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Spectral analysis of product formulas for quantum simulation
Changhao Yi1✉ and Elizabeth Crosson1✉

We consider the time-independent Hamiltonian simulation using the first order Lie–Trotter–Suzuki product formula under the
assumption that the initial state is supported on a low-dimension subspace. By comparing the spectral decomposition of the
original Hamiltonian and the effective Hamiltonian, we obtain better upper bounds for various conditions. Especially, we show that
the Trotter step size needed to estimate an energy eigenvalue within precision ϵ using quantum phase estimation can be improved
in scaling from ϵ to ϵ1/2 for a large class of systems. Our results also depend on the gap condition of the simulated Hamiltonian.
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INTRODUCTION
The Lie–Trotter–Suzuki product formula1–3 was originally used by
Lloyd4 to establish the first method for efficiently approximating
the dynamics U(t)= e−iHt generated by a local Hamiltonian H with
a universal quantum computer. After many refinements5,6 this
approach (often called “Trotterization”) continues to be an
appealing method for Hamiltonian simulation from both experi-
mental and mathematical perspectives.
The method is based on dividing U(t) into L short-time

evolutions U(t)= U(δt)L, t= Lδt, and replacing each U(δt) with an
approximation UTro(δt). The parameter L is the number of Trotter
steps and δt > 0 is the Trotter step size. Given a decomposition of
the Hamiltonian into a sum of layers H ¼PΓ

n¼1 Hn, the first order
product formula approximation is

UTroðδtÞ �
YΓ
n¼1

e�iHnδt; (1)

where δt and L are chosen to depend on the tolerable level of
error, as we subsequently discuss. We term the digital error of this
method as Trotter error, usually, it’s quantified by the operator
norm distance between the digital evolution operator and the
ideal evolution operator.
Most prior works calculate the Trotter error by first relating the

global error to the local error (which is the digital error of a single
Trotter step), then calculating the local error carefully. However,
several reasons motivate us to seek for a different approach. For
instance, in the two-layer case H= HA+ HB, the first order formula
has similar asymptotic error scaling with the second order one7.
While it’s hard to prove it from the local error perspective8, for its
relation to the global error is non-trivial. Besides, it’s hard to reveal
the difference between fidelity error and norm distance error in
specific simulations. Although for general situations they share the
same asymptotic scaling, in quantum phase estimation (QPE) 9 it’s
not the case. Moreover, sometimes the condition about the
energy levels of the initial state will influence the error estimation,
but it’s unnatural to take it into consideration in this framework.
All these issues can be improved with our framework, which is

based on the spectral analysis of the effective Hamiltonian eH that
generates the Trotterized time evolution,

eH � i logðUTroðδtÞÞ=δt; UTroðδtÞL ¼ e�ieHt: (2)

Treating δt as a small parameter, perturbative methods can be
used to compare the energy levels and eigenstates fEl ; ψlj ig of
the original Hamiltonian H to those feEl; eψl

�� �g of the effective

Hamiltonian eH. For fixed δt the fidelity between corresponding

eigenstates
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j ψljeψl

� �j2q
is independent of the total simulation

time, while the error in phase accumulates as jeEl � El jt, which is
the dominant part of the Trotter error. The detail analysis of the
deviation in energy enables us to obtain better upper bounds.
To obtain an improvement for jeEl � El j, we consider special

cases in which the first order perturbation in energy vanishes.
The main two cases are (1) the two-layer Lie-Trotter formula H=
HA+ HB, and (2) the case in which all the layers of the
decomposition simultaneously have real matrix elements in
some choice of basis. In the first case, the leading perturbation
term has expression −iδt[HA, HB]/2. Given any eigenstate ψlj i of
H, it’s easy to verify that ψlh j½HA;HB� ψlj i ¼ ψlh j½H;HB� ψlj i ¼ 0.
Thus the perturbation in energy has order Oðδt2Þ instead. As a
first conclusion, we reveal the similarity between the first and
second order product formulas.
These methods also lead us to consider applications in which

