note that we cannot ask which Fock state
loses or gains the photon as all Fock states comprising the
logical qubit state change simultaneously. This eliminates the
need to control the Fock states one by one, thus greatly
reducing hardware overhead.
The second essential requirement, other than the protection of

the information space, is the energy degeneracy between 0modj i
and 1modj i as well as between 2modj i and 3modj i. Remarkably, this
can be achieved simply by tuning P in Eq. (1) to the value
indicated by the vertical dashed line in the inset of Fig. 1a. The
energy degeneracy allows us to induce transitions between 0modj i
and 1modj i as well as between 2modj i and 3modj i using a single
microwave tone with the frequency ωp/4.
Other requirements for our AQEC scheme are (i) one-way

transition: 0modj i ! 1modj i and 2modj i ! 3modj i, and (ii) no
transition: 1modj i↮ 2modj i and 3modj i↮ 0modj i. The one-way
transition can be realized by introducing an ancilla resonator

whose ladder operators are b̂
y
and b̂, and applying âyb̂

y þ âb̂
instead of ây þ â. (Hereafter, we refer to the microwave tone for

âyb̂
y þ âb̂ as the correction tone.) This ancilla resonator must be

very lossy compared with the KPO to suppress transitions from the
code space to the error space. The resulting process is as follows.
For example, 0modj i can be corrected with the ancilla, whose state
is written with the subscript ‘an’, as

0mod; 0anj i ) 1mod; 1anj i ! 1mod; 0anj i; (3)

where⇒ indicates a transition induced by the correction tone,
whereas→ indicates a spontaneous transition in the lossy ancilla.
Transitions such as 1modj i $ 2modj i and 3modj i $ 0modj i can be
suppressed by an energy gap ωgap (different from the protection
energy gap). Note that we have this energy gap already—see the
inset of Fig. 1a.
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Fig. 1 Information encoding and AQEC scheme in a four-photon KPO. a Four eigenstates in the information space. The upper panel shows
the occupation probability of these eigenstates in the Fock basis at ΔKPO/K= 1.5 and P/K= 0.2764 (indicated by a vertical dashed line in the
inset), where the energy levels of 0modj i and 1modj i ( 2modj i and 3modj i) are degenerate. Here, E0 is the energy level of 0modj i. The inset shows
the quasi-energy levels of the four eigenstates as a function of P. The four lower panels show the Wigner distribution of the four eigenstates.
The eigenstates with the odd/even number parity consist of the code/error space. b Requirements for AQEC. The dash-dot line forming the
gray boundary represents protection of the information space provided by the four-photon pump. Double arrows (⇒) indicate induced
transitions, and single arrows (→) indicate spontaneous transitions caused by single-photon loss. Colors of bars and frames in this figure
indicate the modulus of 4 in the Fock basis.
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Numerical simulation
We simulate our AQEC scheme by solving the following master
equation43 with QuTiP60,61.

∂ρðtÞ
∂t

¼ � i
_
½ĤfullðtÞ; ρðtÞ�

þ γKPOð1þ nthÞD½â� þ γKPOnthD½ây�
n

þγϕD½âyâ� þ γanD½b̂�
o
ρðtÞ;

(4)

where D½Ô�ρ ¼ ÔρÔ
y � 1

2 Ô
y
Ôρ� 1

2 ρÔ
y
Ô, γKPO is the single-photon

loss rate of the KPO, nth is the number of thermal photons in the
KPO, γϕ is the dephasing rate of the KPO, and γan is the single-
photon loss rate of the ancilla resonator. In this subsection, we
consider only single-photon losses in the KPO and the ancilla
resonator. (The effects of nth and γϕ will be discussed in the
section “Photon gain and dephasing”) The time-dependent
Hamiltonian ĤfullðtÞ is given by

ĤfullðtÞ � ĤKPO þ _Δanb̂
y
b̂þ _gðâyb̂þ âb̂

yÞ
þ_Acor cosðωcortÞðâyb̂y þ âb̂Þ:

(5)

Here, Δan(≡ωan−ωp/4) is the ancilla-pump frequency detuning,
where ωan is the resonance frequency of the ancilla resonator, g is
the coupling constant between the KPO and the ancilla, and Acor
and ωcor are the amplitude and the frequency of the AQEC term,
respectively.
The first thing that must be done for AQEC is to find the

appropriate ωcor. The result of such a frequency sweep is shown in
Fig. 2a. We found a peak in the population of the logical qubit
states for ωcor near Δan—a signature of AQEC. This result is
consistent with the âyb̂

y þ âb̂ term because Δan corresponds to

ωan+ωp/4 in the lab frame. In addition, we found a dip separated
from the peak with ±ωgap whose sign depends on the logical
qubit state of interest. This dip activates the transitions suppressed
by ωgap. Such a peak-dip structure can be understood with the
diagram shown in the upper panel of Fig. 2b. In this diagram, our
AQEC scheme can be understood as population transfer along the
thick gray arrows.
Our main results, the relaxation times with and without AQEC,

are presented in Fig. 2b and c. With optimal Acor and γan values
(the optimization procedure for these quantities will be discussed
in the section “Optimization”), the bit-flip time of the logical qubit
states is increased by approximately one order of magnitude (the
lower panel of Fig. 2b), and the phase-flip time is increased by
over a factor of 6 (the lower panel of Fig. 2c). Note that the phase-
flip time is not greater than T2 in 0j i and 1j i encoding. This limited
performance of AQEC is likely due to different mean photon
number between two logical qubit states (see the section
“Optimization” for further discussion). The resulting relaxation
time of the process fidelity14 surpasses the break-even point by
~20%. We believe that surpassing break-even point will not be too
difficult in experiments. The reason is that dephasing due to the
low-frequency noise9 was not considered in our simulation—that
is T2= 2T1 in 0j i and 1j i encoding, where T2 and T1 are the
transverse and longitudinal relaxation times, respectively—
whereas all planar superconducting circuits are sensitive to low
frequency noise, such that T2 is often significantly <2T1. Note that
our encoding in a four-photon KPO is insensitive to such a noise.
This is because the collapse operator that models the dephasing
process, ffiffiffiffiffi

γϕ
p âyâ, induces population leakage out of the informa-

tion space (see the section “Photon gain and dephasing” and
Fig. 4c) and this process requires an energy greater than the
protection energy gap34,38,43,45.
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Fig. 2 Autonomous error correction. a Population of the logical qubit states as a function of ωcor after 10 μs of evolution with various Acor.
The distance between the peak and the dip is ωgap, which is found to be 12.2 MHz. b Lower panel: Bit-flip process of the logical qubit states
with and without AQEC. The upper (lower) envelop of the shaded area is the population of the initial logical state (the orthogonal logical
state). The red solid and brown dashed lines indicate the population difference between the upper and lower envelops with and without
AQEC, respectively. The number near each curve indicates the corresponding bit-flip time extracted from exponential fitting. The black dash-
dot line indicates the longitudinal relaxation in the 0j i and 1j i encoding. Upper panel: Frequencies of the microwave tone (not the energy
levels) at which transitions are induced among the four eigenstates. The thick gray arrows constitute a graphical summary of our AQEC
scheme. c Lower panel: Phase-flip process of the logical qubit states with and without AQEC. The number near each curve indicates the
corresponding phase-flip time. The black dash-dot line indicates the transverse relaxation in the 0j i and 1j i encoding. Other initial states, �Lj i,
iþLj i, and i�Lj i, where ± Lj i � ð 0Lj i± 1Lj iÞ= ffiffiffi

