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Circuit quantization with time-dependent magnetic fields for
realistic geometries
R.-P. Riwar 1,2✉ and D. P. DiVincenzo 1,2,3

Quantum circuit theory has become a powerful and indispensable tool to predict the dynamics of superconducting circuits.
Surprisingly however, the question of how to properly account for a time-dependent driving via external magnetic fields has hardly
been addressed so far. Here, we derive a general recipe to construct a low-energy Hamiltonian, taking as input only the circuit
geometry and the solution of the external magnetic fields. We find that the interplay of geometry and field distribution leads to a
much richer circuit dynamics than commonly anticipated, already in devices as simple as the superconducting quantum
interference device (SQUID). These dynamics can be captured by assigning negative, time-dependent or even momentarily singular
capacitances to the Josephson junctions. Negative capacitances give rise to a strong enhancement of the qubit relaxation rates,
while time-dependent capacitances lead to a finite Berry phase.
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INTRODUCTION
Superconducting circuits have proved to be a successful design kit
for the creation of new quantum systems, especially for quantum
information processing. Artificial atoms, and crafted light-matter
couplings, have emulated and extended nature, using the new
paradigm of circuit quantum electrodynamics (cQED)1. This
paradigm has now produced quantum-computing devices of
unrivalled complexity (See https://www.ibm.com/blogs/research/
2020/09/ibm-quantum-roadmap/). cQED has been underpinned
by a very handy scheme for turning the description of an electric
circuit into a quantum Hamiltonian2–6; taking a lumped-element
point of view, one identifies capacitors, inductors, and Josephson
junctions, each of which contributes its own piece to this
Hamiltonian. It has always been understood that, as successors
of the superconducting quantum interference device (SQUID),
these circuits have a very effective means for in-place control of
their quantum characteristics, via the setting of threading
magnetic fields.
However, it was very recently remarked by You, Sauls, and

Koch7 that some important aspects of the Hamiltonian
description of cQED have not yet been appropriately discussed,
when including time-dependent (electro)magnetic fields.
Inspired by their work, which was based on a purely effective
lumped-element approach for the circuit, we rederive the
problem of time-dependently driven quantum circuits from
scratch, explicitly considering the electromagnetic field pro-
blem in continuous space. Our work is therefore, in spirit,
reminiscent of efforts to extend the single-mode description of
the circuit environment8–12 to more realistic models with
continuous degrees of freedom13,14. Importantly, we find that
while the results from ref. 7 represent an important first step in
the right direction, their treatment is still incomplete, and
conclude that already circuits as simple as a SQUID exhibit a
much richer dynamics than commonly anticipated.

The issue at hand can be discussed by beginning with the
gauge transformations of standard electrodynamics, where the
electric and magnetic force fields are expressed by the scalar and
vector potentials

E ¼ �∇V � _A (1)

B ¼ ∇ ´A : (2)

As is well-known, a transformation of the potentials, V ;A ! V 0;A0,
is a gauge transformation, if it leaves E, B invariant.
Ultimately, in any Hamiltonian description of a quantum system,

it is the gauge-dependent scalar and vector potentials which
enter. Thus, there is an entire class of Hamiltonians describing one
and the same physical system. In this context, gauge transforma-
tions of the potentials can be equivalently expressed as unitary
transformations applied to the Hamiltonian. Crucially, for a time-
dependent system, the unitary is likewise time-dependent in
general, such that it has to show up as an additional term in the
Schrödinger equation, H→ UHU†− iU∂tU† 15.
Surprisingly, for time-dependent (electro)magnetic fields, this

connection between gauge transformations and time-dependent
changes of basis, has not yet been correctly taken into account in
the existing cQED literature. In fact, prior to ref. 7, the community
seems to have disregarded the problem altogether, ignoring the
importance of the− iU∂tU† term. You et al.7 first noticed this
mistake, and mended it in the limited setting of a lumped element
point of view of the circuit, wherein a well-defined, constant,
capacitance is assigned to each Josephson junction. We on the
other hand find that, while a mapping from the continuous circuit
model onto a lumped-element circuit is not per se problematic, it
comes in general at the expense of having to assign negative or
even time-dependent capacitances to each Josephson junction,
depending on the circuit geometry and magnetic field distribution.
We note that the negative-capacitance effect is of purely

dynamical origin, and has nothing to do with any material
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properties such as, e.g., negative capacitances in ferroelectric
materials16–21. In particular, the total capacitance of an island (sum
of junction and other capacitances) remains constant and positive.
Nonetheless, the picture of negative and time-dependent
capacitances is useful to understand a variety of important
consequences. When applying our results to the example of a 1D
SQUID-circuit geometry, we find that negative capacitances result
in a strong enhancement of qubit relaxation rates, compared to
what the standard, lumped-element cQED approach predicts.
What is more, time-dependent capacitances lead to a completely
new understanding of the dynamics of the SQUID in the presence
of a time-dependent flux. Contrary to popular opinion, it is actually
not a system with a single time-dependent parameter, but with
two. Consequently, a time-dependent flux control of a SQUID can
yield a finite Berry phase in the adiabatic regime, the measure-
ment of which is experimentally achievable22,23.
Moreover, we take up an interesting notion of a particular

gauge choice proposed by ref. 7: the “irrotational” gauge. In the
case of7, this gauge had the property, that terms linear in the
circuit charges disappear in the Hamiltonian. In our treatment, we
are able to show that the notion of such a gauge can be strongly
generalized, and corresponds to the gauge choice, wherein the
entirety of the electric field E _B induced by the time-varying
magnetic field B is represented by the vector potential, E _B ¼ � _Airr.
In particular, we find that this irrotational gauge for Airr is the
Coulomb gauge, supplemented with an additional boundary
condition at the (super)conductor surfaces. The part of Airr parallel
to the surfaces connects to the London gauge (and thus to the
Meissner screening currents), whereas a generally dominant
perpendicular part relates to surface charges generated by the
time-varying magnetic field. With this gauge we are able to
formulate a precise set of steps in order to arrive at the correct
time-dependent Hamiltonian, starting from a general device
geometry and a given time dependent magnetic field as the input.
In addition, our proposed gauge allows for a considerable

reduction of the computational effort in experimentally relevant
device geometries. Namely, due to the widespread use of the
Niemeyer-Dolan technique24,25, Josephson junctions are often
incorporated in thin, long filamentary structures. The conditions of
the irrotational gauge allow us to show that if such junction
filaments are sufficiently thin, they can be eliminated from the
device geometry altogether when we solve for Airr.
For a general circuit model, finding Airr in practice requires

finding the low-frequency solution of E _Bðr; tÞ as a response to
B(r, t). This is essentially equivalent to a first order expansion in the
finite-frequency circuit impedance calculation Feynman presented
in his 23rd lecture26, and is also known as the quasi-magnetostatic
approximation27. As a result, we expect that state-of-the-art
numerical field solvers for capacitances and inductances (such as
FastCapTM and FastHenryTM, built on the fundamental methodo-
logical insights of Ruehli28,29), often deployed for realistic circuit
geometries, would require an extension with corrections due to
finite driving frequencies.
To summarize, we expect that a significant portion of existing

theory work on circuits driven via time-dependent magnetic fields
may have to be reevaluated. In particular, we expect that our results
are relevant for the time-dependent control of topological circuits.
Namely, to guarantee for a certain topological system in a given
symmetry class30,31 to remain in said class under the influence of an
external drive imposes in general the same symmetry restrictions
onto the extra term− iU∂tU†. In this regard, we believe that our
work could for instance be of importance to reevaluate the
topological protection of time-dependent flux-driving of Majorana-
based circuits32 for realistic device geometries.

