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Quantum coherence bounds the distributed discords
Zhi-Xiang Jin 1,2✉, Xianqing Li-Jost2, Shao-Ming Fei3,4✉ and Cong-Feng Qiao 1,5✉

Establishing quantum correlations between two remote parties by sending an information carrier is an essential step of many
protocols in quantum information processing. We obtain trade-off relations between discords and coherence within a bipartite
system. Then we study the distribution of coherence in a bipartite quantum state by using the relations of relative entropy and
mutual information. We show that the increase of the relative entropy of discord between two remote parties is bounded by the
nonclassical correlations quantified by the relative entropy of coherence between the carrier and two remote parties, providing an
optimal protocol for discord distribution and showing that quantum correlations are the essential resource for such tasks.
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INTRODUCTION
Quantum coherence and quantum correlations like quantum
discord are valuable resources in quantum information proces-
sing1–3. Stemming from the superposition rule of quantum
mechanics, quantum coherence captures the feature of quan-
tumness in a single system and plays an important role in a
variety of applications ranging from thermodynamics4,5 to
metrology6, see7 for a nice review of the theory of quantum
coherence and its applications. Recently, the resource theory of
coherence has attracted much attention, with efforts to the
quantification and manipulation of coherence8–12. Coherence in
multipartite systems has been also studied13–15, together with
its relations to quantum entanglement and quantum
nonlocality16–21. Interestingly, such quantum correlations also
appear naturally in dynamic causal structures of quantum
gravity22. The distribution of coherence in bipartite and multi-
partite systems has been investigated in refs. 14,23, respectively.
In14 the trade-off relation between the intrinsic coherence and
the local coherence in multipartite systems has been demon-
strated. In24,25 the authors proved that the increase of relative
entropy of entanglement between two remote parties is
bounded by the amount of nonclassical correlations. A rigorous
characterization of the distribution of coherence in multipartite
systems is imperative and of paramount importance.
The quantum discord quantifies the quantum correlation in a

bipartite systems and plays a central role in quantum tasks due to
its potential applications in such as quantum critical phenom-
ena26–29 and quantum evolution under decoherence30–33. We
address the following fundamental questions: How much can the
discord between sender and receiver laboratories increase under
the exchange of a carrier? Is there a quantitative relation between
such increase and the nonclassical correlations between the
carrier and the parties?
In this article, we present a general bound on the discord gain

between distant laboratories under local quantum-incoherent
operations and quantum communication, which is given by the
quantum coherence between them and the carrier. We first give
some trade-off relations between various types of discord and
coherence within a bipartite system. Then, we discuss the
distribution of coherence in a bipartite quantum state into

discord between subsystems and coherent in each individual
subsystem, by using the relations of relative entropy and mutual
information. Finally, discord distribution in multipartite state is
studied, and the discord gain between distant laboratories is
bounded by the amount of quantum coherence between them
and the carrier.
The relative entropy of coherence of a quantum state ρ is given

by CrðρÞ ¼ minσ2I SðρjjσÞ ¼ SðΔðρÞÞ � SðρÞ, where SðρjjσÞ ¼
Trðρlog2ρÞ � Trðρlog2σÞ is the quantum relative entropy and
ΔðρÞ ¼ P

i ij i ih jρ ij i ih j is the dephased state in reference basis f ij ig
of the system, I denotes the set of all incoherent (diagonal) states.
Consider bipartite systems A and B with basis f ij iAg and f ij iBg,
respectively. The B-incoherent states with respect to f ij iBg,
denoted as IAjB, have the form σAB ¼

P
ipiσ

i
A � ij iB ih j. A map

ΛA∣B which maps B-incoherent states to B-incoherent
ones is called B-incoherent operation. With respect to B-
incoherent states, the corresponding coherence is defined by
Cr
AjBðρABÞ ¼ minσAB2IAjB SðρABjjσAjBÞ ¼ SðΔBðρABÞÞ � SðρABÞ, where

ΔBðρABÞ ¼
P

iðI� ij iB ih jÞρðI� ij iB ih jÞ is the local dephasing asso-
ciated with the subsystem B, I is the identity operator. Since the
relative entropy does not increase under quantum operations,
Cr
AjBðρABÞ is monotonically nonincreasing under local quantum-

incoherent operations and classical communication (LQICC).
With respect to the dephasing on subsystem B, the relative

entropy of discord for bipartite states ρAB is given by34,
Dr
AjBðρABÞ ¼ minδAB2F AjB SðρABjjδAjBÞ, where F AjB ¼

P
ipiF i

A � ij iB ih j
is the set of quantum-classical correlated states. A symmetric
version of quantum discord with respect to both dephasing on
subsystems A and B is defined by Ds