the initial state ψj i is (or is close to) an eigenstate of H, enabling an
improved upper bound on the Trotter step size in QPE. QPE relates
Hamiltonian time-evolution U(t)= e−iHt to the measurement of
energy eigenvalues10–12. In the ideal version of the algorithm,
measuring the output of the phase estimation circuit collapses the
system into an energy eigenstate of H. If we replace the time
evolution with the product formula approximation UTro(δt)L, then
(in the ideal case) we will instead measure an energy eigenvalue
of eH. In our framework, the Trotter error in phase estimation can
be reduced from OðLδt2Þ to OðLδt3Þ. In terms of the target
precision ϵ of the QPE, this means the Trotter step size can be
enlarged from δt ¼ OðϵÞ to δt ¼ Oðϵ1=2Þ.

RESULTS
Set up and notations
Usually, the Trotter error is quantified by the norm distance
between operators.

Δ � kΔ̂k; Δ̂ � UTroðδtÞL � UðtÞ: (3)
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The notation ∥⋅∥ refers to the operator norm:
kOk ¼ maxkxk2¼1 kO xj ik2, where ∥⋅∥2 is the Euclidean norm of

vector kvk2 ¼
ffiffiffiffiffiffiffi
vyv

p
. To quantify Δ, usually, we relate it to the

norm distance error of a single Trotter step δ≡ ∥UTro(δt)− U(δt)∥
as Δ ≤ Lδ, then calculate δ with Baker–Campbell–Hausdorff
formula13 or Magnus expansion14. For a given error tolerance ϵ,
the restriction of Δ ≤ ϵ determines the gate complexity of the
algorithm.
The Trotterized evolution operator UTro(δt) can also be viewed

as an exact evolution under an effective HamiltonianeH � i logðUTroðδtÞÞ=δt. Because the logarithmic of a unitary
operator has more than one solutions, we settle down the
effective Hamiltonian as eH ¼ eHðδtÞ, where eHðτÞ �
i logðUTroðτÞÞ=τ; τ 2 ½0; δt� is the branch that is always continuous
in τ, and eHð0Þ ¼ H.
Owing to the tiny size of δt, the energy levels and eigenstates ofeHfeEl ; eψl

�� �g are close to those of H. Denote the projector into the

original eigenstate as Pl � ψlj i ψlh j, and ePl � eψl

�� � eψl

� ��. The fidelity
distance between the eigenbasis equals to the operator norm
distance between the two projectors,ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� j eψljψl

� �j2q
¼ kePl � Plk: (4)

To ensure there exists a one-to-one correspondence between ψlj i
and ~ψl

�� �, we assume the spectrum is nondegenerate. Therefore
there is some spectral gap lower bound eλl > 0 around this
eigenstate during τ∈ [0, δt]:

eλl � min
τ2½0;δt�

ðmin
m≠l

jeElðτÞ � eEmðτÞjÞ; (5)

where feElðτÞg is the energy levels of eHðτÞ. In the next section, we
will illustrate how the deviations in eigenbasis and energy levels
are related to the Trotter error.

Framework
We first point out that Δ does not always reflect the true Trotter
error. Separate the digital error into phase error θ and fidelity error
f defined by

f � 1� j ψh jUyðtÞUTroðδtÞL ψj ij2; (6)

θ � Arg ψh jUyðtÞUTroðδtÞL ψj i
� �

; (7)

where ψj i is an initial state, then we prove for any L, δt that satisfy
Δ � 1=

ffiffiffi
2

p
, the Euclidean distance error E � kΔ̂ ψj ik2 satisfies (see

Supplementary Note 1)

f þ θ2

4
� E2 � 2f þ θ2: (8)

Without further assumptions about H and ψj i, the two parameters
are bounded by f ¼ OðΔ2Þ; jθj ¼ OðΔÞ as E � Δ. It means the
estimation of Δ is already an upper bound for

ffiffi
f

p
and ∣θ∣.