RESULTS
The state of the art
For visualization purposes, we refer to the example of a SQUID
circuit with a generic geometry (Fig. 1(a)), driven with a time-
dependent magnetic field B r; tð Þ. We comment at the end of the
“Results” section, how to generalize to arbitrary circuits. We
assume that the lumps making up the circuit are perfect (super)
conductors, expelling both electric and magnetic fields from their
interior. In the SQUID, we refer to one of the lumps as the island i
and the other one as the ground g (setting its voltage to zero).
They have surfaces Sl , with vector nl normal to the surface. The
index l= i, g enumerates the lumps. Only the surface of the island
has to form a closed manifold, the ground surface can be (and
usually is) extended. Two Josephson junctions connecting the two
lumps enclose a finite area A, which is pierced by the flux

Φ tð Þ ¼
Z Z

A
d2x nA � B r; tð Þ; (3)

where A will lie in the x; yð Þ-plane in our examples later.
Circuits as in Fig. 1(a) are usually right away transformed into a

lumped element circuit as shown in Fig. 1(b), where to each
junction with Josephson energy EJk one assigns a capacitance Ck.
Any external flux Φ(t) enters the Hamiltonian as a phase ϕ tð Þ ¼

2πΦ tð Þ=Φ0 where Φ0 ¼ h= 2eð Þ is the flux quantum. For a time-
independent flux, _ϕ ¼ 0, the dynamics of the SQUID circuit is
described by a Hamiltonian of the form

bHα ¼ 2eð Þ2
2Ctot

bn2 � EJ1 cos bφþ αϕð Þ � EJ2 cos bφþ α� 1½ �ϕð Þ; (4)

where the island charge and phase operators satisfy the
commutation relations bφ;bn½ � ¼ i, and the total capacitance of
the island is Ctot= ∑k=1,2Ck. The capacitive energy term, related tobn, can be understood as the kinetic energy of the circuit, while the
Josephson energy term, depending on φ, can be regarded as the
potential energy. Importantly, in the absence of time-dependent
driving, the constant, real parameter α can be chosen arbitrarily: all

Fig. 1 Some of the main accomplishments of this work. a We
develop a recipe to derive the correct time-dependent Hamiltonian
for circuits with a general geometry, taking as input the time-
dependent magnetic field B tð Þ (red), from which the time-
dependent electric field E tð Þ (blue) is derived. b We find that in
this general case, it is not always possible to assign well-behaved
capacitances to the two Josephson junction of a SQUID. While the
total capacitance Ctot ¼ Ceff;1 tð Þ þ Ceff;2 tð Þ is guaranteed to be
constant in time and positive definite, if we force a mapping to a
model with effective junction capacitances Ceff;j tð Þ, these may be
negative, time-dependent or even momentarily singular.
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Hamiltonians Hα will give rise to the same predictions irrespective
of α, making α a gauge degree of freedom, expressed by the

unitary transformation bHα ¼ bUα
bH0bUy

α, with bUα ¼ eiαϕbn.
When including a time-dependent driving of B, resulting in a

time-dependent flux ϕ, it seems tempting to simply take the
Hamiltonian (4) for a given α, and insert a time-dependent flux
ϕ ! ϕ tð Þ. However, as discussed in ref. 7, this is generally not
correct. For a time-dependent ϕ tð Þ, Hamiltonians (4) with different α
give rise to a physically distinct time evolution, simply because the
unitary transformation bUα is now time dependent, and therefore
needs to show up in the Schrödinger equation through the extra
term�ibUα∂tbUy

α ¼ �α _ϕbn. Hence, to correctly predict the dynamics of
the time-dependent problem, when replacing ϕ→ϕ(t), α has to be
fixed. The authors of ref. 7 deploy the Lagrangian method including
time-dependent contraints, and show that for the SQUID, the time-
dependent version of the Hamiltonian Eq. (4) is correct when

α ¼ C2

Ctot
: (5)

The authors refer to this as the irrotational gauge. Thus,7 argues that
a Hamiltonian of the form of Eq. (4) can only be found for the time-
dependent problem when fixing α through the knowledge of the
capacitances of the Josephson junctions Ck. Let us insist, that fixing
α does by no means represent a breaking of gauge invariance.
Within the above described framework, one may still choose to
have any arbitrary α in the potential energy term in the
Hamiltonian, Eq. (4). However, for any α other than the one given
in Eq. (5), the work of You et al. shows that there will appear linear
terms � _ϕbn in the Hamiltonian, due to the time-dependent basis
transformation.
Crucially, while we deem the procedure proposed in ref. 7 to be

correct when based on the assumptions stated therein, it comes
with one particular assumption which we want to put under
further scrutiny: the hypothesis that one can assign a definite,
constant, positive capacitance Ck to each junction.
In the following, we will consider the problem from a pure

electrodynamic point of view, with general, realistic device
geometries living in continuous 3D space. Importantly, we will
show that indeed, in general this critical hypothesis must be relaxed.
In particular, we find that a mapping of the realistic circuit Fig. 1(a) to
the lumped element circuit in Fig. 1(b) is only possible if one accepts
potentially negative, time-dependent, or even momentarily singular
capacitances Ck tð Þ, which depend not only on the circuit geometry,
but also on the spatial distribution of the magnetic field. It is only
guaranteed that the total capacitance Ctot ¼

P
kCk tð Þ remains

constant and positive. Instead of negative or time-dependent
capacitances, one may characterize the Hamiltonian for realistic
circuits alternatively via a generalized definition of α (Eqs. (4), and
(5)), without explicitly referring to any junction capacitances.
According to the treatment by You et al., we see that α has the
following properties. It is constant in time, and bounded from above
and below, as 0 ≤ α ≤ 1. In our general treatment, both of these
traits can be broken. α being either < 0 or > 1 can be interpreted as
negative capacitances, whereas a time-dependent α expresses time-
dependent capacitances. Crucially, in the second case, the
Hamiltonian is in general no longer an operator depending on
one time-dependent parameter, but on two. This gives rise to a
completely new understanding of the dynamics of a SQUID driven
by a time-dependent flux, cf. the “Discussion” section.
The demonstration of the above facts will involve the following

two steps. We first lay out the precise conditions under which the
induced electric field E r; tð Þ can be uniquely determined based on
a certain circuit geometry as well as a given magnetic field B r; tð Þ.
Then, we discuss how we can, given E(r, t), arrive at the scalar and
vector potentials with the gauge fixed according to a general-
ization of the irrotational condition of7.