ABðρABÞ ¼ minγAB2χAB SðρABjjγABÞ,
where γAB ¼

P
jkpjk jj iA jh j � kj iB kh j, and χAB is the set of classical-

classical correlated states. The global discord35 for bipartite states
ρAB is defined by, Dg

AjBðρABÞ ¼ minfΠi
Bg D

g
fΠi

Bg
ðρABÞ, where

Dg
fΠi

Bg
ðρABÞ ¼ SðρABjjΠi

BðρABÞÞ � SðρBjjΠi
BðρBÞÞ, ΠB ¼ fΠi

Bg is a com-

plete projective measurement on subsystem B, see also the
original definition of discord36,37. It is evident from the above
definitions that Ds(ρAB) ≤ Cr(ρAB)13, as this measure of discord is the
minimum amount of the coherence in any product basis2.
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RESULTS
Linking quantum coherence to quantum discord
Theorem 1 For any bipartite state ρAB, it holds
Dg
AjBðρABÞ þ PρB � Dr

AjBðρABÞ � Cr
AjBðρABÞ � CrðρABÞ � CrðρAÞ,

where PρB ¼ minΠB S½πΠBðρABÞ� � SðπρABÞ with πρAB ¼ TrBρAB � TrAρAB
the product of the reduced states, see proof in “Methods”.
If the project measurement ΠB on subsystem B is given by the

reference basis f ij iBg of the coherence for subsystem B, one can
easily get that PρB ¼ CrðρBÞ for relative entropy of coherence. Thus
Theorem 1 shows that the summation of the global discord with
local measurements on subsystem B and the coherence of
subsystem B is bounded by Dr

AjBðρABÞ and Cr
AjBðρABÞ. On the other

hand, the B-incoherent state of ρAB, C
r
AjBðρABÞ (or the discord with

local measurements on subsystem B, Dr
AjBðρABÞ), and the

coherence of subsystem A is bounded by the coherence Cr(ρAB)
of the ρAB. The first two equalities in Theorem 1 hold for some
optimal bases f ij i�B ih jg which give the minimum solution of
quantum discord Dr

AjBðρBÞ. Moreover, if one performs local
measurements on subsystem A, similar relation can be obtained,
Dg
BjAðρABÞ þ PρA � Dr

BjAðρABÞ � CrB
BjAðρABÞ � CrðρABÞ � CrðρBÞ.

To illustrate the inequality presented in Theorem 1, let us consider
two simple examples. The first one is a two-qubit separable
state38,39: ρAB ¼ 1

4 ½ þj i þh j � 0j i 0h j þ �j i �h j � 1j i 1h j þ 0j i 0h j �
�j i �h j þ 1j i 1h j � þj i þh j�, where þj i ¼ 1ffiffi

2
p ð 0j i þ 1j iÞ and

�j i ¼ 1ffiffi
2

p ð 0j i � 1j iÞ. The optimal basis f ij i�B ih jg which gives the
minimum solution of quantum discord Dr

AjBðρBÞ is just f ij iB ih jg.
Under this basis we have PρB ¼ 0, Cr(ρA)= Cr(ρB)= 0,
Dg
AjBðρABÞ ¼ Dr

AjBðρABÞ ¼ Cr
AjBðρABÞ � 0:311, and Cr(ρAB)= 0.5. The

first two inequalities in Theorem 1 are
equalities in this case. The second one is the Werner state:
ρAB ¼ ð1� pÞ I

4 þ p ψj i ψh j, where ψj i ¼ 1ffiffi
2

p ð 00j i þ 11j iÞ is a Bell
state, p∈ [0, 1]. The state is a separable for 0<p � 1

3 with nonzero
discord. The nearest classical state is just the closet incoherent state
of ρAB40. Under optimal basis f ij iB ih jg we have PρB ¼ 0, Cr(ρA)=
Cr(ρB)= 0, Dg

AjBðρABÞ ¼ Dr
AjBðρABÞ ¼ Cr

AjBðρABÞ ¼ CrðρABÞ. In this case,
all the inequalities in Theorem 1 become equalities.
The total correlation between systems A and B in a bipartite

state ρAB is given by the quantum mutual information I(ρAB)= S
(ρA)+ S(ρB)− S(ρAB). In the following, we show that the total
correlation present in a bipartite state ρAB is bounded, see proof
in Methods.
Theorem 2 For any bipartite state ρAB, we have

IðρABÞ � IT ðρABÞ þ DrT
T jT ðρABÞ � PρT , where PρT ¼ minΠT S½πΠT ðρABÞ��

SðπρABÞ, IT ðρABÞ ¼ maxfΠi
Tg IðΠ

i
TρABΠ

i
T Þ, T= A, B, AB, T is the com-

plementary of T in the subsystem of AB, with Dr
ABjABðρABÞ ¼ Ds

ABðρABÞ.
The equality in Theorem 2 holds, IðρABÞ ¼ IΠT ðρABÞþ

DrT
T jΠT

ðρABÞ � PρΠT , if the measurement ΠT on system T is just the

reference basis of coherence for T, T= A, B, AB. When T= AB, one
gets IðρABÞ þ CrðρAÞ þ CrðρBÞ ¼ CcðρABÞ þ Ds