However, it’s possible that
ffiffi
f

p
can have a different parameters

scaling with Δ, for the error can be dominated by ∣θ∣ instead.
Given one of the eigenstate ψlj i of H as the initial state, we

define its fidelity error and phase error as fl and θl. fl is only a
function of δt, while θl grows linearly with the simulation time t. To
see this, we first project ψlj i to the associated effective state eψl

�� �,
then let it evolve under UTro(δt)L. Because eψl

�� � is an eigenstate of
this operator, the effect of the evolution is merely a phase. After
the evolution, we project the state back to the original eigenbasis.
Thus, fl is only relevant to the distance between two eigenstates
kePl � Plk, and the phase error originates from the difference in
energy levels. After a short initial period, the Trotter error only
accumulates in the global phase. This is an extreme example of
f≪ Δ2.

More general, we can use this perspective to analyze the
leakage rate of the Trotterized evolution operator as well. Suppose
the initial state is supported on a subspace L, define its leakage
rate as the percentage for it to transfer outside L after evolution
UTro(δt)L. Using the argument about eH we prove: (see Supple-
mentary Note 2)

Lemma 1. Consider a Hamiltonian evolution U(t)= e−iHt simulated
by UTro(δt)L, if the initial state ρ belongs to subspace L
PL �

X
l2L

Pl ; Tr ðρPLÞ ¼ 1; (9)

and the norm distance between PL and corresponding effective
projector ePL induced by eH satisfies kPL � ePLk< 1, then the
leakage rate can be bounded by

1� TrðUTroðδtÞLρUy
Tro ðδtÞLPLÞ � 4kePL � PLk2: (10)

When the subspace L contains only one eigenstate ψlj i, the
leakage rate is equivalent to fidelity error fl.
Similar analysis can be applied to a general initial state ψj i. We

first transform ψj i ¼Plcl ψlj i into the effective initial state eψ�� � ¼P
lcl eψl

�� � (denote the transformation between two eigenbasis as
S); then let the state evolve under UTro(δt)L; after the evolution, we
can transform the state back to the original basis. The generated
state is

eψðtÞ�� � ¼ SyUTroðδtÞLS ψj i ¼
X
l

cle
�ieEl t ψlj i: (11)

Although it’s hard to compare UTroðδtÞL ψj i with UðtÞ ψj i directly,

it’s easy to compare
P

lcle
�ieEl t ψlj i with

P
lcle

�iEl t ψlj i, and
S†UTro(δt)LS with UTro(δt)L. Analytically, it means we can separate
Trotter error into two parts: the first part originates from the
difference in the two eigenbasis, which is only relevant to δt; the
other part accumulates during the evolution, which depends on
jeEl � El j and grows linearly with the simulation time t. Formally
speaking: (see Supplementary Note 3)

Lemma 2. Consider a Hamiltonian evolution U(t)= e−iHt simulated
by UTro(δt)L, eH is the effective Hamiltonian associated with UTro(δt).
After spectral decomposition we have H= ∑lElPl and eH ¼Pl

eEl ePl .
Given initial state ψj i supported on subspace L : PL ψj i ¼ ψj i, the
Trotter error has upper bound

kΔ̂PLk � max
l2L

jeEl � Eljt þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 dim ðLÞ

p
max
l2L

kePl � Plk: (12)

A quick remark is, even when t= 0, the upper bound in Eq. 12 is
still non-zero. This is because near the beginning time, the digital
evolution operator is almost identity, thus SUTro(δt)LS† ≈ UTro(δt)L.
In this region, the error related to S also increases with t. However,
it only happens when the simulation time t is meaninglessly small,
thus we don’t emphasize it in Lemma 2.
The remaining part is to derive proper upper bounds for jeEl �

El j and kePl � Plk, which depends on the specific choice of
product formulas. Here we consider the first order formula as an
example. Using the Baker–Campbell–Hausdorff formula, eH can
be estimated by

eH ¼ H þ iδt
2

X
n>m

½Hn;Hm� þ Oðδt2Þ: (13)

The first few terms of the standard (Rayleigh–Schrodinger)
perturbation theory can be used to estimate kePl � Plk and
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jeEl � El j, but to avoid convergence issues and derive rigorous
results, we use other methods15,16 that are widely used in proofs
of adiabatic theorems. By Weyl’s inequality, the perturbation in the
eigenvalues satisfies

jeEl � Elj � keH � Hk: (14)