2
p

and i ± Lj i � ð 0Lj i± i 1Lj iÞ= ffiffiffi
2

p
, present identical results. Upper panel: Population leakage to the

error and HEL spaces during the evolution from þLj i. The solid and dashed lines represent the populations with and without AQEC,
respectively. Other initial states, 0Lj i and 1Lj i, yield similar results. The parameters are as follows. KPO: ωKPO/2π= 2.98 GHz, K/2π= 20MHz, 1/
γKPO= 50 μs86. Pump: ΔKPO/2π= 30 MHz, P/2π= 5.5405MHz. Ancilla resonator: ωan/2π= 4 GHz γan/2π= 0.557 MHz (found in Fig. 3c), g/2π=
7MHz. Correction tone: ωcor/2π=Δan/2π+ 0.36 MHz (found in Fig. 3b), and Acor/2π= 0.25 MHz (found in Fig. 3c).
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Another relaxation process other than bit and phase flips is
population leakage out of the code space. The origin of
population leakage to the HEL space is finite-transition probability
between the code and HEL spaces—for example,
0hmod âj j1mod
� ��� ��2 ¼ 0:073 and 2hmod âj j3mod

� ��� ��2 ¼ 0:029—where
the lowercase h indicates that the state is a part of the HEL
space. By calculating the population of all states, including the HEL
space (see Supplementary Table 1), we find that our AQEC scheme
is effective in reducing the population of the error space, which is
suppressed by more than one order of magnitude after 10 μs (the
upper panel of Fig. 2c). The population of the HEL space is also
suppressed by 44% at 100 μs. This population leakage has been
called quantum heating—a heating process induced by quantum
jumps due to dissipation (in this case, single-photon loss) in
quasienergy levels of driven quantum nonlinear systems54,62–64.
The steady-state solution in Supplementary Table 1 is indeed
independent of γKPO, which is a signature of quantum heating54,63.
The AQEC process does not generate quantum heat because the
correction tone is weak and continuous; thus, transitions over the
protection gap do not occur. It can be said that AQEC cools
quantum heat.

Optimization
A potential problem of our encoding is that the mean photon
number of 0Lj i and 1Lj i are 2.9 and 3.8, respectively, thereby
suggesting that our logical qubit does not satisfy Knill–Laflamme
conditions65,66. One consequence of this is that the probabilities of
single-photon loss events in the two logical qubit states are
different, thereby resulting in information leakage directly to the
environment or indirectly via the ancilla resonator. The informa-
tion leakage path via the ancilla can be minimized by designing
the dispersive shift due to the coupling between the KPO and the
ancilla being much smaller than the linewidth of the ancilla.
Simultaneously, g must be sufficiently large to generate a
reasonably high Acor from the correction tone because Acor is
determined by g, although these two are written as independent
parameters in Eq. (5). We find that g/2π = 7 MHz used in Fig. 2
meets these criteria (see the end of Supplementary Note 1).
Remarkably, the phase-flip time increases significantly when the

four-photon pump amplitude P is slightly higher than the value for
energy degeneracy, when g/2π > 4MHz (Fig. 3a). This slight
detuning separates the population peaks of 0Lj i and 1Lj i as
depicted in Fig. 3b. We set the frequency at the center of two
peaks as the optimal ωcor.
Other parameters, Acor and γan, can be optimized to maximize

the bit- and phase-flip times by sweeping the parameter space
(Fig. 3c). The reason for existence of the optimal Acor is that if Acor
is too large, the height of the peak decreases because the dip
becomes broader and eventually undermines the peak, as
presented in Fig. 2a.

Photon gain and dephasing
Our AQEC scheme corrects errors induced only by single-photon
loss. Thus, it is important to check how other relaxation channels,
photon gain and dephasing, degrade our AQEC scheme. Figure 4a
and b shows how much the bit- and phase-flip rates increase with
thermal photon number nth, which characterizes the photon gain
process, and dephasing rate γϕ in Eq. (4). Note that photon gain
and dephasing contribute differently to population leakage:
photon gain increases populations in both the error and HEL
spaces, while dephasing induces population leakage to the HEL
space only, as shown in Fig. 4c.
Now, we discuss the upper bounds of nth and γϕ for reliable

error correction. According to Fig. 4a, nth must be less than 0.01 to
keep the increase in the flip rates <20%. For γϕ, although a four-
photon KPO is insensitive to dephasing induced by low-frequency
noise as pointed out in the section “Numerical simulation”, the