ABðρABÞ, where Cc(ρAB)
= IAB(ρAB)34 is classical correlation given by the minimal distance
between ρAB and product states π, CcðρABÞ ¼ min

π
SðρABjjπÞ, with

ρAB∈ χAB. This means that the sum of the mutual information and
the local coherence is equal to the sum of the quantum discord
and classical correlations. One can also obtain that
IðρABÞ � CcðρABÞ ¼ Ds

ABðρABÞ � CrðρAÞ � CrðρBÞ, which means that
the overall quantum correlations given in a bipartite state ρAB is
equal to the quantum discord minus the coherence in each
subsystem. When T= A(B), one obtains IðρABÞ þ CrðρBÞ ¼ IBðρABÞ þ
D AjBrðρABÞ, namely, the sum of the mutual information and the
coherence of the measured subsystem B(A) is equal to the sum of
the discord and conditional mutual information performed on
subsystem B(A).
Example 1 Let us consider the Bell-diagonal states41,42,

ρAB ¼ 1
4 ðI � I þP3

j¼1 cjσj � σjÞ, where σj are the standard Pauli
matrices. In this case, we have IðρABÞ � IABðρABÞ ¼ IðρABÞ�

CcðρABÞ ¼ Dg
ABðρABÞ ¼ Ds

ABðρABÞ, and IðρABÞ � IBðρABÞ ¼ Dg
AjBðρABÞ ¼ Dr

AjBðρABÞ, see Methods for detailed derivations.

Discord distribution between spatially separated parties
Consider two remote agents, Alice and Bob, having access to
particles A and B, respectively. Alice interacts an ancilla C with her
particle A and sends C to Bob. Bob interacts C with his particle B.
At the end how much discord they share could be increased?
What is the cost to increase the discord they share by sending an
auxiliary quantum particle C? see Fig. 1.
Let ρ be the initial state of the particles A, B and C. The initial

discord between Alice and Bob is Dr
ACjBðρÞ. If the particle C is sent to

Bob’s side without any operations, the discord between the them is
given by Dr

AjBCðρÞ. We first present a general relation among
Dr
ACjBðρÞ, Dr

AjBCðρÞ and the cost Cr
ABjCðρÞ for arbitrarily given ρ.

Consider the optimal projective measurement Π�
C ¼ f ij iC ih jg on C,

with pi the probability of outcome i and ρiAB the corresponding
conditional states of systems AB, i.e., Π�

CðρABCÞ ¼
P

ipiρ
i
AB � ij iC ih j.

Then we have the following result, see proof in Methods and also
an example to illustrate that the increase of the relative entropy of
discord between two remote parties is bounded by the nonclassical
correlations quantified by the relative entropy of coherence
between the carrier and two remote parties after the proof.
Theorem 3 For any tripartite state ρ of systems A, B and C, it

holds that

Dr
T jTCðρÞ � Dr

TCjT ðρÞ � Cr
ABjCðρÞ; (1)

where T= A, B, and T is the complementary of T in the subsystem AB.
We point out that the inequality (1) holds for any dimensions of

the subsystems. The implications of Theorem 1 is illustrated in Fig.
2. In particular, for tripartite pure state ρABC ¼ ψj iABC ψh j from
Theorem 3 we have:

jSðρAÞ � SðρBÞj � S½ΔðρABÞ�;
where Δ is a full dephasing operation.

Fig. 1 Alice and Bob have particles A and B, respectively. a Alice
interacts an ancilla C with her particle A. b C is then sent to Bob’s
side. c Bob interacts C with his particle B.

Fig. 2 The area (yellow and blue) represents the discord between
AC and B, while the area (red and blue) represents the quantum
correlations between AB and C. The total area (yellow, blue and red)
represents the discord between A and BC. One can read off the main
result: Dr

AjBCðρÞ � Dr
ACjBðρÞ � Cr

ABjCðρÞ.
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Now let α denote the initial state of A, B and C, and β the state
after Alice interacts the ancilla C with particle A. As local operation
on AC cannot increase the discord in the AC∣B cut, one has
Dr
ACjBðβÞ � Dr

ACjBðαÞ. Then Alice sends C to Bob, who interacts C
with particle B. From Theorem 3 for state β one gets
Dr
AjBCðβÞ � Dr

