Abstract
Longduration quantum memories for photonic qubits are essential components for achieving longdistance quantum networks and repeaters. The mapping of optical states onto coherent spinwaves in rare earth ensembles is a particularly promising approach to quantum storage. However, it remains challenging to achieve longduration storage at the quantum level due to readout noise caused by the required spinwave manipulation. In this work, we apply dynamical decoupling techniques and a small magnetic field to achieve the storage of six temporal modes for 20, 50, and 100 ms in a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal, based on an atomic frequency comb memory, where each temporal mode contains around one photon on average. The quantum coherence of the memory is verified by storing two timebin qubits for 20 ms, with an average memory output fidelity of F = (85 ± 2)% for an average number of photons per qubit of μ_{in} = 0.92 ± 0.04. The qubit analysis is done at the readout of the memory, using a type of composite adiabatic readout pulse we developed.
Introduction
The realization of quantum repeaters^{1,2,3}, and more generally quantum networks, is a longstanding goal in quantum communication. It will enable longrange quantum entanglement distribution, longdistance quantum key distribution, distributed quantum computation, and quantum simulation^{4}. Many schemes of quantum repeaters rely on the heralding of entanglement between quantum nodes in elementary links^{2,5}, followed by local swapping gates^{1} to extend the entanglement. The introduction of atomic ensembles as repeater nodes, and the use of linear optics for the entanglement swapping, stems from the seminal DLCZ proposal^{2}. A key advantage of atomic ensembles is their ability to store qubits in many modes through multiplexing^{6,7,8,9,10,11,12}, which is crucial for distributing entanglement efficiently and with practical rates^{13}.
Rareearthion (RE) doped crystals provide a solidstate approach for ensemblebased quantum nodes. RE doped crystals can provide multiplexing in different degrees of freedom^{8,9,11,14,15,16}, efficient storage^{17,18}, long optical coherence times^{19,20}, and long coherence times of hyperfine states^{21,22,23,24} that allows longduration and ondemand storage of optical quantum states. Long optical coherence times, in combination with the inhomogeneous broadening, offer the ability to store many temporal modes^{7,13}. Repeater schemes based on both time and spectral multiplexing schemes have been proposed^{8,13}. Here we focus on repeaters employing timemultiplexing and ondemand readout in time^{13}, which require the long storage times provided by hyperfine states^{25}.
The longest reported spin storage time of optical states with mean photon number of around 1 in RE doped solids is about 1 ms in ^{151}Eu^{3+}:Y_{2}SiO_{5}^{26}. However, even nearterm quantum repeaters spanning distances of 100 km or above would certainly require storage times of at least 10 ms, and more likely of hundreds of ms^{25}. A particular challenge of long duration quantum storage in RE systems is noise introduced by the application of the dynamical decoupling (DD) sequences that are required to overcome the inhomogeneous spin dephasing^{26} and the spectral diffusion^{22,24}. To reduce the noise one can apply errorcompensating DD sequences^{27}, or increase the spin coherence time by applying magnetic fields to reduce the required number of pulses^{22,28,29}.
In this article we report on an atomic frequency comb (AFC) spinwave memory in ^{151}Eu^{3+}:Y_{2}SiO_{5}, in which we demonstrate storage of 6 temporal modes with mean photon occupation number μ_{in} = 0.711 ± 0.006 per mode for a duration of 20 ms using a XY4 DD sequence with 4 pulses. The output signaltonoise (SNR) ratio is 7.4 ± 0.5, for an internal storage efficiency of η_{s} = 7%, which excludes the contribution of losses due to the optical path between the memory output and the detector. These results represent a 40fold increase in qubit storage time with respect to the longest photonic qubit storage in a solidstate device^{26}. The improvement in storage time is due to the application of a small magnetic field of 1.35 mT, see also^{24,29}, which increases the spin coherence time with more than an order of magnitue while simultaneously resulting in a Markovian spin diffusion that can be further suppressed by DD sequences. By applying a longer DD sequence of 16 pulses (XY16) we demonstrate storage with μ_{in} = 1.062 ± 0.007 per mode for a duration of 100 ms, with a SNR of 2.5 ± 0.2 and an efficiency of η_{s} = (2.60 ± 0.02)%. In addition we stored two timebin qubits for 20 ms and performed a quantum state tomography of the output state, showing a fidelity of F = (85 ± 2)% for μ_{in} = 0.92 ± 0.04 photons per qubit. To analyze the qubit we propose a composite adiabatic control pulse that projects the output qubit on superposition states of the timebin modes. The current limit in storage time is technical, due to heating effects in the cryo cooler caused by the high power of the DD pulses and the duty cycle of the sequence. The measured spin coherence time as a function of the DD pulse number n_{p} follows closely the expected \({n}_{{{{\rm{p}}}}}^{2/3}\) dependence, which suggests that considerably longer storage times are within reach with some engineering efforts.