Solutions of time-dependent electromagnetic fields
Let us assume that a specific magnetic field texture B r; tð Þ is
provided by some external source. Because of the Meissner
effect, the magnetic field is expelled from the inside of the
conductors, on the length scale given by the London penetration
depth λ. In order to figure out the resulting electric field E, it is
useful to separate the discussion for the field inside the
conductors and outside.
First, let us discuss the interior of the conductors. The Meissner

effect involves a screening supercurrent, given by Ampère’s law
j=∇ × B/μ0. For a time-varying magnetic field, there immediately
emerges the resulting electric field due to the first London
equation, E= μ0λ

2∂tj.
Let us say a couple of words about the nature of this electric

field. Due to current conservation∇ ⋅ j= 0, so the current, and
therefore the electric field inside, must be fully tangential to the
surface, nl ⋅ E= 0. Just like the magnetic field, this tangential
electric field penetrates the superconductor to a distance λ inside
the surface, as determined by the ac Meissner screening currents.
This insight is of importance for the now following discussion of
the exterior electric fields.
Namely, for said exterior, the resulting electric field E r; tð Þ is

determined by

∇ ´ E ¼ � _B; (6)

∇ � E ¼ 0 : (7)

As mentioned in the introduction, this is equivalent to a first order
expansion of the field solutions discussed by Feynman26. More-
over, the electric field at the conductor surfaces has to satisfy
the general boundary condition33, nl × (E1− E2)= 0, where E1,2 are
the electric fields at the interface, when approaching it from the
outside or from the inside, respectively. Here, this amounts to

nl ´ Ejx2Sl
¼ λ2nl ´ ∇ ´ _B

� �jx2Sl
; (8)

where E on the left-hand side is the solution, when approaching
the surface Sl from the exterior. The above condition essentially
requires the part of the electric field tangential to the conductor
surfaces to be continuous, whereas in the exterior, there is an
additional component of the electric field, which is allowed to be
normal to the surface (henceforth referred to as longitudinal),
which abruptly (discontinuously) goes to zero in the interior. Thus,
while the tangential part is associated to screening currents, the
longitudinal part gives rise to surface charges, localized on the
Thomas-Fermi screening length scale, which can be essentially
taken to be zero. This approximation, valid for driving frequencies
below the plasma frequency, is standard in the literature34–36. The
solution for E is then fixed and unique if we take the island to have
a well-defined total charge,I I

Si

d2x σi ¼ Q (9)

which is determined through the integral over the above
mentioned surface charge

σi ¼ ϵni � Ejx2Si
: (10)

From the uniqueness of E, it follows that one can uniquely
decompose the electric field into two components

E ¼ EQ þ E _B (11)

where EQ satisfies Eqs. (6)–(9) for _B ¼ 0, and E _B satisfies Eqs. (6)–(9)
for Q= 0. Due to linearity, the total electric field is just the sum of
these two contributions. Note that even for Q= 0, the time-
varying magnetic field in general induces a nonzero surface
charge density, captured by the longitudinal part of E _B . However,
in order to comply with Q= 0, the integral of the surface charges
associated to E _B has to vanish for each individual island.
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The two fields EQ and E _B have the following properties. Due to a
simple scaling argument, we know immediately that EQ must be
linear in Q,

EQ ¼ Qe (12)

where the vector field e, with units of Newtons per Coulomb
squared, solves the above equations for _B ¼ 0 and Q= 1.
As for E _B, it can in the most general case only be formally

represented as a functional

E _B ¼ F _B
� �

: (13)

However, the functional has certain general properties. Firstly, it
only contains integrals over spatial compontents, whereas the
time-dependence is parametrical (because the problem is time
local). Therefore, as long as the circuit geometry stays stationary,
∂t F B½ �ð Þ ¼ F _B

� �
. Secondly, due to the linearity of the differential

equations, the functional is likewise linear, F aB½ � ¼ aF B½ �.
Finally, we note that it is possible to considerably simplify the

boundary condition, Eq. (8), if one considers geometries, where
the dominant length scales are much larger than the London
penetration depth. Then, one is entitled to set λ→ 0, leading to,

nl ´ Ejx2Sl
¼ 0: (14)

In some sense, this corresponds to rescaling the device geometry
to length scales where the London penetration depth is negligibly
small. We note that there are model systems with an artificially
high degree of radial symmetry (such as, e.g., spherical conductors
in a uniform magnetic field, see ref. 37) where the longitudinal
electric fields must vanish, such that the simplification in Eq. (14)
may fail, even if λ is small. For generic device geometries however,
the above approximation can be expected to work.
Importantly, there is another highly relevant limit for super-

conducting circuits made of thin films, with a film thickness
comparable to λ (for measurements of λ for various materials, as a
function of film thickness, disorder, and other parameters, see38–42).
Here, the tangential E field may in general have to be considered.
However, it is worth noting that there is a complementary limit of a
very large λ compared to the island dimensions, which allows
likewise for a discarding of the tangential electric field. Now, the
small cut-off length scale is the island size instead of λ. Later, in the
“Discussion” section, we will show in particular the example of a
parallel plate capacitor, where the validity of Eq. (14) can be
explicitly shown, when the capacitor dimensions (in particular the
plate separation) are larger than λ, or conversely when the island
thickness is much smaller than λ.

Irrotational gauge
In order to formulate a suitable Lagrangian, and then a
Hamiltonian, we have to find the scalar and vector potentials, V
and A, which generate the force fields. Starting from the electric
field determined along the lines above, we have to find a solution
for

E ¼ �∇V � _A: (15)

To this equation, there is of course no unique solution - a suitable
gauge has to be chosen. In the same spirit as ref. 7, we here want
to formulate an irrotational gauge for this generic problem based
on B and E.
As stated above (when summarizing the state of the art) the

unique trait of the irrotational gauge is that there occur no linear
terms � bn in the Hamiltonian, but rather only quadratic terms
� bn2. This means that on the level of the Lagrangian, the kinetic
energy associated with the voltage difference between ground
and island should likewise be purely quadratic in V. This will be

guaranteed by defining the voltage in our irrotational gauge as

V irr ¼
Z
Lg!i

dl � EQ; (16)

where Lg!i denotes an arbitrary path from a point inside g to a
point inside i. Since EQ is curl-free, the voltage is thus single-valued
as it should be. Moreover, due to EQ= 0 inside the conductors (the
ac field penetrating the superconductors on the length scale λ is
fully included in E _B), for this gauge choice the voltage assumes a
single, constant value within each conductor volume, such that
the voltage difference between ground and island is well defined,
independent of the starting and end points of Lg!i . In principle,
we would be free to choose a gauge where V is not constant
within a single bulk of superconductor. This would however
artificially and unnecessarily complicate the problem, as the
corresponding superconductor could no longer be described by a
single phase. Because of the linear dependence of EQ on Q, see Eq.
(12), the irrotational voltage is related to the island charge Q as

Q ¼ CtotV irr; (17)

where the total capacitance between island and ground is defined
as

Ctot ¼
1R

Lg!i
dl � e : (18)

Importantly, we see now that for this gauge choice, the kinetic
energy (defined as the time integral of the electric power43, see
also the “Methods” section) results in a purely quadratic term in V,

T irr �
Z Virr

0
dV 0Q ¼ Ctot

2
V irr
� �2

: (19)

With this choice, the remaining electric field E _B must be
captured by the vector potential, which we can now uniquely
define as

Airr ¼ �F B½ �; (20)

cf. Eq. (13) and subsequent discussion. When applied to the
interior, Eq. (20) states that the vector potential in the interior
corresponds to the London gauge, A=− μ0λ

2j, whereas in the
exterior, it has to satisfy ∇ × Airr= B, with the additional
constraints ∇ ⋅ Airr= 0 (Coulomb gauge), and

nl ´Airrjx2Sl
¼ �λ2nl ´ ∇ ´Bð Þjx2Sl

: (21)