ACjBðαÞ þ Cr
ABjCðβÞ. This shows that the discord

gained between Alice and Bob is bounded by the quantum
coherence measured on C.
It is impossible to distribute the discord by LQICC. Let us first

address the case of Cr
ABjCðρÞ ¼ 0, i.e., ρ is a quantum-incoherent state,

ρ ¼ P
ipiρ

i
AB � ij iC ih j, which corresponds to classical communication

from Alice to Bob. The index i embodies classical information that
Alice may copy locally before sending C to Bob. Then both Alice and
Bob have access to this information after C is transferred from Alice to
Bob, and a local incoherent transformation can be performed by Bob
depending on the index i. The process is just the one communication
step for a general protocol in terms of LQICC. The protocol may also
include the round of classical communication with C that is sent from
Bob to Alice. Then one obtains Dr

BjACðβÞ � Dr
BCjAðαÞ þ Cr

ABjCðβÞ: In
this case, local classical registers can be kept or erased at any stage of
the protocol. Inequality (1) gives rise to that coherence does not
increase at any step of a protocol based on LQICC. If Cr

ABjCðρÞ does
not vanish, the transfer of C cannot be interpreted as classical
communication, revealing the role of coherence in general quantum
communication. Hence, (1) constitutes a nontrivial relaxation of the
condition of monotonicity of discord under LQICC, bounding the
increase of discord under local quantum-incoherent operations and
quantum communication.
In order to investigate the discord distribution via a quantum-

classical system, besides the coherence present in β, there must
be coherence on the receiver’s side already in the initial state α.
Exchanging the roles of B and C, one gets from (1),
Dr
AjBCðβÞ � Dr

ABjCðβÞ � Cr
ACjBðαÞ. Suppose C is a classical state, i.e.,

Dr
ABjCðβÞ ¼ 0, we obtain the relation Dr

AjBCðβÞ � Cr
ACjBðαÞ. Note

that if C is initially not correlated with AB, one further gets
Dr
AjBCðβÞ � Cr

AjBðαÞ. Another interesting case Cr
ACjBðαÞ ¼ 0. Then B

is incoherent state initially, and hence β ¼ P
ipiβ

i
AC � ij iB ih j. In this

case discord between Alice and Bob can only be created if C and A
(B) have non-vanishing discord, in particular, only if at least one
βiAC has non-vanishing discord. Indeed, such β simply describes a
situation in which Bob, upon reading the index i interacted in B,
knows which states βiAC he will end up sharing with Alice. Let us
consider two examples.
Example 2 Discord distribution with non-vanishing initial

discord between Alice and Bob. Let us consider the state
ρ ¼ þj iA þh j � 0j iC 0h j � �j iB �h j, where þj iA ¼ 1ffiffi

2
p ð 0j i þ 1j iÞ

and �j iB ¼ 1ffiffi
2

p ð 0j i � 1j iÞ. Alice applies an incoherent
operation OðρACBÞ ¼ pUACρACBU

y
AC þ ð1� pÞ I

4 � �j iB �h j, where I
is unit operator, 0 ≤ p ≤ 1, UAC is the CNOT gate
UACð ij i � jj iÞ ¼ ij i � i � jj i. The output state is ρ1 ¼ p Ψj i Ψh j�
�j iB �h j þ ð1� pÞ I

4 � �j iB �h j, with Ψj i ¼ 1ffiffi
2

p ð 00j i þ 11j iÞ.
Obviously, the discord between subsystems A and C is greater
than 0 for p > 0, and the entanglement is vanished when p � 1

3.
From the inequality (1), we have that the discord between A and
BC is bounded by Cr

ABjCðρ1Þ after A interacts with C, i.e.,
Dr
AjBCðρ1Þ � Dr

ACjBðρÞ � 1�p
4 log 1�p

4 þ 1þ3p
4 log 1þ3p

4 � 1þp
2 log 1þp

4 .
Example 3 Discord distribution with vanishing initial discord

between Alice and Bob. Consider the initial three-qubit state in
ref. 43, α ¼ 1

3 ϕþj i ϕþh j þ 1
6 01j i 01h j þ 1

6 10j i 10h j� �� 0j iB 0h j þ
1
6 00j i 00h j þ 1

6 11j i 11h j� �� 1j iB 1h j, where ϕþj i ¼ 1ffiffi
2

p ð 00j i þ 11j iÞ
is the maximally entangled state of A and C. Alice performs a
CNOT operation on A and C with A as the control qubit, and passes
C to Bob. Bob performs another CNOT operation on the system BC

with B as the control qubit, i.e., α !CNOTAC
β !CNOTBC

γ. It shows that the
qubit B has zero discord with A and C all the time. Nevertheless, A
and C may share some discord at last, Dr

AjBCðγÞ � 1
3 log 2.