Results
The ^{151}Eu^{3+}:Y_{2}SiO_{5} system
The platform for our quantum memory is a ^{151}Eu^{3+}:Y_{2}SiO_{5} crystal with an energy structure at zero magnetic field as in Fig. 1a. The excited and ground states can be connected via optical transitions at about 580 nm^{30}. The quadrupolar interaction due to the effective nuclear spin I = 5/2 of the Eu^{3+} ions generates three doublets in both the ground and excited states, separated by tens of MHz. This structure allows to choose a Λsystem with a first ground state \(\left{{{\rm{g}}}}\right\rangle\) into which the population is initialized, connected to an excited state \(\left{{{\rm{e}}}}\right\rangle\) for optical absorption of the input light, and a second ground state \(\left{{{\rm{s}}}}\right\rangle\) for ondemand longtime storage.
The full AFCspin wave protocol^{7,31}, sketched in Fig. 1d, begins by initializing the memory so to have a comblike structure in the frequency domain with periodicity Δ on \(\left{{{\rm{g}}}}\right\rangle\) and an empty \(\left{{{\rm{s}}}}\right\rangle\) state, via an optical preparation beam (see Fig. 1b). The initialization step closely follows the procedure outlined by Jobez et al.^{32}. The photons to be stored are sent along the input path and are absorbed by the AFC on the \(\left{{{\rm{g}}}}\right\rangle \leftrightarrow \left{{{\rm{e}}}}\right\rangle\) transition, leading to a coherent superposition in the atomic ensemble. The AFC results in a rephasing of the atoms after a duration 1/Δ, while normally they would dephase quickly due to the inhomogeneous broadening. Before the AFC echo emission, the excitation is transferred to the storage state \(\left{{{\rm{s}}}}\right\rangle\) via a strong transfer pulse. The radiofrequency (RF) field at 46.18 MHz then dynamically decouples the spin coherence from external perturbations and compensates for the spin dephasing induced by the inhomogeneous broadening of the spin transition \(\left{{{\rm{g}}}}\right\rangle \leftrightarrow \left{{{\rm{s}}}}\right\rangle\). In our particular crystal, the shape of the spin transition absorption line is estimated to be Gaussian with a width of about 60 kHz (Supplementary Note 2). A second strong optical pulse transfers the coherent atoms back into the \(\left{{{\rm{e}}}}\right\rangle\) state, after which the AFC phase evolution concludes with an output emission along \(\left{{{\rm{e}}}}\right\rangle \to \left{{{\rm{g}}}}\right\rangle\).
To implement the memory scheme, a coherent and powerful laser (1.8 W) at 580 nm is generated by amplifying and frequency doubling a 1160 nm laser that is locked on a highfinesse optical cavity^{33}. The 580 nm beam traverses a cascade of bulk acoustooptic modulators (AOM), each controlling an optical channel of the experiment, namely optical transfer, memory preparation, filter preparation and input. The optical beams and the main elements of the setup are represented in Fig. 1b, c. A memory and two filtering crystals are cooled down in the same closedcycle helium cryostat to ~4 K, placed on two levels of a single custom mount. The 1.2 cm long memory crystal is enveloped by a coil of the same length to generate the RF field. Another larger coil is placed outside the cold chamber and used to generate a static magnetic field. After the cryostat, the light in the input path can be detected either by a linear Si photodiode for experiments with bright pulses, or by a Si single photon avalanche diode (SPAD) detector for weak pulses at the single photonlevel. For photon counting it is necessary to use a filtering setup (Fig. 1c) to block any scattered light and noise generated by the second transfer pulse. Another AOM acts as a temporal gate, before passing the beam through two filtering crystals that are optically pumped so to have a transmission window around the input photon frequency and maximum absorption corresponding to the transfer pulse transition.
The ^{151}Eu^{3+}:Y_{2}SiO_{5} crystals are exposed to a small static magnetic field along the crystal D_{1} axis^{34}. At zero magnetic field, the protocol enabled to achieve storage of multiple coherent single photonlevel pulses up to about 1 ms^{26}. However, it has been shown that even a weak magnetic field can increase the coherence lifetime^{19,24,35,36}, which motivated us to use a ~ 1.35 mT field along the D_{1} axis^{29}.
Spinwave AFC
The AFC spinwave memory consists of three distinct processes: the AFC echo, the transfer pulses and the RF sequence, and each process introduces a set of parameters that will need to be optimized globally in order to achieve the best possible SNR, multimode capacity and storage time. Below we briefly describe some of the constraints leading to the particular choice of parameters used in these experiments.