In addition, Eq. (20) implies that the integral of ni � Airr
��
x2Si

over
the island surface must vanish, in analogy to the surface charge
discussion for E _B . All of these properties are obviously inherited
from E _B, and therefore render the solution for Airr unique.
Crucially, Eq. (21) implies that the tangential component of the
vector potential in the exterior must equal the interior vector
potential at the surface, when the latter is computed in the
London gauge. The longitudinal part on the other hand is
discontinuous, just like E _B. In essence, one might consider our
result as a prescription to continue the London gauge to the
exterior of the superconductor.
Let us point out that in analogy to the discussion of E, we may

likewise simplify the computation of A by setting λ→ 0, under the
assumption that the relevant length scales of the device geometry
are larger than the London penetration depth. This leads to the
simplified condition

nl ´Airrjx2Sl
¼ 0; (22)

following directly from Eq. (14). Consequently, when the
approximation λ→ 0 is justified, the irrotational gauge loses its
connection to the standard London gauge because the interior
vector potential becomes irrelevant.
At this point, we are able to fully appreciate how the

generalized irrotational gauge Airr as defined above, can be
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related to the connection between electromagnetic force fields,
and the corresponding potentials, Eqs. (1) and (2), as described in
the introduction. Namely, the generalized irrotational gauge
corresponds to the gauge, where the part of the electric field
induced by the time-dependent magnetic field, E _B, is entirely
encoded as � _Airr. Consequently, the absence of linear terms in bn
in the Hamiltonian translates to∇ V= 0 in Eq. (1).
The phases that appear inside the potential energy in this

irrotational gauge at the Josephson junction k are then given
through the line integrals

ϕk;irr tð Þ ¼ 2π
Φ0

Z
LJk

dl � Airr ; (23)

where we take LJk to be the shortest path across junction k. Note
that since Airr is by construction not curl-free, the resulting phase
would in principle depend on the path, such that this choice
needs to be justified. Large deviations from this shortest path are
not considered because they are extremely unlikely, as can be
seen, e.g., by means of standard path integral considerations.
Small deviations from the shortest path (where the Cooper pairs
still take quantum paths within the vicinity of the junction) leave
the integral in Eq. (23) approximately invariant provided that the
magnetic flux penetrating the junction is much smaller than the
flux quantum. If fashioned for quantum hardware purposes,
Josephson junctions are likely to satisfy this constraint (to avoid,
e.g., Fraunhofer diffraction effects44).
For a SQUID with two Josephson junctions we thus find the

Lagrangian in the irrotational gauge, with V irr ¼ 2e _φ,

Lirr ¼
Ctot
2

_φ

2e

� �2

þ EJ1 cos φþ ϕ1;irr

	 

þ EJ2 cos φþ ϕ2;irr

	 

;

(24)

which represents the main result of this work. Indeed, from Eq.
(24), we find the charge as the canonically conjugate momentum
Q ¼ 2en ¼ 2e∂ _φLirr ¼ Ctot _φ=2e as defined in Eq. (17). By means
of a standard Legendre transformation, and the quantization of
charge and phase, φ; n ! bφ;bn with ½bφ;bn� ¼ i, we arrive at the
sought-after Hamiltonian bHirrðtÞ in the irrotational gauge:

bHirr ¼ 2eð Þ2
2Ctot

bn2 � EJ1 cos bφþ ϕ1;irr

	 

� EJ2 cos bφþ ϕ2;irr

	 

:

(25)

Let us make two important remarks. First, here we propose a
procedure to obtain the correct Lagrangian which strongly
generalizes the work of ref. 7. Reference7 invokes initially separate
degrees of freedom for each junction, taking separate capacitances
for each junction as the input. These degrees of freedom are then
reduced by means of appropriate constraints in the Lagrangian.
While this is a valid strategy under the hypothesis that the
capacitances of the individual junctions are known and well-
defined, our approach generalizes their effort beyond such simple
geometries, and actually provides a procedure which not only gives
the correct Lagrangian for specified junction capacitances, but in
fact can be taken to provide also the correct junction capacitances
themselves, by matching the solutions for ϕk;irr tð Þ with the
relations involving Ck, see Eqs. (4) and (5). As a matter of fact, this
general approach will lead to anomalous capacitances (negative or
even time-dependent) already for quite standard circuit and
magnetic field models, as we will discuss in the following.
Second, we note that the procedure is readily generalizable to

arbitrary circuits. Considering a single charge island instead of two
islands simply results in the kinetic (charging) energy term
becoming redundant, while Eq. (23) remains applicable. Further-
more, one may also include many islands carrying island charges
Qi by expressing the electric field EQ in Eq. (12) as a linear
superposition, EQ= ∑iQiei. With this extension, the formulation of

the irrotational gauge for the scalar and vector potentials remains
the same; in particular, for the latter, that would be the Coulomb
gauge plus the boundary condition, Eq. (21). For an arbitrary
number of Josephson junctions, each junction k adds a contribu-
tion �EJk cosðφk þ ϕk;irrÞ to the potential energy, with _φk ¼ 2eVk

where Vk is the voltage difference between the islands connected
by junction k, and ϕk,irr still defined as in Eq. (23).
We note one nontrivial extension: in general, there could be an

additional capacitively coupled gate with a voltage Vg, inducing
offset gate charges ng= CgVg, bn ! bnþ ng. In this case, the
Hamiltonian would of course no longer be purely quadratic in bn.
This however necessitates only a minor extension of the above
prescription for finding the irrotational gauge for A. Namely, any
gate gives rise to an additional source term in the electromagnetic
problem, E ¼ EQ þ E _B þ EVg , where the new field EVg is linearly
independent of the others. Hence, in order to determine Airr we
simply have to set all gate voltages to zero, Vg= 0 (that is, all gate
voltages equal to a common ground), resulting again in
E _B ¼ �F _B

� �
, allowing us to proceed as above.

Finally, let us point out that there is a straightforward general-
ization of our gauge constraints, which eventually allow for terms
linear in bn in the Hamiltonian. The physical charge Q in Eq. (9) may be
supplemented with an auxiliary (and in general time-dependent)
shift Q→Q−Q0(t), leading to a new solution E0Q ¼ Q� Q0ð Þ e. Since
this shifted charge is not physical (unlike an offset charge induced by
a physical gate, as discussed above), it has to be subtracted again as
an extra term in a new E0_B, such that E0Q þ E0_B ¼ EQ þ E _B. Continuing
the subsequent steps of the above recipe with these new fields will

give rise to a new Hamiltonian bH0
irr ¼ bUbHirrbUy � ibU∂tbUy

, where the

time-dependent unitary bU depends on the integral of the shifted
charge,

R tdt0Q0. For further details, see the “Methods” section. At any
rate, such a variably-shifted irrotational gauge connects a more
general choice of decomposing the electric field (and thus finding a
different gauge for the resulting scalar and vector potentials) with a
more general class of Hamiltonians describing the same driven
circuit, see also Eqs. (13-14) of7.

Flux felt by the SQUID and neglecting junction filaments
Before moving on to applying the above procedure for concrete
models, we have two remaining general items to discuss, which
actually turn out to be related. First, our procedure provides an
answer to the long-standing question of what flux the SQUID actually
couples to when λ is large. The necessary insight to answer this
question then allows for a second important realization: that small
filaments can be neglected in obtaining field solutions.
Let us return to the result from Eqs. (23) and (25), where we see

that the flux felt by the SQUID is encoded in the highly local
quantities ϕ1,irr and ϕ2,irr. Note that for a time-independent field,
we may simply rearrange these phase contributions by a unitary
transformation, such that the only relevant phase appearing in the
Hamiltonian is the phase difference ϕ= ϕ2,irr− ϕ1,irr. For a strong
Meissner effect (i.e., λ→ 0) it is obvious that ϕ indeed corresponds
to the flux enclosed by the entire SQUID, see Eq. (3), taking the
area A to be the one enclosed by the two junctions, exluding the
superconductors. In fact, for λ→ 0, all electric fields tangential to
the superconducting surfaces are zero at the surfaces, as we
already discussed [see paragraph containing Eq. (14)]. Therefore,
for the irrotational gauge Airr we find that we can connect any two
points 1 and 2 on the same surface by any arbitrary path on the
surface L12, such that the integral