KPO may be exposed to effective dephasing caused by quantum
jumps in a nearby quantum system. The rate of such a dephasing
process is given by67,68

γϕ ¼ γNQS
2

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2iχ

γNQS

� �2

þ 8iχ
γNQS

nqth

s
� 1

2
4

3
5; (6)

where γNQS and nqth are the damping rate and the thermal photon
number of the nearby quantum system, respectively, and χ is the
dispersive shift between the KPO and the nearby quantum
system. We first consider dephasing induced by the ancilla
resonator. In this case, γNQS= γan and χ � K ½g=ðωan � ωKPOÞ�2.
Even if the thermal photon number of the ancilla is as large as 0.1,
γϕ/2π is still <1 Hz, which is completely negligible. Similarly, the
partial population of the ancilla resonator during AQEC may be
concerning. The mean photon number for this is ~0.02; thus, it is
also negligible.
Another possible quantum system that can result in effective

dephasing is a transmon or a resonator for readout. Here, we
consider a transmon. In this case, χ≫ γNQS; then Eq. (6) becomes
γϕ � nqthγNQS

69. If T1 of the transmon is 20 μs, nqth ¼ 0:02 yields γϕ/
2π ≈ 160 Hz, where the bit- and phase-flip rates increase
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Fig. 3 Optimization procedure. a Upper panel: Four-photon pump
amplitude as a function of the KPO–ancilla coupling constant. The
solid circle indicates the pump amplitude where the phase-flip time
is maximized and the empty triangle indicates the pump amplitude
where quasienergy levels are degenerate. Lower panel: Phase-flip
time with two different four-photon pump amplitudes. The symbols
are the same as those in the upper panel, except the cross symbol
indicates the phase-flip time without AQEC. The dashed horizontal
line indicates T2 in the 0j i and 1j i encoding. The dotted vertical line
indicates the coupling constant that we used in this work, g/2π=
7MHz. b Populations of the logical qubit states as a function of ωcor
after 10 μs of evolution with Acor/2π= 0.10 and 0.25 MHz. The arrow
indicates the frequency we used as the optimal ωcor. c Bit- and
phase-flip times as a function of Acor and γan at the optimal ωcor. The
red squares, where the phase-flip time is maximized, indicate the
conditions used in Fig. 2.
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significantly (Fig. 4b). Thus, it is crucial to keep the system as cold
as possible so that nqth � 0:01 to maximize the performance of the
AQEC scheme70,71.

Unconditional reset
Our simple AQEC scheme is not the only advantage of a four-
photon KPO—now, we introduce an unconditional reset scheme
that forces the state of the system to evolve to one of the logical
qubit states regardless of the initial state. In this scheme, an
additional microwave tone is required as well as the correction
tone. This additional tone, which we call the reset tone, activates
the transitions suppressed by ωgap such that all populations within
the information space are transferred to either 0Lj i or 1Lj i,
depending on the frequency of the reset tone (Fig. 5a). We

simulate this scheme by adding the term _Areset cosðωresettÞðâyb̂y þ
âb̂Þ to Eq. (5), where Areset and ωreset are the amplitude and
frequency of this term, respectively.
Figure 5b shows the population of 0Lj i as a function of time

when the system is exposed to the correction and the reset tones
with ωreset= Δan−ωgap, which locks the system to 0Lj i. Note that,
the population of 0Lj i saturates at about 90% regardless of the
initial state. Thus, we can reset the logical qubit simply by applying
two microwave tones without any state preparation. If the initial
state is in the information space, the KPO state can reach the
target state in <5 μs (the inset of Fig. 5b); however, if the initial
state is outside of the information space, such as Fock states, the
reset might take nearly 100 μs mainly because of the protection
energy gap. Reset to 1Lj i can be carried out by setting ωreset= Δan

+ωgap (Fig. 5c).
One may find some similarity between this reset scheme and

dynamic nuclear polarization72,73 because the population transfer
path in Fig. 5a is identical to that of dynamic nuclear polarization
in an interacting nucleus–electron pair of spins 1/2. Transitions
from the code space to the error space correspond to the electron
spin excitation and transitions within the code space correspond

to the nuclear spin excitation. We stress that, however, our
scheme is more general than dynamic nuclear polarization
because our scheme can reset even a state outside of the
information space.