The maximum AFC spinwave efficiency is limited by the AFC echo efficiency for a certain 1/Δ, which typically decreases exponentially as a function of 1/Δ. We can define an effective AFC coherence lifetime \({T}_{2}^{{{{\rm{AFC}}}}}\) and efficiency η_{AFC} as \({\eta }_{{{{\rm{AFC}}}}}={\eta }_{0}\,\exp (4/({{\Delta }}{T}_{2}^{{{{\rm{AFC}}}}}))\)^{32}, where η_{0} depends on the optical depth and the AFC parameters. With an external magnetic field of 1.35 mT∥D_{1}, we obtained \({T}_{2}^{{{{\rm{AFC}}}}}\) = (240 ± 30) μs with an extrapolated zerotime efficiency of η_{0} = (36 ± 3)%, see Fig. 1e. The η_{0} efficiency is consistent with the initial optical depth of 6 in our doublepass input configuration (each pass provides an optical depth of about 3). The effect of the fieldinduced Zeeman split on the AFC preparation process is discussed in detail ref. ^{29}. In short no adverse effects of the comb quality is expected when the comb periodicity is a multiple of the excited state splitting, provided more than two ground states are available for optical pumping as in Eu^{3+}:Y_{2}SiO_{5}, while other periodicities can lead to a lower AFC efficiency. In Fig. 1e the modulation period of about 25 μs indeed corresponds to the excited state splitting of 41.4 kHz. The exponential decay implies that there is a tradeoff between the memory efficiency (favoring short 1/Δ) and temporal multimode capacity (favoring long 1/Δ). In addition we must consider the shortest input duration that can be stored, which is limited by the effective memory bandwidth.
The optical transfer pulses should ideally perform a perfect coherent population inversion between states \(\left{{{\rm{e}}}}\right\rangle\) and \(\left{{{\rm{s}}}}\right\rangle\), uniformly over the entire bandwidth of the input pulse. Efficient inversion with a uniform transfer probability in frequency space can be achieved by adiabatic, chirped pulses^{37}. Here we employ two HSH pulses proposed by Tian et al.^{38}, which are particularly efficient given a limitation in pulse duration. For a fixed Rabi frequency the bandwidth of the pulse can be increased by increasing the pulse duration^{37}, which however reduces the multimode capacity of the AFC spinwave memory.
Considering as a priority to preserve the storage efficiency while still being able to store several time modes, we set 1/Δ = 25 μs, corresponding to the first maximum (with efficiency 28%) on the AFC echo decay curve in Fig. 1e. Given the 1/Δ delay, we optimized the HSH control pulse duration, leading to a bandwidth of 1.5 MHz for a HSH pulse duration of 15 μs. The remaining 10 μs were used to encode six temporal modes, giving a mode duration of T_{m} = 1.65 μs. Each mode contained a Gaussian pulse with a fullwidth at halfmaximum of about 700 ns.
The RF sequence compensates for the inhomogeneous spin dephasing and should ideally reduce the spectral diffusion due to spin–spin interactions through DD^{24,39,40,41}. However, effective dynamical decoupling requires many pulses, with pulse separations less than the characteristic time of the spin fluctuations. Pulse errors can then introduce noise at the memory output^{26}, which in principle can be reduced by using errorcompensating DD sequences^{27}. In practice, however, other factors such as heating of the crystal due to the intense RF pulses limit the effectiveness of such sequences, and noise induced by the RF sequence is the main limitation in SNR of longduration AFC spinwave memories^{9,26,42}.
Characterization with bright pulses
We first present a characterization of the memory using bright input pulses and a linear Si photodiode, implementing four decoupling sequences with a number of pulses ranging from a minimum of 2 to a maximum of 16. Figure 2 displays the resulting efficiency decay curves as a function of the time T_{s} spent by the atoms in the spin transition, which corresponds to the time difference between the two optical transfer pulses. The solid lines show fits obtained from a Mims model, which takes into account the effect of spectral diffusion^{43} according to the relation \({\eta }_{{{{\rm{s}}}}}({T}_{{{{\rm{s}}}}})={\eta }_{{{{\rm{s}}}}}(0)\,\exp [2{({T}_{{{{\rm{s}}}}}/{T}_{2}^{{{{\rm{spin}}}}})}^{m}]\), where \({T}_{2}^{{{{\rm{spin}}}}}\) is the effective spin coherence time, and m the Mims factor. More details can be found in Supplementary Note 3.
We extracted effective coherence times of 70 ± 2, 106 ± 9, 154 ± 11, and (230 ± 30) ms respectively for XX, XY4, XY8, and XY16 sequences, which show a clear decoupling effect as more pulses are added. This is also confirmed by the expected change of \({T}_{2}^{{{{\rm{spin}}}}}\) as a function of n_{p} visible in the inset of Fig. 2, which closely follows a powerlaw relation \({T}_{2}^{{{{\rm{spin}}}}}({n}_{{{{\rm{p}}}}})={T}_{2}^{{{{\rm{spin}}}}}(1)\,{n}_{{{{\rm{p}}}}}^{{\gamma }_{{{{\rm{p}}}}}}\) with γ_{p} = 0.57 ± 0.03 and \({T}_{2}^{{{{\rm{spin}}}}}(1)\) = (47 ± 2) ms as expected for a OrnsteinUhlenbeck spectral diffusion process^{40,41,44}. A similar scaling was obtained in Holzäpfel et al.^{24}, using a slightly different experimental setup, magnetic field and Λsystem, which indicates that much longer storage times could be achieved. However, adding more pulses for the same storage times introduces additional heating, causing temperaturedependent frequency shifts of the optical transition^{30,45}. This technical issue could be addressed in the future by optimizing the heat dissipation in proximity of the crystal. The extrapolated zerotime efficiencies vary between 6% and 9%, and the data appear relatively scattered around the fitted curves for the longer decoupling sequences. These two observations might be a sign of the presence of beats originating in the different phase paths available to the atoms during storage, due to the small Zeeman splitting of the ground state doublets in this regime of weak magnetic field. Similar effects have been shown in a more detailed model of interaction between a system with splittings smaller than the RF pulses chirp^{29}.