R
L12

dl � Airr vanishes indepen-
dent of the path. Thus, the local phases ϕk,irr are guaranteed to
contain full information of the flux enclosed by the two Josephson
junctions (which is a nonlocal property).
Matters are much subtler when considering circuits with

dimensions comparable to λ38–42. Here, Meissner screening
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currents play an essential role, and tangential electric fields on the
surfaces cannot be discarded. In particular, since the magnetic
field penetrates the superconductor, it is per se not at all obvious
what area A has to be inserted into Eq. (3). However, even in this
general regime, one can show that there still exist paths L12
connecting two arbitrary points on the surface for whichR
L12

dl � Airr ¼ 0. Let us refer to them as ‘zero phase paths’. The
difference from the previous case is simply that here, there are not
infinitely many arbitrary paths. All that can be guaranteed, in
general, is that at least two such paths exist, provided that the
superconducting lump has genus 0.
The existence of such paths hinges on the 2-dimensional

version45 of the Poincaré-Hopf theorem (for an instructive proof in
2 dimensions, see ref. 46). This theorem guarantees that a continuous
tangential vector field on a 2-dimensional sphere (in our case the
tangential component of Airr) must vanish somewhere. Since a
closed 2D manifold with genus 0 has Euler characteristic 2, the
theorem guarantees at least two zero points. Importantly, as long as
the 2D curl of Airr on the surface is nonzero, a zero point z can be
reached from any other point on the surface (e.g., points 1 and 2), by
choosing paths which are perpendicular to the tangential Airr, thus
yielding

R
L1z

dl � Airr ¼ 0 and
R
Lz2

dl � Airr ¼ 0, see Fig. 2. These two
paths can then be easily stitched together to yield

R
L12

dl � Airr ¼ 0.
We provide more details on these zero phase paths, and some
practical examples, in the Supplementary Material (see in particular
Supplementary Fig. 1). Consequently, the relevant area A for the
total flux felt by the SQUID is given by the sum of the area for λ→ 0
(i.e., the area excluding the superconductors), plus an additional area
ΔA including parts of the superconductor, carved out by such paths
(see Fig. 2).
The existence of such special paths on the superconducting

surfaces enables a further important conclusion. As mentioned in
the introduction, Josephson junctions connecting individual bulk
conductors often have a filamentary structure [as indicated in
Figs. 1(a) and 3(a)], because the Josephson junctions are fabricated
using the Niemeyer-Dolan technique24,25. We now show why
these filaments can be neglected, a simplification which we
expect to be very useful for reducing computational effort. The
argument requires two main assumptions. (i) The filaments’

contribution to the capacitance is negligible. Thus, their presence
will distort the solutions of the electric fields E _Bðr; tÞ and EQ(r) only
locally, whereas far away from the junctions, these fields will be
the same as if the filaments were not present. We can therefore
always expect to find a path Lfar connecting ground and island,
where the field solutions are the same as when the junction
filaments are absent, see Fig. 3(a) and (b), respectively. (ii) The
filaments likewise do not distort the tangential field lines on the
surfaces by much, such that zero phase paths remain the same
away from the filaments.
Equipped with these two assumptions, let us consider a closed

path for the circuit with the filament [Fig. 3(a)] and without it
[Fig. 3(b)]. In general, the two circuits will have different field
solutions, E _B and eE _B as well as Airr and eAirr [as per the irrotational
gauge defined in Eq. (21)]. Due to (ii), it is possible to choose a
path Lfilament in Fig. 3(b), such that the closed path covers the
exact same area as the one in Fig. 3(a), resulting in the same
enclosed flux Φ. Hence,I

LfarþLiþLgþLjunction

dl � Airr ¼
I
LfarþLiþLgþLfilament

dl � eAirr: (26)

Because of the special zero phase property of the paths Li;g, their
contribution has to vanish, leaving us withR

Lfar
dl � Airr þ

R
Ljunction

dl � Airr ¼
R
Lfar

dl � eAirr

þRLfilament
dl � eAirr:

(27)

Finally, in accordance with assumption (i), sufficiently far from the
junction the vector field solution is the same for both circuits, such
that the first term on either side of the equation cancels, resulting
inZ

Ljunction

dl � Airr ¼
Z
Lfilament

dl � eAirr; (28)

Fig. 2 Existence of zero phase paths on a generic surface of a
superconducting lump with genus 0. Take two arbitrary points 1
and 2 on the surface of the superconductor. One can then always
find a path L12 with the property

R
L12

dl � Airr ¼ 0. Such paths must
go through a zero point z in the vector field on the surface, where
Airr= 0. In the inset, a generic vector field (gray) in the neighbor-
hood of a zero z is drawn. The paths L1z and Lz2 are always
perpendicular to Airr. When projected onto 2D, the zero phase path
carves out an area ΔA of the superconductor.

Fig. 3 Illustration of the argument why junction filaments can be
neglected. In (a), the circuit is drawn including the actual junction,
whereas in (b) the junction is removed in the model. Instead, there is
a path Lfilament (in red), which takes a path equivalent to the
filament.
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which thus shows that one may neglect the actual junction
filaments for the computation of the field solutions, as long as an
equivalent path, Lfilament, is chosen. We note that the above proof
can be extended to an arbitrary number of junctions, as long as (i)
and (ii) remain valid. The observation described in Eq. (28) can in
some sense be interpreted as a ‘lightning rod effect’ of the
filament. Namely, if it holds, it means that the vector potential at
the junction is increased by a factor Lfilament/d≫ 1 compared to
the solution in the absence of the filament (where d is the junction
thickness and Lfilament is the length of the filament path Lfilament).

Explicit solution for irrotational vector potential
We now apply the above general scheme to a concrete SQUID
geometry that allows for simple analytic solutions of the Maxwell
equations. We will show that for this concrete case, a mapping
from the general circuit to a lumped element model, see Fig. 1,
cannot be accomplished unless negative or even time-dependent
capacitances are assigned to the individual junctions.
We assume that the ground and island form a parallel plate

capacitor with width W and separation D (x- and y-directions,
respectively), see Fig. 4. In z-direction the plates extend to height
H. Both H,W≫ D, such that fringe effects can be neglected. The
total capacitance is therefore the standard expression for
the parallel plate capacitor Ctot= ϵHW/D. As shown in Fig. 4, the
junctions are incorporated in the form of filaments. In accordance
with the “Results” section, we here neglect the influence of
the junction filaments for the field solutions in what follows.
In order to derive the Hamiltonian, we need to know the vector

potential Airr within the thin volume separating the two plates. As
for the magnetic field, we assume for simplicity that it is created
by two wires carrying a time-dependent current I1;2 tð Þ, oriented in
y-direction, at positions x ¼ xI1;2 and z= zI, which we set to be

zI= H/2 (see Fig. 4). It is therefore of the form

B �
Bx x; z; tð Þ

0

Bz x; z; tð Þ

0B@
1CA; (29)

with the components given as per Ampère’s law,

Bx x; z; tð Þ ¼ μI1 tð Þ
2πr21

z � zIð Þ þ μI2 tð Þ
2πr22

z � zIð Þ (30)

Bz x; z; tð Þ ¼ � μI1 tð Þ
2πr21

x � xI1ð Þ � μI2 tð Þ
2πr22

x � xI2ð Þ; (31)

with the distance from the current source I1,2, r21;2 ¼ x � xI1;2
� �2

þ z � zIð Þ2.
The solution for the electric field, E _B, fulfilling the conditions

detailed in the “Results” section, is given as follows [see
Supplementary Eqs. (3)–(26) for the derivation]. In the interior of
the conductor plates, the magnetic field decays exponentially on
the length scale λ. The Meissner screening currents give rise to an
ac electric field via the first London equation, E= μλ2∂tj, which can
be given for the two capacitor plates as