The perturbation of the eigenstate is bounded by

kePl � Plk ¼ kePlðδtÞ � ePlð0Þk � δt max
s2½0;δt�

keP0lðτÞk
� max

τ2½0;δt�
keH0ðτÞkδt=eλl : (15)

The term keH0ðτÞk quantifies the size of the perturbation. keH0ðτÞkδt
shares the same order with keH � Hk. For a general normalized
Hamiltonian H ¼PN

j¼1 hj; khjk � 1 supported on N site, in

Lemma 5 we show that keH0ðτÞk ¼ Oðpoly ðNÞÞ. We use it as a
proper upper bound in the next paragraphs.
Combinig the estimations of kePl � Plk and jeEl � Elj with Lemma

2, we already obtain upper bound for kΔ̂PLk. When t is large and
dim ðLÞ is small, the Trotter error is dominated by jeEl � Eljt, which
is approximately OðkeH � HktÞ. This estimation can also be derived
from the inequality ke�ieHt � e�iHtk � keH � Hkt. Thus, till now our
approach hasn’t resulted in any significant improvement yet,
except for the observation that fl has an upper bound that does
not depend on t in the large time region. However, the
improvement on the upper bound of jeEl � Elj can be used to
obtain better results. In the next section, we will show how this
improvement is achieved.

Improved jeEl � Elj from Special Perturbation
The bound in Eq. 14 is a common estimation. However, in this
section, we show that this upper bound can be improved by a
factor of δt under assumptions that are satisfied for many
Hamiltonians of interest, and this improves the scaling of the
operator norm Δ and the Trotter step size needed for QPE.
In perturbation theory, we know that for eH ¼ H þ V , the leading

perturbation in the lth energy level has expression
Eð1Þl ¼ ψlh jV ψlj i. If the perturbation term V is off-diagonal in the

eigenbasis of H, then 8l; Eð1Þl ¼ 0, the leading perturbation in
energy has order OðkVk2Þ instead. Therefore, consider a general
decomposition H ¼PΓ

n¼1 Hn, whenever the leading order correc-
tion (see Eq. 13),

V ¼ iδt
2

X
n>m

½Hn;Hm�; (16)

is off-diagonal in the eigenbasis of H, we can reduce the Trotter
error in energy from OðδtÞ to Oðδt2Þ. Thus: (see Supplementary
Note 5)

Lemma 3. H is a normalized local Hamiltonian on N sites with
spectrum fEl; ψlj ig, eH is its corresponding effective Hamiltonian
induced from first order product formula. The energy and
eigenstates of eH are feEl; eψl

�� �g. eλl is the lower bound of spectral
gap defined in Eq. 5. Suppose δt ¼ Oð1= poly ðNÞÞ and the first
perturbation of eH is off-diagonal in the eigenbasis of H

8 ψlj i; ψlh jeH � H ψlj i ¼ Oðδt2Þ; (17)

then the Trotter error in energy satisfies

jeEl � Elj ¼ O poly ðNÞδt2 max 1;
1eλl

� 	
 �
: (18)

Here we list several conditions where Eq. 17 is satisfied (or it
maintains true for one specific energy level).

● Any 1D Hamiltonian with nearest-neighbor interactions, as
well as general lattice Hamiltonians regarded as 1D chains of
super-sites (since our results do not depend on the local
dimension). We can always decompose such Hamiltonian into
two layers H= HA+ HB, where each layer contains only
commuting local terms. Then we have V= i[HA, HB]δt/2. [HA,
HB]= [H− HB, HB]= [H, HB] is off-diagonal in the eigenbasis of
H. For any Hamiltonian with nearest neighbor interaction
H= ∑jhj,j+1, we can choose the first layer as the summation of
terms supported on (odd, even) site HA= ∑kh2k,2k+1, and set
the result part as second layer HB= ∑kh2k−1,2k. See Fig. 1 for a
simple illustration.