Singlephoton level performance
We now discuss the memory performance at the single photon level. The dark histograms in Fig. 3 show three examples of spin storage outputs with their respective input modes for reference. The lighter histograms show the noise background, measured while executing the complete memory scheme without any input light (see Methods section for details). This noise floor, when integrated over the mode size T_{m}, gives us the noise probability p_{N}. When compared to the sum of the counts in the retrieved signal in the mode, the summed noise count is well below the retrieved signal for all the storage times here reported. We used an XY4 type of RF sequence for storage at 20 ms, XY8 for 50 ms, and XY16 for 100 ms. Table 1 summarizes the relevant results, in particular with SNR values ranging from 7.4 to 2.5 for 20 ms and 100 ms respectively. The average input photon number per time mode μ_{in} is close to 1 in all cases, although it varies slightly. To account for this, an independent figure of merit is the parameter μ_{1} = p_{N}/η, which corresponds to the average input photon number that would give an SNR of 1 in output^{46}. Since it scales as the inverse of the efficiency^{26}, it increases with storage time, but for all cases studied here it is well below 1.
The noise probability p_{N} varied from 7 ⋅ 10^{−3} to 11 ⋅ 10^{−3}, see Table 1, similar to previous experiments^{26}. An independent noise measurement at 20 ms showed that the XX, XY4, and XY8 resulted in almost identical noise values of p_{N} = 7.4 ⋅ 10^{−3}, 8.1 ⋅ 10^{−3} and 8.6 ⋅ 10^{−3} (error ± 0.3 ⋅ 10^{−3}), respectively. This shows that pulse area errors are effectively suppressed by the higher order DD sequences, and that the readout noise is caused by other types of errors, which at this point are not well understood.
If compared with the efficiencies measured with bright pulses in Fig. 2, the storage efficiency measured at the single photonlevel is noticeably lower for 50 and 100 ms. We believe this is due to the long measurement times required for accumulating the necessary statistics, which exposes the experiment to longterm fluctuations affecting optical alignment in general and specifically fiber coupling efficiencies. Nonetheless, our results show that our memory is capable of storing successfully multiple time modes at the single photon level, with a SNR that is in principle compatible with storage of quantum states^{26} for up to 100 ms. More information on the memory parameter estimations from the data can be found in Supplementary Table 2.
Timebin qubit storage
To characterize the quantum fidelity of the memory, we analyzed the storage of timebinencoded qubits. Both qubits were prepared in the ideally pure superposition state \({\psi }_{{{{\rm{in}}}}}=1/\sqrt{2}\,(\left{{{\rm{E}}}}\right\rangle +\left{{{\rm{L}}}}\right\rangle )\), where \(\left{{{\rm{E}}}}\right\rangle\) and \(\left{{{\rm{L}}}}\right\rangle\) represent the early and late time modes of each qubit. Exploiting our sixmodes capacity, we encoded the components \(\left{{{\rm{E}}}}\right\rangle\) and \(\left{{{\rm{L}}}}\right\rangle\) of the first qubit into the temporal modes 2 and 3, respectively, and similarly for the second qubit in modes 5 and 6.
To perform a full quantum tomography of the memory output state, represented by the density matrix ρ_{out}, one needs to be able to perform measurements of the observables represented by the Pauli matrices σ_{x}, σ_{y} and σ_{z}. The observable σ_{z} can simply be measured using histogram traces as shown in Fig. 3. The σ_{x} and σ_{y} observables can be measured by making two partial readouts of the memory^{46,47,48}, separated by the qubit mode spacing T_{m}, where each partial transfer pulse should ideally perform a 50% transfer as both modes are emitted after the second transfer pulse. In the past, this has been achieved by using two distinct, shorter transfer pulses^{46,48,49}, separated by T_{m}, which in practice can reduce the efficiency below the ideal 50% transfer^{46}. This is particularly true for long adiabatic, chirped pulses, which would then need to be severely shortened to produce two distinct pulses separated by the mode spacing T_{m}. In addition the first control pulse would need to be reduced in duration as well, as the chirp rate of all the transfer pulses should be the same^{37}.
To overcome the efficiency limitation for qubit analysis based on partial readouts with adiabatic pulses, we propose a composite pulse that can achieve the ideal 50% partial transfer, independently of the pulse duration and mode separation. The composite HSH pulse (cHSH) is a linear sum of two identical adiabatic HSH pulses, with their centers separated in time by T_{m}. The cHSH has a characteristic amplitude oscillation due to the interference of the two chirps, see Fig. 4a. Intuitively, one can think of each specific frequency within the AFC bandwidth as being addressed twice by the cHSH, once by each component, at two distinct times separated exactly by T_{m}, despite the fact that the whole cHSH pulse itself is much longer than T_{m}. As a consequence, the addressed atomic population partially rephases after the pulse at two times separated by T_{m}. An alternative method for analyzing qubits consists in using an AFCbased analyzer in the filtering crystals^{50,51}. However, we observed that the SNR was deteriorated when using the same crystals as both filtering and analyzing device. The cHSHbased analyzer resulted in a significantly better SNR after the filters, yielding a higher storage fidelity.