E _B y >Dð Þ ¼ �λ ny ´ _B
� �

e�
y�D
λ : (32)

respectively

E _B y < 0ð Þ ¼ λ ny ´ _B
� �

e
y
λ ; (33)

where ny= (0, 1, 0)T. The condition ∇ � E _B ¼ 0 for the interior is a
consequence of the likewise source-free screening currrent∇ ⋅ j=
0, which in turn follows from∇ × B= 0 for the magnetic field in
the exterior (away from the wires).
The above solutions for E _B, evaluated at the plate surfaces y= 0

and y= D, respectively, provide the right-hand side of the
boundary conditions in Eq. (8), such that we can now solve for
the volume in between the plates, 0 < y < D and 0 < z < H. For this
particular geometry, it turns out to be helpful to explicitly
decompose the field into a longitudinal (oriented along y) and
tangential (parallel to the plate surfaces) component,
E _Bð0< y <DÞ ¼ EL þ ET . We find for the longitudinal field EL= EL,
yny with,

EL;y ¼ 1þ 2λ
D

� � RW
0

dx00
W

R H
0

dz00
H

R x00
x dx0 _bz x0; z; z00ð Þ

þ 1þ 2λ
D

� � R H
0

dz00
H

RW
0

dx00
W

R z
z00 dz

0 _bx x; x00; z0ð Þ ;
(34)

where 2bx x; x00; z0ð Þ ¼ Bx x; z0ð Þ þ Bx x00; z0ð Þ as well as
2bz x0; z; z00ð Þ ¼ Bz x0; zð Þ þ Bz x0; z00ð Þ. The tangential field reads

ET ¼ λ ny ´ _B
� �D� 2y

D
: (35)

Here, the tangential field continuously matches the solution for
the interior of the conductors, given in Eqs. (32) and (33). The
longitudinal field abruptly goes to zero at y= 0, D, thus giving rise
to a surface charge, as defined in Eq. (10), induced by _B≠ 0. This
surface charge must integrate to zero. This can be verified when
integrating EL over x and z. In the first line, there will be the total

integral
RW
0 dx

RW
0 dx00 applied to a function of the form

R x00
x dx0 ¼ ,

which is obviously antisymmetric upon exchanging x↔ x″. The
argument applies similarly for z in the second line.
Following the lines of the “Results” section, the vector

potential is obtained in a straightforward fashion by taking
the solutions for the E-field in Eqs. (32)–(35), and replacing
_B ! �B. We are now able to make some crucial simplifications.
First of all, we notice that if the capacitor plate separation D≫
λ, we may simplify λ/D ≈ 0 in Eq. (34), and ET ≈ 0. The remaining
terms of the longitudinal field then correspond to the field
solutions with the simplified boundary condition, Eq. (14). We
thus explicitly show at the example of the parallel plate

Fig. 4 Sketch of the simple SQUID circuit with two magnetic field
sources. The setup as shown in this figure leads to all the predicted
effects in the main text, such as negative capacitances, or time-
dependent capacitances. a Top view of the SQUID circuit. The
ground and island form a parallel plate capacitor with distance D (y-
direction) and width W≫ D (x-direction). Two current wire sources I1
(red) and I2 (blue) produce magnetic fields. We indicate the spatial
distribution of the field for the first source (red curve). The
Josephson junctions are placed at positions x1 and x2, 0 < x1,2 <W
while the sources are placed at xI1 < 0 and xI2 >W . Note that for
illustration purposes, the y-axis is exaggerated; in the actual model
both the plate distance D and the plate thicknesses should be much
smaller than any of the length scales in x direction. b In z-direction
the planes are of a height H which is large with respect to the
distance, H≫ D, but small with respect to the width H≪W.
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capacitor, that λ→ 0 is justified if the relevant length scales of
the device geometry exceed λ. Note another interesting limit. If
we assume the thickness of the capacitor plates, tC, to be
comparable to λ, then, the exponentially decaying field inside
the capacitor plates, Eqs. (32) and (33), has to be replaced by
cosh-functions. In the limit where the capacitors are much
thinner than λ there only remains a very weak screening current
inside the plates, and the length scale λ in Eqs. (34) and (35) has
to be replaced by tC. If we then assume tC≪ D, we actually get
yet again that the tangential field can be neglected, and only
the longitudinal part survives. It is thus interesting to note that
we get the exact same field solutions as if we set λ→ 0, in spite
of λ being finite.
To proceed, we assume in addition a quasi one-dimensional

parallel plate capacitor, W≫ H≫ D, such that we may simplify
Bx ≈ 0 and Bz(x, z) ≈ Bz(x), that is, the magnetic field is mainly
oriented in z-direction, and depends only on x. For this
approximation to remain valid, we always need to consider
distances between the wires and the capacitor larger than H.
Hence, whenever we refer to the wires being close to the
capacitor, we always mean distances smaller than W, but larger
than H. As a consequence, bx ≈ 0 and bzðx0; z; z00Þ � BzðxÞ. For the
resulting irrotational gauge, as defined in Eq. (21), we find,

Airr ¼ �
Z W

0

dx0

W

Z x0

x
dx00Bz x00; tð Þny : (36)

The phases at the two Josephson junctions return as a result,

ϕk;irrðtÞ ¼ � 2πD
Φ0

Z W

0

dx0

W

Z x0

xk

dx00Bz x00; tð Þ: (37)

Based on this solution, we now may examine the extent to which
a mapping onto a lumped element circuit Fig. 1(b) can be
achieved. The mapping must give rise to junctions with the
effective capacitances [see Eqs. (4), (5)]

Ceff;1 tð Þ ¼ ϕ2;irr tð Þ
ϕ2;irr tð Þ � ϕ1;irr tð Þ

Ctot; (38)

Ceff;2 tð Þ ¼ � ϕ1;irr tð Þ
ϕ2;irr tð Þ � ϕ1;irr tð Þ

Ctot: (39)

In what follows, we will derive explicit expressions for Ceff,k
starting from above Eqs. (38) and (39). As we will see, the spatial
inhomogeneity of the magnetic fields is at the heart of the
nontrivial behavior for Ceff,k. We will argue, in particular, that for
a single source, negative effective capacitances Ceff,k emerge.
Two independent sources lead to time-dependent
capacitances.

Negative junction capacitances and qubit relaxation rates
Let us first consider the case of only one source, I≡ I1 and set I2=
0. In this case, the vector potential in the irrotational gauge is,
according to Eq. (36), in the limit xI1j j � W (while still jxI1 j 	 H)

Airr � � μI tð Þ
2π

ln
W
x

� �
� 1

� �
ny : (40)

The resulting phases ϕirr,k depend on time only through a global
prefactor, ϕirr;k � I tð Þ which cancels in Eqs. (38) and (39). The
resulting capacitances are therefore time-independent,

Ceff;1 �
ln W

x2

	 

� 1

ln x1
x2

	 
 Ctot (41)

Ceff;2 � �
ln W

x1

	 

� 1

ln x1
x2

	 
 Ctot: (42)

However, they can be negative. Notably, already for a completely
symmetric junction placement x1,2=W/2∓ δx, we find Ceff,2 < 0
and Ceff,1 > Ctot if