● Real Hamiltonians17. Assume all of the local terms of H have
real matrix elements in some basis. The components of an
eigenstate ψlj i of any real symmetric matrices can all be taken
to be real. Consider an arbitrary commutator in V, ψlh jHkHm ψlj i
is conjugate to ψlh jHmHk ψlj i, and both are real numbers. So
they are equal and appear with opposite signs in the
commutator. Therefore, 8k; l;m; ψlh j½Hk ;Hm� ψlj i ¼ 0.

● Frustration-free Hamiltonians18. This type of Hamiltonian
satisfies H= ∑jΠj, where Πj is a local term that shares the
same ground state with H. (See Theorem 1 in19 for an
example) With this property, when the initial state is the
ground state, there will be no Trotter error no matter how big
δt is. In Lemma 3, the upper bound on the Trotter error is
inversely proportional to the spectral gap λ. However, it’s
possible for frustration-free Hamiltonian to be gapless19. This
example shows that our methods can still overestimate the
Trotter error for gapless Hamiltonians.

Finally, we provide an example H= H1+ H2+ H3 in which V is not
off-diagonal to show the result in Lemma 3 is not fully general.
Let H be a diagonal matrix Λ in the eigenbasis of itself. In this
basis, choose

H1 ¼ X � I; H2 ¼ Y � I; H3 ¼ Λ� H1 � H2: (19)

Thus,

V=δt ¼ i½ðX þ YÞ � I;Λ�=2þ Z � I: (20)

Fig. 1 Implementation of product formula on quantum circuits.
A simple illustration of quantum simulation using product formula.
Here H= h1+ h2+ h3+ h4. We decompose the local terms into two
layers HA= h1+ h3 and HB= h2+ h4. Because the local terms in each
layer all commute with each other, there’s no problem in
constructing the circuit with local gates.
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The first term is off-diagonal, the second term is not. Thus V is not
off-diagonal.

Comparison between the first and the second order product
formulas
Our first conclusion is the similarity between the first and second
order product formulas. The second order product formula has
expression

Uð2Þ
Tro ðδtÞ �

YΓ
n¼1

e�iHnδt=2

 ! Y1
n¼Γ

e�iHnδt=2

 !
: (21)

In Eq. (121) of5, it has been proved that:
kUð2Þ

Tro ðδtÞL � UðtÞk � Oðpoly ðNÞLδt3Þ, which is much better than
the first order formula. However, in the two-layer case H= HA+
HB, it’s easy to discover their similarity: the corresponding effective
Hamiltonians have exactly the same energy levels, and their
eigenbasis is related by a small unitary e�iHAδt . There has been
several works7,8 addressing that the first order product formula
can share similar error asymptotic scaling with the second order
one. The following corollary can also be regarded as a supportive
result:

Theorem 1. Given a normalized local Hamiltonian H on N sites,
define eλ � min

l
eλl with eλl introduced in Eq. 5. Suppose the first

order product formula UTro(δt)L of H satisfies the condition
mentioned in Lemma 3 and δt ¼ Oð1=poly ðNÞÞ, and the initial
state is supported on a low-dimension subspace, then the
corresponding operator norm error has upper bound

Δ ¼ O poly ðNÞLδt3 max 1; 1eλ
� 	
 �

þO poly ðNÞ δteλ

 �

:

(22)

This theorem is a direct conclusion of Lemma 2 and Lemma 3.
Besides the common two-layer case, our result also includes the
real Hamiltonian situation, which generalizes previous results.

Application in quantum phase estimation
The QPE algorithm constructs a quantum circuit to detect the
phase 2πθ of a unitary operator: U ψj i ¼ ei2πθ ψj i. For an exact QPE
algorithm, the measurement outcome is the integer a closest to
2qθ, where q is the size of the first register. Since it’s unlikely for
2qθ to be an integer, the QPE algorithm has precision ξ ¼ Oð2�qÞ.
The probability of measuring the value closest to the true θ is at
least 4/π212.
The influence of the Trotter error comes from two aspects.