The phase difference θ between the two cHSH components sets the measurement basis, where θ = 0 (θ = π/2) and θ = π (θ = 3π/2) projects respectively on the \(\left+\right\rangle\) and \(\left\right\rangle\) eigenstates of σ_{x} (σ_{y}), encoded in the earlylate time modes basis as \(1/\sqrt{2}\,(\left{{{\rm{E}}}}\right\rangle +{{{{\rm{e}}}}}^{{{{\rm{i}}}}\theta }\left{{{\rm{L}}}}\right\rangle )\). Note that this type of analyzer can only project onto one eigenstate of each basis, hence two measurements are required per Pauli operator. Figure 4b shows the histograms corresponding to the two σ_{x} projections.
After measuring the expectation value of all three Pauli operators, we can reconstruct the full quantum state \({\hat{\rho }}_{{{{\rm{out}}}}}\) using direct inversion^{52}, after verifying that the corresponding state matrix is indeed physical. We hence derive a fidelity of F = (85 ± 2)%, averaged over the two qubits. Raw counts and the resulting expectation values can be found in Supplementary Table 4, with corresponding numbers of experiment repetitions in Supplementary Table 6. The average number of photons per qubit was μ_{in} = 0.92 ± 0.04 and the reconstructed density matrix \({\hat{\rho }}_{{{{\rm{out}}}}}\) is shown in Fig. 4c. The purity of the reconstructed state is P = (76 ± 3)%, which limits the maximum achievable fidelity in absence of any unitary errors to 87%. This indicates that the fidelity is limited by white noise generated by the RF sequence at the memory readout. Another element supporting this conclusion is given by the fidelity measured with bright pulses, so that the noise is negligible (see Supplementary Note 4), yielding a value of 96%. We further note that the σ_{z} measurement yielded a SNR of 3.48 ± 0.15, which when scaled up to the single photon level in one time bin becomes about 7.0. This is compatible with the value reported in Table 1 and would result in an upper bound on the fidelity of F = (SNR + 1)/(SNR + 2) = (88.9 ± 0.04)% assuming a white noise model^{26}.
The measured qubit fidelity can be compared to different criteria for quantum storage. In this work we characterize the memory by storing qubits encoded onto weak coherent states. In this context Specht et al.^{53} introduced a classical fidelity limit by comparing to a measureandprepare strategy, where the memory inefficiency and multiphoton components of the states are exploited. Nevertheless, for the efficiency of 7.39% and the mean qubit photon number of μ_{in} = 0.92 the criterion gives a maximum classical fidelity of 81.2% (see Supplementary Note 4), such that our qubit fidelity at 20 ms surpasses the classical limit. We can also consider future applications of the memory in terms of storing a qubit encoded onto a true single photon (Fock state), for which the classical limit is F = 2/3^{54}. For storage of true single photon qubits it can be shown that this limit can be surpassed provided that the probability p of finding the photon before the memory is larger than the μ_{1} parameter (see Table 1)^{9,26}. Recent quantum memory experiments in praseodymiumdoped Y_{2}SiO_{5} has reached a heralding efficiency of 19% of finding a true single photon before the memory^{55}, which with our μ_{1} = 0.098 at 20 ms storage time would result in a theoretical qubit fidelity of about 75%. The fidelity can be improved by a combination of increasing current memory efficiency and singlephoton heralding efficiency.
Discussion
The results presented here demonstrate that longduration quantum storage based on dynamical decoupling of spinwave states in ^{151}Eu^{3+}:Y_{2}SiO_{5} is a promising avenue. In terms of qubit storage, we observe a 40fold increase in storage time with respect to the previous longest quantum storage of photonic qubits in a solidstate device^{9}. Currently, the storage time in ^{151}Eu^{3+}:Y_{2}SiO_{5} is limited by the heating observed when adding more pulses in the decoupling sequence, which is a technical limitation, but the classical storage experiments by Holzäpfel et al.^{24} suggest that even longer storage times are within reach in ^{151}Eu^{3+}:Y_{2}SiO_{5}. Solving the heating problem will also allow applying DD pulses in a rapid succession with fixed time separation, as done by Holzäpfel et al.^{24}, giving more flexibilty in the readout time and reducing any deadtime of the memory. In general the implications of the timing of DD sequences have not yet been adressed in rate calculations of quantum repeaters. Our observation that DD sequences with more pulses did not generate more readout noise is key to achieving longer storage times also at the quantum level. We also note that these techniques could be applied also to Pr^{3+} doped Y_{2}SiO_{5} crystals, where currently quantum entanglement storage experiments are limited to about 50 μs^{56}. Another interesting avenue is to apply these techniques to extend the storage time of spinphoton correlations experiments^{42,51} in rareearthdoped crystals.