δx
W

<
1
2
� 1

e
� 0:13; (43)

where e here denotes Euler’s number (not to be confused with
the elementary charge). Note that this corresponds to a very
strong asymmetry in the junction capacitances, even though the
circuit geometry itself is perfectly symmetric. The effect stems
solely from the spatial asymmetry of the time-dependent
magnetic field.
Crucially, the presence of negative capacitances strongly affects

the accurate prediction of the transition rates between the ground
and excited states of the Hamiltonian. Along the same lines as in
ref. 7, let us consider fluctuations of the flux ϕ= ϕ0+ δϕ around
an equilibrium value ϕ0 (which could in this concrete case
correspond to current fluctuations). These give rise to the
relaxation rate (for simplicity, for symmetric junctions, EJ1= EJ2
= EJ)

Γm!m0 � C1;eff � C2;eff

Ctot

� �2

Sδϕ ωmm0ð ÞE2J mh j sin φð Þ m0j ij j2; (44)

where m is the index that counts the eigenstates of H, and the
phase noise power spectrum Sδϕ ωð Þ is taken at the frequency
corresponding to the transition energy ωmm0 ¼ ϵm � ϵm0 . We see
now that ignoring the possibility of anomalous capacitances leads
to a potential massive underestimation of the transition rates.
While for regular capacitances, we find

0<
C1;eff � C2;eff

Ctot

� �2

< 1; (45)

for anomalous capacitances, it may happen that

C1;eff � C2;eff

Ctot

� �2

	 1: (46)

Note though, that negative capacitances do not lead to a
breakdown of the perturbation theory. For concreteness, consider
the above model of a single wire source, in the limit where the
separation of the two junctions is small, δx≪W. Then,

Γm!m0 � W
δx

� �2

Sδϕ ωmm0ð ÞE2J mh j sin φð Þ m0j ij j2: (47)

On the one hand, the prefactor W=δxð Þ2 (due to negative
capacitances) is large. On the other hand, for δx→ 0 (where the
two junctions essentially merge to one), the total flux enclosed by
the two junctions approaches zero, too, δϕ→ 0, linearly with δx.
Hence, the phase noise power spectrum Sδϕ goes to zero at the
same rate the prefactor W=δxð Þ2 diverges, such that the product
W=δxð Þ2Sδϕ remains finite.
To summarize, without appropriately taking into account the

spatial distribution of the magnetic field, one might have
naively expected that with the total phase ϕ, respectively, its
fluctuations δϕ going to zero, the circuit may loose its
sensitivity to the noise emitted by the magnetic field source.
We here show that this is not so; depending on the spatial
details of the magnetic field the qubit relaxation rate due to
magnetic noise remains relevant even if the area enclosed by
the SQUID is small.
By means of the above expressions, we may easily quantify

the mistake that is made, if the spatial distribution of the
magnetic field, and the resulting negative capacitances are
disregarded. Based on current understanding, a completely
symmetric SQUID geometry would probably have been
modeled by symmetric junction capacitances, C1,eff ≈ C2,eff,
such that the capacitance prefactor in Eq. (44), actually
approaches zero, up to small corrections≪ 1 due to a residual
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asymmetry in the device geometry. The correct treatment as
presented here however, would predict even for a perfectly
symmetric SQUID geometry, a prefactor of order 1 or above, if
the separation of the two junctions δx is smaller than the
critical value given in Eq. (43). Therefore, the estimate for the
relaxation rate would potentially have been off by several
orders of magnitude.

Geometric phase generated by time-dependent capacitances
Now we consider a driving of the device by means of two wires, as
shown in Fig. 4, such that in the expression for Bz in Eq. (31), we
keep both I1 and I2 nonzero. Crucially, in a standard description of
the circuit by means of regular, constant capacitances, such a
SQUID would have been described by only one time-dependent
parameter, the total flux enclosed by the junctions ϕ(t),
irrespective of the number of current sources. Here we show that
such a treatment is fundamentally wrong.
For simplicity, we consider again a fully symmetric geometry for

both the circuit, x1,2=W/2∓ δx, and the current sources approach
the edges of the capacitor from both sides, xI1 ! 0 and xI2 ! W
(again, provided that jxI1 j; jW � xI2 j 	 H). We find for the vector
potential

Airr � � μI1 tð Þ
2π

ln
W
x

� �
� 1

� �
ny � μI2 tð Þ

2π
ln

W
W � x

� �
� 1

� �
ny:

(48)

For the resulting phases, we compactify the expressions by
introducing the decomposition ϕ1;2 ¼ 1

2 ðϕ ∓ϕÞ, where

ϕ ¼ 2
Dμ
Φ0

I1 tð Þ þ I2 tð Þ½ � 1þ ln
1
2
� δx

W

� �� �
(49)

ϕ ¼ �Dμ
Φ0

I1 tð Þ � I2 tð Þ½ � ln
1
2 � δx

W
1
2 þ δx

W

 !
: (50)

When driving I1 and I2 independently, the Hamiltonian is driven by
two genuinely independent parameters, ϕ1 and ϕ2, instead of just
the single total phase enclosed by the SQUID, ϕ2− ϕ1, as would
be the case with a naive lumped-element approach. In fact, as
predicted, the result here can only be mapped to a lumped
element circuit of the form in Fig. 1(b) if the effective junction
capacitances are allowed to be time dependent,
Ceff;1;2 tð Þ ¼ 1

2 1 ±ϕ=ϕ
� �

Ctot, since the time-dependent prefactor
for ϕ=ϕ � I1 tð Þ þ I2 tð Þ½ �= I1 tð Þ � I2 tð Þ½ � does not cancel.
What is more, for independent currents I1 and I2 it can very

easily occur that I1− I2= 0 while I1+ I2 ≠ 0 at certain moments in
time, leading to singular capacitances. We stress though, that this
singularity is not a sign of a failure of the theory: all system
parameters in the Hamiltonian stay regular. Instead, such
singularities merely represent the failure to capture the dynamics
of the realistic system by means of the lumped element approach
in Fig. 1(b), when trying to decompose the total capacitance into
partial capacitances for each junction.
The presence of two explicit time-dependent parameters can

be experimentally accessed as follows. Consider a periodic ac
driving of the two currents. The two parameters ϕ1, ϕ2, or
equivalently ϕ;ϕ, enclose a finite area in the 2D parameter
space. In the adiabatic driving regime (when the ac frequency is
low with respect to the qubit frequency) a nontrivial Berry
phase may emerge as a consequence. When preparing the
system in a certain eigenstate mj i, this Berry phase may be
expressed as

Bm ¼ 2 Im
Z Z

dϕdϕ ∂ϕ mh j∂ϕ mj i: (51)

In order to simplify further, let us focus on EJ1= EJ2≡ EJ. As will
become clear in a moment, we should include a stationary gate
voltage in our system inducing a charge ng (see end of the

“Results” section), such that the Hamiltonian reads

bH tð Þ ¼ 1
2
EC bnþ ng
� �2 � EJ ϕ tð Þ½ � cos bφ� ϕ tð Þ

2

� �
; (52)

with EC ¼ 2eð Þ2=Ctot and EJ ϕð Þ ¼ 2 cos ϕ=2ð ÞEJ . For further
evaluation, it is helpful to reexpress the Berry curvature as

∂ϕ mh j∂ϕ mj i ¼ �
X
m0≠m

mh j∂ϕbH m0j i m0h j∂ϕbH mj i
ϵm � ϵm0ð Þ2 ; (53)

where ∂ϕbH � cos bφ� ϕ=2
� �

and ∂ϕ
bH � sin bφ� ϕ=2

� �
. Now, the

importance of a finite gate voltage shift becomes obvious.
Observe that if ng= 0, the wave functions can be separated into
two subsets, one containing all wave functions which are
symmetric, respectively antisymmetric, in φ-space (with respect
to ϕ=2), resulting in a vanishing Bm. But for finite (non-integer) ng
we can expect a finite Berry phase.
In fact, the Berry phase should have its largest value close to

ϕ ≈ ± π (up to multiples of 2π), where the interference of
Josephson tunnelings across the two junctions is destructive,
EJ cos ϕ=2ð Þ � EC , while at the same time, keeping ng close to a
charge degeneracy point, ng ≈ 1/2 (up to integer multiples),
making sure that Cooper pair transport is not fully suppressed.
This corresponds to the Cooper pair box regime47, where it is easy
to find a good analytic approximation for the Berry curvature of
the even parity ground state m= 0 (see “Methods” section),

2 Im ∂ϕ 0h j∂ϕ 0j i ¼ � 1
4
∂ϕ

ECδngffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2Cδn

2
g þ 4E2J cos

2 ϕ=2ð Þ
q

0B@
1CA; (54)

where δng= ng− 1/2 is the distance of ng away from the charge
degeneracy point. This result represents a measurable effect of the
highly nontrivial interaction of spatially asymmetric time-
dependent magnetic fields with a SQUID. Berry curvatures have
been successfully measured in superconducting qubits, see
ref. 22,23, which is why we expect this effect to be readily
observable.