In fact, one may obtain similar results for other quantum
correlations such as information deficit, which quantifies the
amount of information that cannot be localized by classical
communication between two parties. If only one-way classical
communication from party X to party Y is allowed, one has the
one-way information deficit: ΔXjYðρXYÞ ¼ minΠi

Y
SðρXY jjP

iΠ
i
YρXYΠ

i
YÞ, where the minimization goes over all local von

Neumann measurements fΠi
Yg on subsystem Y. We have

ΔAjBCðρÞ � ΔACjBðρÞ � Cr
ABjCðρÞ; (2)

see proof in “Methods”. This shows that the deficit of the
bipartite partition A∣BC cannot be larger than the sum of the
deficit of the partition AC∣B plus the quantum coherence
across the partition AB∣C. Thus, the inequality (2) may be
viewed as a type of monogamy relation satisfied by a tripartite
quantum state.

DISCUSSIONS
Establishing quantum correlations between two distant parties is an
essential step of many protocols in quantum information processing.
The purpose of the physical transmission of the carrier system is to
change the amount of quantum correlations between the between
remote agents. For example, the increase of the total correlations,
mutual information, is bounded by the amount of communicated
correlations44, i.e., IðρT jTCÞ � IðρTCjT Þ � IðρACÞ � IðρTT jCÞ, with T=
A, B, and T the complementary of T in the subsystem AB. We have
investigated the trade-off relations satisfied by discord and
coherence during such essential steps, via distributing the
coherence in a bipartite quantum state to the discord between
the subsystems, based on the relations between relative entropy
and mutual information. We have identified quantum correlations as
the key resource for discord distribution and derived a general
bound on the discord gained between distant paries under local
quantum-incoherent operations and quantum communication.
Explicitly, we have proved that the discord gained between distant
parties is bounded by the amount of quantum coherence between
them and the information carrier, which provides a fundamental
connection between quantum discord and quantum coherence and
a natural operational interpretation of quantum coherence as the
necessary prerequisite for the success of discord distribution. Our
results may highlight further studies on quantum resources
consuming in information processing and give rise to related
experimental demonstrations.

METHODS
Proof of Theorem 1
It can be shown that Dr

AjBðρABÞ corresponds to the minimal
entropic increase resulting from the complete projective measure-
ment ΠB on B: Dr

AjBðρABÞ ¼ minΠB S½ΠBðρABÞ� � SðρABÞ, where
ΠB(ρAB) is the state after the measurement ΠB, ΠBðρABÞ ¼P

iðI� Πi
BÞρABðI� Πi

BÞ ¼
P

ipiρ
i
A � ij iB ih j. Similarly, Ds

ABðρABÞ ¼
minΠAB S½ΠABðρABÞ� � SðρABÞ, where ΠAB(ρAB) is the state after the

measurement ΠAB, ΠAB ρABð Þ ¼ P
j;k Πj

A � Πk
B

� �
ρAB Πj

A � Πk
B

� �
¼P

jkpjk jj iA jh j � kj iB kh j. Note that Cr
AjBðρABÞ is different from the

relative entropy of discord which involves a minimization over all
bases of B, while Cr

AjBðρABÞ is defined for a fixed incoherent
basis f ij iBg.
Under the von Neumann projective measurement ΠB ¼ fΠi

Bg,
the state of the system B is given by ρiA ¼ TrB½ðI
�Πi

BÞρABðI� Πi
BÞ�=pi , with the measurement outcome probability

pi ¼ Tr½ðI� Πi
BÞρAB�. The conditional entropy of system A is then

S½ΠBðρAjBÞ� ¼
P

ipiSðρiAÞ. Therefore, the quantum mutual

Z.-X. Jin et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2022)    33 



information induced by the von Neumann measurement on the
system B is given by:

IΠBðρABÞ ¼ SðρAÞ � S½ΠBðρAjBÞ�:
The measurement-independent quantum mutual information
IB(ρAB) is given by:

IBðρABÞ ¼ max
ΠB

IΠBðρABÞ
¼ max

fΠi
Bg
I ðI� Πi

BÞρABðI� Πi
BÞ

� �
;

which is interpreted as the one-sided classical mutual information
on subsystem B. Let Π�

B ¼ f ij i�B ih jg be the optimal basis of system B
for Dr

AjB . Then we have:

Dg
AjBðρABÞ ¼ min

ΠB

SðρBÞ � SðρABÞ þ
P
i
piSðρiAÞ

� SðρBÞ � SðρABÞ þ S½Π�
BðρABÞ� � S½Π�

BðρBÞ�
¼ SðρBÞ þ S½trBΠ�

BðρABÞ� � SðρABÞ þ S ½Π�
BðρABÞ�

�
� S½trAΠ�

BðρABÞ� � S½trBΠ�
BðρABÞ�

¼ SðπρÞ � SðρABÞ þ S½Π�
BðρABÞ� � SðπΠ�

BðρABÞÞ
¼ Dr

AjBðρABÞ � ½SðπΠ�
BðρABÞÞ � SðπρÞ�

� Dr
AjBðρABÞ � PρB ;

where we have used S½trAΠ�
BðρABÞ� ¼ S½Π�

BðρBÞ� and
Π�
BðρBÞ ¼

P
ipi ij i�B ih j. Then one gets

Dg
AjBðρABÞ þ PρB � Dr

AjBðρABÞ:
It is evident that Dr

AjBðρABÞ � Cr
AjBðρABÞ for any reference basis13. In

fact, the measure of discord is the minimum coherence in any
product basis2. The equality holds for an optimal basis. On the
other hand:

Cr
AjBðρABÞ ¼ S½ΔBðρABÞ� � SðρABÞ

¼ S½ΔABðρABÞ� � SðρABÞ
� S½ΔABðρABÞ� � S½ΔBðρABÞ�ð Þ
� CrðρABÞ � CrðρAÞ;

(3)

where ΔAB is the completely dephasing operation.

Proof of Theorem 2
The total mutual information of a bipartite state ρ is given by the
relative entropy between ρ the product state of the reduced states
πρ= ρA⊗ ρB, IðρABÞ ¼ SðρABjjπρABÞ ¼ SðρABjjρA � ρBÞ34. We have:

IBðρABÞ ¼ SðρAÞ �
P
i
piSðρiAÞ

¼ SðρAÞ þ
P
i
SðΠi

BðρBÞÞ

� ½P
i
SðΠi

BðρBÞÞ þ
P
i
piSðρiAÞ�

¼ SðρAÞ þ
P
i
SðΠi

BðρBÞÞ �
P
i
SðΠi

BðρABÞÞ
¼ S ΠBðρABÞkρA � ΠBðρBÞð Þ
¼ SðρAÞ þ SðΠBðρBÞÞ � SðΠBðρABÞÞ;

(4)

with maximization taken over measurement fΠj
Bg, where

ΠBðρABÞ ¼
P

iðI� Πi
BÞρABðI� Πi

BÞ ¼
P

ipiρ
i
A � ij iB ih j and

ΠBðρBÞ ¼
P

ipi ij iB ih j.
Combining

Dr
AjBðρABÞ ¼ min

ΠB

S½ΠBðρABÞ� � SðρABÞ

and

PρB ¼ min
ΠB

S½πΠBðρABÞ� � SðπρABÞ
¼ min

ΠB

SðΠBðρBÞÞ � SðρBÞ

we have IðρABÞ ¼ IΠT ðρABÞ þ Dr
T jΠT

ðρABÞ � PρΠT , where IΠT ðρABÞ,
Dr
T jΠT

ðρABÞ and PρΠT are the projective measurement ΠT depen-
dent, T= A, B, AB, and T is the complementary of T in the
subsystem AB. Under the optimal local measurements, one has
IðρABÞ � IBðρABÞ þ Dr

AjBðρABÞ � PρB . With a similar consideration,
we can also get IðρABÞ � IAðρABÞ þ Dr

BjAðρABÞ � PρA and
IðρABÞ � IABðρABÞ þ Ds

ABðρABÞ � PρAB .

Derivations in Example 1

Consider the Bell-diagonal states41,42, ρAB ¼ 1
4 ðI � I þP3

j¼1

cjσj � σjÞ ¼
P

abλab βabj i βabh j, with the maximally mixed marginals
(ρA ¼ ρB ¼ I

2). The density matrix of Bell-diagonal states with σ3
representation takes the form:

ρσ3AB ¼
1
4

1þ c3 0 0 c1 � c2
0 1� c3 c1 þ c2 0

0 c1 þ c2 1� c3 0

c1 � c2 0 0 1þ c3

0
BBB@

1
CCCA:

The eigenstates of ρσ3AB are the four Bell states:
βabj i ¼ ð 0; bj i þ ð�1Þa 1; 1� bj iÞ= ffiffiffi

2
p

, with the corresponding
eigenvalues λab ¼ 1

4 ½1þ ð�1Þac1 � ð�1Þaþbc2 þ ð�1Þbc3�, where
a, b∈ {0, 1}.
For Bell-diagonal states, the reduced states have no coherence

in the subsystems. The relative entropy of coherence is given by:

CrðρσiABÞ ¼ �HðλabÞ �
X2
j¼1

ð1þ ð�1ÞjciÞ
2

log2
ð1þ ð�1ÞjciÞ

4
;

where HðλabÞ ¼ �P
abλa;blog2λab. The mutual information for Bell-

diagonal states is given by:

IðρABÞ ¼
X
a;b

λablog2ð4λabÞ:

The classical correlation for Bell-diagonal states is given by:

CcðρABÞ ¼
X2
j¼1

ð1þ ð�1ÞjcÞ
2

log2ð1þ ð�1ÞjcÞ;

where c ¼ maxfjc1j; jc2j; jc3jg.
Before calculating Dg

ABðρABÞ, we note that from the derivation of
Theorem 2, the quantum discord can be rewritten as the
difference of relative entropies:

Dg
AjBðρABÞ ¼ IðρABÞ � IBðρABÞ

¼ S ρABkρA � ρBð Þ
� S ΠBðρABÞkρA � ΠBðρBÞð Þ
¼ S½ρABjjΠBðρABÞ� � S½ρBjjΠBðρBÞ�;

with the minimization taken over the measurement fΠj
Bg.

Performing measurements on both subsystems A and B, one has
the symmetric version Dg

AB ρABð Þ,
Dg
AB ρABð Þ¼ min

fΠj
A�Πk

Bg
S ρABkρA � ρBð Þ½

� S ΠAB ρABð ÞkΠA ρAð Þ � ΠB ρBð Þð Þ�;
(5)

where ΠAB ρABð Þ ¼ P
j;k Πj

A � Πk
B

� �
ρAB Πj

A � Πk
B

� �
. Expressing (5) in

terms of the mutual information I, we obtain

Dg
AB ρABð Þ ¼ min

fΠj
A�Πk

Bg
IðρABÞ � IðΠAB ρABð ÞÞ½ �; (6)

which is the symmetric version of the expression for the loss of
correlation based on the measurement45,46. Remarkably, Dg

AB ρABð Þ
is equivalent to the measurement-induced disturbance47 if the
measurements performed (5) are replaced by the eigenprojectors
of the reduced density operators, respectively. Moreover, Eq. (5)
also provides the symmetric quantum discord considered in ref. 48
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and experimentally witnessed in ref. 49. Eq. (5) yields:

Dg
AB ρABð Þ ¼ min

fΠj
A�Πk

Bg
S ρABkΠAB ρABð Þð Þ½

� S ρAkΠA ρAð Þð Þ � S ρBkΠB ρBð Þð Þ�
� S ρABkΠAB ρABð Þð Þ � PρA � PρB :

Specially, for some basis the symmetric extension quantum
discord Dg

AB ρABð Þ is bounded by the correlated coherence
Ccc(ρAB)= Cr(ρAB)− Cr(ρA)− Cr(ρB) defined in50.
From (6), we have the quantum discord for Bell-diagonal states:

Dg
ABðρABÞ ¼ �HðλabÞ �

X2
j¼1

ð1þ ð�1ÞjcÞ
2

log2
ð1þ ð�1ÞjcÞ

4
:

We note that the one-side quantum discord, two-side quantum
discord and the relative entropy of quantum discord are identical
for Bell-diagonal states. It is easy to verify that the quantum
discord is equal to the coherence under an optimal basis.
Therefore, IðρABÞ � IBðρABÞ ¼ Dg

AjBðρABÞ ¼ Dr
AjBðρABÞ as Cr(ρA)=

Cr(ρB)= 0 and IðρABÞ � IABðρABÞ ¼ IðρABÞ � CcðρABÞ ¼ Dg
ABðρABÞ ¼

Ds
ABðρABÞ.

Proof of Theorem 3
Let ρi�AB be the state resulted from the optimal measurement on
subsystem B for Dr

AjBðρiABÞ. As the state
P

ipiρ
i�
AB � ij iC ih j is a

quantum-classical state, we have:

Dr
AjBCðρÞ � SðρkP

i
piρ

i�
AB � ij iC ih jÞ

¼ �SðρÞ � Tr½ρ logðP
i
piρ

i�
AB � ij iC ih jÞ�

¼ �SðρÞ � Tr½Π�
CðρÞ logð

P
i
piρ

i�
AB � ij iC ih jÞ�

¼ SðΠ�
CðρÞÞ � SðρÞ� �þ �SðΠ�

CðρÞÞ
�

� Tr Π�
CðρÞ log

P
i
piρ

i�
AB � ij iC ih j

	 
	 
�

¼ Cr
ABjCðρÞ þ S

P
i
piρ

i
AB � ij iC ih j

	

´ kP
i
piρ

i�
A:B � ij iC ih j




¼ Cr
ABjCðρÞ þ

P
i
piSðρiABkρi�ABÞ

¼ Cr
ABjCðρÞ þ

P
i
piD

r
AjBðρiABÞ

¼ Cr
ABjCðρÞ þ Dr

AjBCðΠ�
CðρÞÞ

¼ Cr
ABjCðρÞ þ Dr

ACjBðΠ�
CðρÞÞ

� Cr
ABjCðρÞ þ Dr

ACjBðρÞ;
where the first inequality is due to that the quantum-classical
state

P
ipiρ

i�
A:B � ij iC ih j cannot be better than optimal state for

the sake of Dr
AjBCðρÞ, the second equality holds since

Trðσ logΠðτÞÞ ¼ TrðΠðσÞ logΠðτÞÞ for all projective measure-
ments Π, and for all σ and τ44, the fourth equality is due to
the optimality of Π�

C for Cr
ABjCðρÞ, the fifth equality is due to the

chain rule for relative entropy51, the last two equalities are due
to the fact that the relative entropy of coherence satisfies the
“flags” condition ref. 52, i.e., Dr

FXjY
P

ipi ij iF ih j � ρiXY
� � ¼ P

ipiD
r
XjY

ðρiXYÞ ¼ Dr
XjYF

P
ipiρ

i
XY � ij iF ih j� �

. From the above consideration,
the cost for sending the particle C from Alice to Bob is bounded
by Cr

ABjCðρÞ, Dr
BjACðρÞ � Dr

BCjAðρÞ � Cr
ABjCðρÞ.

Example. Consider the state ρ ¼ þj iA þh j � 0j iB 0h j � 0j iC 0h j,
where þj iA ¼ 1ffiffi

2
p ð 0j i þ 1j iÞ, and the incoherent operation εðρÞ ¼

1
2 ðUCN � IBÞρðUy

CN � IBÞ þ 1
8 I on the subsystem AC, where IB is

identity operator on the subsystem B, UCN is the CNOT gate,

UCNð ij i � jj iÞ ¼ ij i � i � jj i on the the subsystem AC. Alice
applies the incoherent operation ε on initial state ρ and passes
the qubit C to Bob, who then performs another CNOT operation
U0
CN on the subsystem BC with C as the control qubit. The

resulting state is:

ρ0ABC ¼ 3
8 ð 000j i 000h j þ 111j i 111h jÞ
þ 1

4 000j i 111h j þ 111j i 000h j�
þ 1

8 ð 011j i 011h j þ 100j i 100h jÞ:
Taking concurrence EC as an entanglement measure, we have
ECðρ0AjBCÞ 	 ECðρ0ABÞ ¼ 1

4, where we have used the formula that the
concurrence of a two-qubit mixed state ρ is
ECðρÞ ¼ maxf0; λ1 � λ2 � λ3 � λ4g, with λ1, λ2, λ3 and λ4 being
the square roots of the eigenvalues of ρ(σy⊗ σy)ρ⋆(σy⊗ σy) in
nonincreasing order, σy is the Pauli matrix, and ρ⋆ is the complex
conjugate of ρ. That is to say, the final state ρ0ABC is entangled and
the discord of the final state ρ0ABC is nonzero, Drðρ0AjBCÞ> 0,
although the discord of the initial state ρ is 0. Therefore, the
discord strictly increases by the transfer of a separable carrier.
Since the coherence between the carrier and the two remote
parties is given by Crðρ0ABjCÞ ¼ 0:182, from the inequality (1) in
Theorem 3 one has that the increase of the discord is bounded by
the coherence between the carrier and the two remote parties, i.e.,
0<Drðρ0AjBCÞ � Crðρ0ABjCÞ ¼ 0:182.

Derivation of (2)
Let σ ¼ P

iΠ
i
BρΠ

i
B be the state from the local measurement ΠB ¼

fΠi
Bg on the B part of ρ, which minimizes the relative entropy of σ

and ρ such that

ΔACjBðρÞ ¼ SðρjjσÞ:
Assume state ρ1 is the closest C-incoherent state to ρ, namely,

Cr
ABjCðρÞ ¼ Sðρjjρ1Þ:

Suppose ΠC ¼ fΠi
Cg is the local measurement such that

ρ1 ¼
P

iΠ
i
CρΠ

i
C . One has σ1 ¼

P
iΠ

i
CσΠ

i
C . Since Trðρ log ρ1Þ ¼

Trðρ1 log ρ1Þ and Trðρ log σ1Þ ¼ Trðρ1 log ρ1Þ, we have

Sðρjjσ1Þ ¼ Sðρjjρ1Þ þ Sðρ1jjσ1Þ:
As the relative entropy does not increase under quantum
operations, S(Λ(ρ)∣∣Λ(σ)) ≤ S(ρ∣∣σ), we have S(ρ1∣∣σ1) ≤ S(ρ∣∣σ). Then

Sðρjjσ1Þ � Cr
ABjCðρÞ þ ΔACjBðρÞ:

By the definition of deficit, we have ΔA∣BC(ρ) ≤ S(ρ∣∣σ1), and

ΔAjBCðρÞ � ΔACjBðρÞ � Cr
ABjCðρÞ:
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