Again let’s regard the Trotterized evolution operator as an exact
evolution operator under the effective Hamiltonian eH. This
effective Hamiltonian has an eigenstate eψ�� �, which is very close

to the initial eigenstate ψj i : ψj i ¼ ffiffiffiffiffiffiffiffiffiffiffi
1� p

p eψ�� �þ ffiffiffi
p

p jeψ?i. As a

result, the final phase detected should be eθ associated with eψ�� �,
and the success rate should be decreased by a factor of (1− p).
However, since usually p is much smaller comparing to 1, this
change in success rate is almost negligible.
More importantly, the Trotter error in phase δθ ¼ jeθ� θj should

satisfy δθ < 2πξ, otherwise, the phase error caused by Trotteriza-
tion will be detected. This relation gives us a constraint on the
Trotter error

jeE � Ejt � 2πξ: (23)

In QPE, θ should be set to be close to 1 to avoid wasting the
accuracy provided by the first register, thus t ¼ Oð1=jEjÞ.

However, we can only guess about E before the algorithm. Here
we use t0 to denote an appropriate choice of time scale in U. Thus,

L ¼ O t0
δt


 �
; (24)

where L is the circuit depth of a single U in QPE. Follow from
Lemma 3, we prove:

Theorem 2. Consider a quantum circuit performing QPE, the size
of the first register is q thus the precision is ξ ¼ Oð2�qÞ. The
unitary operator U ¼ e�iHt0 is simulated by UTroðt0=LÞL. The initial
state is the lth eigenstate with spectral gap lower bound eλl defined
in Eq. 5. Suppose the effective Hamiltonian of the digital evolution
operator satisfies the condition in Lemma 3, and
δt ¼ Oð1=poly ðNÞÞ, to guarantee that the Trotter error in phase
jeEl � El jt0 is smaller than 2πξ, we require

δt ¼ O 1
poly ðNÞ

ffiffiffiffi
ξ

t0

s
minf1;

ffiffiffiffieλl
q

g
 !

; (25)

L ¼ O poly ðNÞ
ffiffiffiffi
t30
ξ

s
max 1;

1ffiffiffiffieλlq
8><
>:

9>=
>;

0
B@

1
CA; (26)

Circuit Depth ¼ O poly ðNÞ
ffiffiffiffiffi
t30
ξ3

s
max 1;

1ffiffiffiffieλlq
8><
>:

9>=
>;

0
B@

1
CA: (27)

As a comparison, in general case with jeEl � Elj ¼ Oðpoly ðNÞδtÞ,
the final circuit depth is Oð poly ðNÞt20=ξ2Þ.
The theorem is stated for an initial state that is an exact

eigenstate, but by linearity, it can be applied to an arbitrary
superposition, with a corresponding reduction in the probability of
measuring the energy eigenvalue of interest (in the cases where the
desired eigenvalue is measured, it will have the precision guarantee
of ϵ despite the use of the enlarged Trotter step size above).

DISCUSSION
Our main contribution is the observation that the refined
estimation of Trotter error can be established from the spectral
analysis of the effective Hamiltonian eH. When the initial state is an
eigenstate, we find that during evolution, most error accumulates
in the phase. Further, if the leading perturbation term of eH
vanishes in the eigenbasis of H, the Trotter error in energy is
reduced from OðδtÞ to Oðδt2Þ, which results in improvement of
the upper bound of first order product formula, coincides with the
previous results7,8. As an application, this improvement signifi-
cantly reduces the circuit complexity of QPE. Similar results also
apply to other phase estimation methods such as robust phase
estimation20 (See Supplementary Note 7), as long as the
Trotterized unitary operator is used.
One question is the dependence on the gap condition. Our

framework requires the spectral gap to be open for eHðτÞ; τ 2 ½0; δt�.
This condition doesn’t show up in previous analysis about product
formulas. For instance, for 2-local Hamiltonian with zero spectral gap,
it’s direct to simulate its evolution with product formula, while in our
method the upper bound of Trotter error diverges. One possible
explanation is the inverse dependence on λ can be fake. Consider a
Hamiltonian, all of its low energy levels are degenerate, while the
perturbation occurs only on the high energy levels. If we still use the
formula keP � Pk � keH � Hk=λ to analyze a low energy state, we will
see the deviation is infinite large, while there’s no perturbation in low
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energy levels. The effective Hamiltonian associated with Motzkin path
model in19 might be an example to reveal this point.
The effective Hamiltonian perspective has also led to a new