Methods
Expanded setup
The core of the setup consist of a closedcycle pulsed helium cryostat with a sample chamber at a typical temperature of 3.5 K. In the sample chamber, a custom copper mount holds the memory crystal, with dimensions 2.5 × 2.9 × 12.3 mm along the (D_{1}, D_{2}, b) axes^{34}, and a series of two filtering crystals with similar size. All these are ^{151}Eu^{3+}:Y_{2}SiO_{5} crystals with a doping concentration of 1000 ppm^{26}. Around the memory crystal, a copper coil generates the RF field to manipulate the atoms on their spin transitions. The coil is coupled to a resonator circuit, with resonance tuned on the 46 MHz spin transition, which produces a Rabi frequency of 120 kHz, corresponding roughly to an AC field of amplitude 12 mT. Before the resonator, the RF signal is created by an arbitrary wave generator, and amplified with a 100 W amplifier coupled to a circulator to redirect unwanted reflection from the resonator system.
The input beam is used to create the optical pulses to be stored, and it goes through the memory crystal twice with a waist diameter of 50 μm. The memory preparation beam is overlapped with the input path with a larger spot size around 700 μm, to ensure homogeneity of the preparation along the crystal length, with an incident angle of about 1^{∘}. The transfer beam is overlapped in a similar way, with a beam diameter at the waist of 250 μm.
The AFC structure is prepared with a 3 MHz total spectral width, which however is not fully exploited since the 1.5 MHz bandwidth of the HSH transfer pulses limits the effective memory bandwidth. The width of the transparency and absorption windows in the filter crystals were of 2 MHz, with a total optical depth of ~7.4 in the absorption window through the two crystals. The relative spectral excinction ratio should thus be \(\exp (7.4):1=1636:1\).
More information on the setup can be found in Supplementary Notes 1 and 2.
Photon counting and noise measurement
The quantities μ_{in} and p_{N} in Table 1, correspond to average number of photons at the memory output for a single storage attempt. They are obtained by summing raw detections in modes of duration T_{m} = 1.65 μs, then dividing by the number of experiment repetitions, averaging over the 6 modes, and dividing by the detector efficiency η_{D} = 57 % and cryostattodetector path transmission (typically between 17% and 20%). The histograms in Figs. 3 and 4b are obtained in the same way for a binning resolution of 200 ns.
Noise photons at the memory readout originate from excitation of ions from the \(\left{{{\rm{g}}}}\right\rangle\) state to the \(\left{{{\rm{s}}}}\right\rangle\) state during the DD sequence, due to imperfections of the RF pulses^{26,27}. These ions are then excited by the readout transfer pulse and decay on the \(\left{{{\rm{e}}}}\right\rangle\)\(\left{{{\rm{g}}}}\right\rangle\) transition trough spontaneous emission. These noise photons are thus spectrally indistinguishable from the stored photons. The spontaneous character was verified by observing that its decay constant corresponds to the radiative lifetime T_{1}. Note that without RF manipulation the readout noise is significantly reduced, i.e., the main SNR limitation in current spinwave experiments is due to RFinduced photon noise.
The noise parameter p_{N} indicates the probability of a noise photon being emitted by the memory during a time corresponding to the mode size T_{m} = 1.65 μs. For the spin storage data at T_{s} = 20 ms, visible in Fig. 3a and Table 1, it is measured independently by blocking the input beam during the full storage sequence in the same time modes in which the retrieved modes would be. A more detailed analysis permode and the exact number of repetitions for all experiments are reported respectively in Supplementary Tables 3 and 5.
To decrease the total acquisition time of the experiments at T_{s} = 50 and 100 ms, we calculated the respective p_{N} values reported in Table 1 from a ~225 μs time window centered at about 190 μs after the first retrieved mode in the same dataset. By doing so, we exploited the fact that the noise floor is due to spontaneous emission with a decay time of 1.9 ms^{19}, and can be considered uniform up to ~200 μs after readout. This is confirmed experimentally on the 20 ms datasets, as the difference in p_{N} calculated in the retrieved mode position of the data with input blocked correspond to the result of the procedure above within the Poissonian standard deviation. The histograms displaying noise in Fig. 3b, c are representative regions of the noise floor taken at about 20 μs after the retrieved modes in the same dataset.
All errors are estimated from Poissonian standard deviations on the raw detector counts and propagated considering the memory temporal modes as independent.
Data availability
The data sets generated and/or analyzed during the current study are available from the corresponding authors upon reasonable request.
References
Briegel, H.J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Duan, L.M., Lukin, M. D., Cirac, J. I. & Zoller, P. Longdistance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).
Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).
Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).
Cabrillo, C., Cirac, J. I., GarcíaFernández, P. & Zoller, P. Creation of entangled states of distant atoms by interference. Phys. Rev. A 59, 1025–1033 (1999).
Nunn, J. et al. Multimode memories in atomic ensembles. Phys. Rev. Lett. 101, 260502–4 (2008).
Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).
Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feedforward control. Phys. Rev. Lett. 113, 053603 (2014).