Gate operation and circuit implementation
Thus far, we have focused on error correction and state
preparation. In this section, we briefly discuss gate operations
and circuit implementation. Since our code relies on the fourfold
rotational symmetry, the X gate can be implemented by a two-
photon drive with the frequency ωp/2 ±ωgap as shown in Figs. 1b
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dephasing (γϕ). The bit- and phase-flip rates are obtained via the
same procedure depicted in Fig. 2b and c. c Population leakage to
the error and HEL spaces with AQEC in the presence of single-
photon gain and effective dephasing. The solid lines indicate the
populations when nth= 0 and γϕ/2π= 0 kHz; the dashed lines, nth=
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insets show the short-time behavior. The parameters for b are as
follows: Acor/2π= 0.50 MHz, ωreset/2π= ωcor/2π−12.2 MHz, Areset/
2π= 0.32 MHz. The parameters for c are as follows: Acor/2π=
0.45 MHz, ωreset/2π= ωcor/2π+ 12.2 MHz, Areset/2π= 0.40 MHz. Other
parameters are identical to those for Fig. 2b and c.

S. Kwon et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022)    40 



and 2b. QuTiP simulations for X gate operations are presented in
Supplementary Fig. 3. The Z gate can be implemented by waiting
for the time π/ωgap or by shifting the phase of the subsequent
drive (virtual Z gate74,75).
One possible circuit implementation is shown in Fig. 6. Note

that we employ two symmetric loops for the KPO. (A similar circuit
was used differently in ref. 76.) Because of this symmetry, no
current flows through the junction array. Thus, we can separate
the system into a weakly nonlinear inductor (junction array) and a
symmetric DC SQUID. One consequence of this is that, for KPO1,
almost linear modulation of the junction energy can be obtained
at Φex1= 0.5Φ0, which we call the optimal bias. The reason is that
the effective junction energy of a symmetric DC SQUID is given by
2EJ1 cosðπΦex1=Φ0Þ77, which results in �2EJ1 sinðπΦac1=Φ0Þ at the
optimal bias, where Φac1 is an oscillating flux passing through
KPO1. Thus, by setting the frequency of Φac1 close to 4ωKPO and
2ωKPO, we obtain the four-photon pump and the two-photon
drive from the five- and three-wave mixing, respectively, without
having unwanted processes from even terms of Φac1 (see
Supplementary Note 1). Another consequence is that the Kerr
coefficient is mainly determined by the junction array at the
optimal bias. Such a functional separation allows us to design the
circuit conveniently.
One potential problem regarding actual experiments is that the

resulting amplitude of the four-photon pump [P in Eq. (1)] might
be too small. We find that P is proportional to KN3 at the optimal
bias, where N is the number of Josephson junctions in the junction
array (see Supplementary Note 1). Hence, it is advantageous to
select N≫ 1. However, N cannot be arbitrarily large: the capacitive
energy of KPO, which is given by KN2, is limited by an intrinsic
capacitive energy of a Josephson junction, which is approximately
a few GHz. Thus, if the target K is approximately a few tens of MHz,
then N cannot exceed 10. One may apply a more advanced
technique that was originally developed for a dissipative
parametric oscillator to generate higher-order nonlinearity from
lower-order parametric processes78,79.
To complete a universal gate set, we need a two-qubit gate.