analysis of the error in digital adiabatic simulation based on
Trotterization21. Additional open questions include whether
focusing on special cases of observables allows for additional
improvement in Trotter error22,23, and whether the effective
Hamiltonian perspective may be applicable to the randomized
version of product formulas24,25 or other Hamiltonian simulation
algorithms26–28. Finally, the effective Hamiltonian in our frame-
work is also termed as Floquet Hamiltonian in other fields of
study29–31, where our methods can be useful as well.

METHODS
Rigorous perturbation methods

Lemma 4. (Rigorous perturbation method16). Consider a parameterized
Hamiltonian s∈ [0, s0]→ H(s) with spectrum: {Ej(s), Pj(s)}, H(s) and each Pj(s)
are continuously differentiable. Define

PðsÞ �
Xm
j¼1

PjðsÞ (28)

as the projector into a subspace L spanned by m eigenstates. Its derivative
has norm upper bound

kP0ðsÞk � ffiffiffiffi
m

p kH0ðsÞk=λ; (29)

where λ is the lower bound of energy gap between the eigenstates in and
outside region L.

See Supplementary Note 4.
For a single eigenvector, Lemma 4 implies Eq. 15.
For the special case in which P(s)= P0(s) is the projector onto the ground

state, an improved bound on kP0ðsÞk can be obtained32,

kP0ðsÞk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keH00ðsÞk þ 2keH0ðsÞk

2λ

s
: (30)

The improved dependence on the gap, from λ−1 in Eq. 15 to λ−1/2 in Eq. 30,
can be carried through to improve the spectral gap dependence of our
results here, when the eigenstate in question is the ground state. In the
main text we use the general result kH0ðsÞk=λ as a general upper bound
for kP0ðsÞk.
Similar results can be derived using Sylvester equation as well. See

Lemma 3.1 in ref.33.

Magnus expansion
Use Magnus expansion, we can quantify the perturbation eH � H caused by
Trotter splitting rigorously.

Lemma 5. (Perturbation in effective Hamiltonian34). Given eH defined in
Eq. 2. Define

α �
X
n>m

jj½Hn;Hm�jj; (31)

β �
X
l�n>m

jj½Hl ; ½Hn;Hm��jj; (32)

h � α

2
þ 4

3
βþ 32αkHk


 �
δt: (33)

If δt is small in the sense thatX
n

kHnkδt < 1=4; βδt < α; (34)

αδt þ βδt2 < 2kHk: (35)

then for all τ∈ [0, δt],

keHðτÞ � Hk ¼ OðhδtÞ; keH0ðτÞk ¼ OðhÞ: (36)

See Supplementary Note 6.
Although Lemma 5 looks complicated, in most cases h can be well-

estimated by the leading term in Eq. 13: h ≈ ∥∑n>m[Hn, Hm]/2∥. Furthermore,
if H ¼PN

j¼1 hj;jþ1 is a 2-local normalized Hamiltonian on N qubits that
satisfies [hj,j+1, hk,k+1]= 0, ∀ ∣j− k∣ > 1 and ∥hj,j+1∥ ≤ 1, the local terms can
always be separated into two layers Hodd= ∑j=2k−1hj,j+1, Heven= ∑j=2khj,j+1.
Thus,

k½Heven;Hodd�k ¼ k
X
j

½hj�1;j ; hj;jþ1�k ¼ OðNÞ; (37)

k½Heven; ½Heven;Hodd��k ¼ OðNkHkÞ ¼ OðN2Þ; (38)

which gives us h ¼ OðNÞ þ OðN2δtÞ ¼ OðNÞ. In general, the parameter
dependence of h is complicated but will always be poly(N) for any k-local
Hamiltonian. We represent h with poly(N) in the main text, and write the
constraint of δt in Lemma 5 as δt ¼ Oð1=poly ðNÞÞ.
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