Laplane, C. et al. Multiplexed ondemand storage of polarization qubits in a crystal. New J. Phys. 18, 013006 (2015).
Parniak, M. et al. Wavevector multiplexed atomic quantum memory via spatiallyresolved singlephoton detection. Nat. Commun. 8, 1–9 (2017).
Yang, T.S. et al. Multiplexed storage and realtime manipulation based on a multiple degreeoffreedom quantum memory. Nat. Commun. 9, 1–8 (2018).
Heller, L., Farrera, P., Heinze, G. & de Riedmatten, H. Coldatom temporally multiplexed quantum memory with cavityenhanced noise suppression. Phys. Rev. Lett. 124, 210504 (2020).
Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).
Usmani, I., Afzelius, M., de Riedmatten, H. & Gisin, N. Mapping multiple photonic qubits into and out of one solidstate atomic ensemble. Nat. Commun. 1, 12 (2010).
Seri, A. et al. Quantum correlations between single telecom photons and a multimode ondemand solidstate quantum memory. Phys. Rev. X 7, 021028 (2017).
Seri, A. et al. Quantum storage of frequencymultiplexed heralded single photons. Phys. Rev. Lett. 123, 080502 (2019).
Sabooni, M., Li, Q., Kröll, S. & Rippe, L. Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110, 133604 (2013).
Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).
Equall, R. W., Sun, Y., Cone, R. L. & Macfarlane, R. M. Ultraslow optical dephasing in Eu^{3+}:Y_{2} SiO_{5}. Phys. Rev. Lett. 72, 2179 (1994).
Equall, R. W., Cone, R. L. & Macfarlane, R. M. Homogeneous broadening and hyperfine structure of optical transitions in Pr^{3+}:Y_{2} SiO_{5}. Phys. Rev. B 52, 3963 (1995).
Heinze, G., Hubrich, C. & Halfmann, T. Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute. Phys. Rev. Lett. 111, 033601 (2013).
Zhong, M. et al. Optically addressable nuclear spins in a solid with a sixhour coherence time. Nature 517, 177–180 (2015).
Businger, M. et al. Optical spinwave storage in a solidstate hybridized electronnuclear spin ensemble. Phys. Rev. Lett. 124, 053606 (2020).
Holzäpfel, A. et al. Optical storage for 0.53 s in a solidstate atomic frequency comb memory using dynamical decoupling. New J. Phys. 22, 063009 (2020).
Wu, Y., Liu, J. & Simon, C. Nearterm performance of quantum repeaters with imperfect ensemblebased quantum memories. Phys. Rev. A 101, 042301 (2020).
Jobez, P. et al. Coherent spin control at the quantum level in an ensemblebased optical memory. Phys. Rev. Lett. 114, 230502 (2015).
Zambrini Cruzeiro, E., Fröwis, F., Timoney, N. & Afzelius, M. Noise in optical quantum memories based on dynamical decoupling of spin states. J. Mod. Opt. 63, 2101–2113 (2016).
Fraval, E., Sellars, M. J. & Longdell, J. J. Method of extending hyperfine coherence times in Pr^{3+}:Y_{2} SiO_{5}. Phys. Rev. Lett. 92, 077601–4 (2004).
Etesse, J., Holzäpfel, A., Ortu, A. & Afzelius, M. Optical and spin manipulation of nonkramers rareearth ions in a weak magnetic field for quantum memory applications. Phys. Rev. A 103, 022618 (2021).
Könz, F. et al. Temperature and concentration dependence of optical dephasing, spectralhole lifetime, and anisotropic absorption in Eu^{3+}:Y_{2} SiO_{5}. Phys. Rev. B 68, 085109 (2003).
Afzelius, M. et al. Demonstration of atomic frequency comb memory for light with spinwave storage. Phys. Rev. Lett. 104, 040503 (2010).
Jobez, P. et al. Towards highly multimode optical quantum memory for quantum repeaters. Phys. Rev. A 93, 032327 (2016).
Jobez, P. et al. Cavityenhanced storage in an optical spinwave memory. New J. Phys. 16, 083005 (2014).
Li, C., Wyon, C. & Moncorge, R. Spectroscopic properties and fluorescence dynamics of Er^{3+} and Yb^{3+} in Y_{2} SiO_{5}. IEEE J. Quantum Electron. 28, 1209–1221 (1992).
Alexander, A. L., Longdell, J. J. & Sellars, M. J. Measurement of the groundstate hyperfine coherence time of ^{151} Eu^{3+}:Y_{2} SiO_{5}. J. Opt. Soc. Am. B 24, 2479–2482 (2007).
Arcangeli, A., Lovrić, M., Tumino, B., Ferrier, A. & Goldner, P. Spectroscopy and coherence lifetime extension of hyperfine transitions in ^{151}Eu^{3+}: y_{2}sio_{5}. Phys. Rev. B 89, 184305 (2014).
Minář, J., Sangouard, N., Afzelius, M., de Riedmatten, H. & Gisin, N. Spinwave storage using chirped control fields in atomic frequency combbased quantum memory. Phys. Rev. A 82, 042309 (2010).