Here, we consider the iSWAP ÛiSWAP and bSWAP ÛbSWAP gates,
which are defined by80,81

ÛiSWAP ¼

1 0 0 0

0 0 �i 0

0 �i 0 0

0 0 0 1

0
BBB@

1
CCCA; ÛbSWAP ¼

0 0 0 �i

0 1 0 0

0 0 1 0

�i 0 0 0

0
BBB@

1
CCCA:

(7)

The iSWAP gate requires two-photon exchange terms, i.e.,
ây1â

y
1â2â2 þ â1â1â

y
2â

y
2, where âi and âyi are the ladder operators

for KPO i (i= 1, 2); the bSWAP gates requires ây1â
y
1â

y
2â

y
2 þ â1â1â2â2.

These terms can be induced without disturbing the optimal bias of
each KPO by applying a parametric drive to a tunable coupler80,82.

In Fig. 6, a DC SQUID is employed as a tunable coupler. In such a
configuration, a parametric drive with the frequency
2 ωKPO1 � ωKPO2j j, where ωKPOi is the transition frequency of
KPO i, gives the two-photon exchange terms at Φex3= 0.5Φ0,
thus resulting in the iSWAP gate (see Supplementary Note 2).
Similarly, a parametric drive with the frequency 2(ωKPO1+ωKPO2)
implements the bSWAP gate at the same flux bias.

DISCUSSION
Here, we list some comments on future research directions. First,
the present work is based on numerical analysis. Further general
and analytic treatment on the physics underlying this scheme is
desirable; in particular, the increase in the phase-flip time due to
the detuning of P must be clarified.
Second, a convenient single-shot readout scheme must be

developed, such as cat-quadrature readout for cat states in a two-
photon KPO38,43,83.
Third, the unconditional reset scheme must be improved to

enhance the final population of the target logical state. Since
about half of the lost population is in the error space and the
other half is in the HEL space (see Supplementary Table 1), we
must develop a scheme that transfers the population of the HEL
space to the information space without too much cost.
Lastly, a more efficient optimization procedure is required. In

this work, the essential parameters, such as the frequency and
amplitude of microwave tones as well as the single-photon loss
rate of the ancilla, are determined by sweeping the parameter
space as shown in Figs. 2a and 3c. One interesting research
direction is to combine our schemes and the automation
procedure developed in ref. 25.
In summary, we have proposed an AQEC scheme that requires

only one continuous microwave tone. This scheme is based on (i)
the protection of the information space by applying a four-photon
pump to a KPO, (ii) the energy degeneracy between 0modj i and
1modj i as well as between 2modj i and 3modj i, (iii) one-way
transition using a lossy ancilla resonator, and (iv) suppressing
unwanted transition by creating an energy gap. By solving the
master equation, we show that the relaxation times of the logical
qubit states surpass the break-even point with our AQEC scheme.
In addition to AQEC, we introduce an unconditional reset scheme
that lets the system evolve into one of the logical qubit states by
simply applying two continuous microwave tones.
Complications in bosonic codes originate from state-by-state

control in the Fock basis. This is a consequence of using the
dispersive coupling between a bosonic system and a nonlinear
ancilla for control84,85. A four-photon KPO can be a radically
different approach because its finite anharmonicity allows us to
control the system without an ancilla, and the logical qubit states
are quasienergy eigenstates such that AQEC and gate operation
do not need to rely on the Fock basis. This suggests that we can
apply the intuition acquired from conventional two-level-system
qubits to a four-photon KPO; the similarity between our reset
scheme and dynamic nuclear polarization can be an example of
this. Thus, we believe our AQEC and reset schemes reduce
hardware overhead significantly, making a KPO an essential unit
for future bosonic quantum computing systems.

DATA AVAILABILITY
Datasets generated from the simulation are available from the corresponding authors
upon reasonable request.

Received: 29 October 2021; Accepted: 17 March 2022;

... ...

KPO1 KPO2

Coupler

Fig. 6 Circuit implementation. Here, two KPOs are coupled via a
flux-tunable coupler, which is a direct current superconducting
quantum interference device (DC SQUID). Two large junctions with
vertical dots represent a junction array. The junction capacitances
and ancilla resonators are not shown for simplicity.
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