Tian, M., Chang, T., Merkel, K. D. & Randall, W. Reconfiguration of spectral absorption features using a frequencychirped laser pulse. Appl. Opt. 50, 6548–6554 (2011).
Viola, L. & Lloyd, S. Dynamical suppression of decoherence in twostate quantum systems. Phys. Rev. A 58, 2733–2744 (1998).
de Lange, G., Wang, Z. H., Ristè, D., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solidstate spin from a spin bath. Science 330, 60–63 (2010).
Medford, J. et al. Scaling of dynamical decoupling for spin qubits. Phys. Rev. Lett. 108, 086802 (2012).
Cyril, L., Jobez, P., Etesse, J., Gisin, N. & Afzelius, M. Multimode and longlived quantum correlations between photons and spins in a crystal. Phys. Rev. Lett. 118, 210501 (2017).
Mims, W. B. Phase memory in electron spin echoes, lattice relaxation effects in CaWO_{4}:Er, Ce, Mn. Phys. Rev. 168, 370 (1968).
Klauder, J. R. & Anderson, P. W. Spectral diffusion decay in spin resonance experiments. Phys. Rev. 125, 912–932 (1962).
Thorpe, M. J., Leibrandt, D. R. & Rosenband, T. Shifts of optical frequency references based on spectralhole burning in Eu^{3+}:Y_{2} SiO_{5}. New J. of Phys. 15, 033006 (2013).
Gündoğan, M., Ledingham, P. M., Kutluer, K., Mazzera, M. & de Riedmatten, H. Solid state spinwave quantum memory for timebin qubits. Phys. Rev. Lett. 114, 230501 (2015).
Staudt, M. et al. Fidelity of an optical memory based on stimulated photon echoes. Phys. Rev. Lett. 98, 113601–4 (2007).
Gündoğan, M., Mazzera, M., Ledingham, P. M., Cristiani, M. & de Riedmatten, H. Coherent storage of temporally multimode light using a spinwave atomic frequency comb memory. New J. Phys. 15, 045012 (2013).
Ma, Y.Z. et al. Elimination of noise in optically rephased photon echoes. Nat. Commun. 12, 4378 (2021).
Jobez, P. Stockage Multimode au Niveau Quantique Pendant une Milliseconde, Ph.D. thesis, https://nbnresolving.org/urn:nbn:ch:unige836717 (2015).
Kutluer, K. et al. Time entanglement between a photon and a spin wave in a multimode solidstate quantum memory. Phys. Rev. Lett. 123, 030501 (2019).
Schmied, R. Quantum state tomography of a single qubit: comparison of methods. J. Mod. Opt. 63, 1744–1758 (2016).
Specht, H. P. et al. A singleatom quantum memory. Nature 473, 190–193 (2011).
Massar, S. & Popescu, S. Optimal extraction of information from finite quantum ensembles. Phys. Rev. Lett. 74, 1259–1263 (1995).
LagoRivera, D., Grandi, S., Rakonjac, J. V., Seri, A. & de Riedmatten, H. Telecomheralded entanglement between multimode solidstate quantum memories. Nature 594, 37–40 (2021).
Rakonjac, J. V. et al. Entanglement between a telecom photon and an ondemand multimode solidstate quantum memory. Phys. Rev. Lett. 127, 210502 (2021).
Acknowledgements
We acknowledge funding from the Swiss FNS NCCR program Quantum Science Technology (QSIT), European Union Horizon 2020 research and innovation program within the Flagship on Quantum Technologies through GA 820445 (QIA) and under the Marie SkłodowskaCurie program through GA 675662 (QCALL). We also thank Philippe Goldner and Alban Ferrier from Chimie ParisTech for fruitful discussions and for providing the crystals.
Author information
Authors and Affiliations
Contributions
A.O., J.E., and M.A. conceived and planned the experiments, which were mainly carried out by A.O. and A.H. A.O. set up most of the experiment, with contributions from J.E., and carried out the quantum memory characterization. A.H. implemented the qubit analysis method, with contributions from A.O. The manuscript was mainly written by A.O. and M.A., with contributions from all the authors. M.A. provided overall oversight of the project.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Ortu, A., Holzäpfel, A., Etesse, J. et al. Storage of photonic timebin qubits for up to 20 ms in a rareearth doped crystal. npj Quantum Inf 8, 29 (2022). https://doi.org/10.1038/s41534022005413
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41534022005413
This article is cited by

Coherent opticalmicrowave interface for manipulation of lowfield electronic clock transitions in 171Yb3+:Y2SiO5
npj Quantum Information (2023)

Long distance multiplexed quantum teleportation from a telecom photon to a solidstate qubit
Nature Communications (2023)

Hyperfine effects and electron spin relaxation of 51V4+ doped into scandium orthosilicate Sc228SiO5: CW and pulsed Xband electron spin resonance studies
Applied Magnetic Resonance (2023)

Rareearth quantum memories: The experimental status quo
Frontiers of Physics (2023)

Nonclassical correlations over 1250 modes between telecom photons and 979nm photons stored in 171Yb3+:Y2SiO5
Nature Communications (2022)