Refined lumped-element approach
We have shown above that the naive lumped element approach
from Fig. 1 does not succeed in predicting the correct system
dynamics of a realistic SQUID geometry, unless one allows for the
possibility of anomalous (negative or time-dependent) capaci-
tances. This raises the question, if there even exists a limit, where
the ordinary lumped-element approach, with constant positive
capacitances, can be salvaged.
In this final section, we show that a description of the circuit

with regular, constant capacitances may indeed still work to
describe realistic geometries, provided that the circuit is greatly
refined. That is, one needs to introduce a finely-meshed network
of lumped elements which can capture the spatial details of the
externally applied field. In addition, capacitances need to be
introduced at all nodes, even (or especially) the ones which are
not connected via Josephson junctions. By means of such a
network, we show, for the above example of a 1D SQUID, that our
irrotational gauge procedure is equivalent to the one developed
by You et al.7, when going to the continuum limit. In addition,
through this procedure we also include the internal dynamics of
the island (by describing it as a transmission line), and thus
provide an upper bound for the driving frequency, below which
the description of the island by means of a single independent
degree of freedom, φ; _φð Þ, is justified.
To begin, we model the simple 1D version of the SQUID from

Fig. 1(a) by means of a finite element approach, see Fig. 5(a),
where the island is described by a transmission line. In terms of
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the branch variables [see Fig. 5(b)], we find the Lagrangian

L ¼ LTL þ LV þ LJ (55)

with a part describing the transmission line (i.e., the island)

LTL ¼ � 1
2L

XJ
j¼1

φTL;j
2e

� �2

(56)

and the capacitive coupling to ground

LV ¼ C
2

XJ
j¼0

_φj

2e

� �2

: (57)

Finally, the Josephson junctions are included in

LJ ¼ EJ1 cos φj1

	 

þ EJ2 cos φj2

	 

; (58)

where the first junction is at position j= j1, and the second one at
position j= j2 > j1. The spatial dependence of the magnetic field,
B xð Þ is here taken into account by the flux distribution ϕj tð Þ (for
j= 1… J) [see Fig. 5(b)]. Thus, the branch variables are subject to
the constraints

φj�1 þ φTL;j � φj ¼ ϕj tð Þ: (59)

This gives rise to J constraints. Given that there are J+ 1 branch
variables for the capacitances, φj, all but one of these variables can
be eliminated. The transmission line variables φTL,j remain free at
this stage. This is equivalent to the prescription advocated by7 to
uniquely determine the Hamiltonian.
Importantly, it can now be shown [for details, see Supplemen-

tary Eqs. (27)–(67)] that there is a low-frequency regime for the
time-dependent driving of the ϕj for which the transmission line
dynamics are irrelevant, such that φTL,j ≈ 0. This corresponds to the
situation where the driving is sufficiently slow that the transmis-
sion line can quasi-instantaneously follow the perturbation (the
exact condition will be discussed below). The resulting low-
frequency Hamiltonian can be obtained by means of a Schrieffer-
Wolff transformation,

bHlow � 1
2

2eð Þ2
Ctot

bn2 � EJ1 cos bφþ ϕ1;irr

� �� EJ2 cos bφþ ϕ2;irr

� �
; (60)

with

ϕk;irr ¼
1

J þ 1

XJ
j¼1

f j tð Þ � f jk tð Þ; (61)

for the junction index k= 1, 2, and having defined the (discrete)
flux integral f j tð Þ ¼

Pj
k¼1 ϕk tð Þ: The total capacitance is simply

Ctot ¼ J þ 1ð ÞC. Crucially, when approaching the continuum limit
for the network (i.e., the distance between the lumps dx→ 0)

ϕj tð Þ ¼ �2π
Φj tð Þ
ΦQ

! �2π
DdxB x; tð Þ

ΦQ
(62)

where D is also here the distance between the transmission line
and the ground and W ¼ J þ 1ð Þdx is the width. Thus, we recover
the result from the continuous field calculation, Eq. (37). This
demonstrates the equivalence of the approach of You et al.7 and
our gauge prescription for the vector potential, Airr, as outlined in
the “Results” section. Note in addition, that if we changed the
capacitance profile, such that instead of equivalent capacitances C
on each node (see Fig. 5) we would only have capacitances C1 and
C2 at the junction nodes j1 and j2 (capacitance dominated by the
junctions), we would indeed obtain the simplified result Eq. (5).
Finally, let us comment on the regime of validity of Hlow in Eq.

(60). As we detail in the Supplementary Materials, neglecting the
internal dynamics of the island is justified for driving frequencies
ω satisfying

ω<ω0 ¼ πffiffiffiffiffiffiffiffiffiffiffiffiffi
WlCtot

p (63)

where l is the inductance density of the transmission line, such
that L= l dx. The frequency ω0 corresponds to the lowest mode of
the internal transmission line dynamics. Assuming that the kinetic
part of the inductance is dominant, we estimate
l � me= nse2Sð Þ48,49, with me as the electron mass and the Cooper
pair density ns ~ 4 × 106 μm−350, and assuming a transmission line
cross section of S � 10 nm ´ 20 μm as well asW ~ 200 μm, we find
ω0 ~ 20 GHz. For a typical qubit frequency between 5 and 10 GHz,
it seems plausible that neglecting the internal island dynamics is
justified even when an ac magnetic field would be used to drive
bit flips.

DISCUSSION
We develop a general recipe to construct a Hamiltonian for
realistic quantum circuits driven by external electomagnetic fields
which vary in time. This construction invokes the notion of an
irrotational gauge for the time-dependent vector field, which
corresponds to the Coulomb gauge, with additional boundary
conditions. The part of the vector potential parallel to the
superconductor surfaces is continuous, and thus relates to
Meissner screening currents. A second part, perpendicular to the
surfaces, is in general dominant, and relates to the surface charges
induced by the time-varying magnetic field. Based on this result,

Fig. 5 Finite element approach. a Finite element model to describe the SQUID geometry in Fig. 4(a). The upper arm of the SQUID is described
through a transmission line, whereas the lower arm is simply a ground. The Josephson junctions (red) are at positions j= j1 and j= j2. b The
same finite element model, now showing the temporally and spatially varying flux ϕj tð Þ, as well as the branch phase variables for the
transmission line, φTL,j, and the ones describing the capacitive and Josephson coupling between ground and transmission line, φj.
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we show, in the example of a simple SQUID geometry, that
assigning individual capacitances to each Josephson junction
results in negative and potentially time-dependent capacitances.
These realizations lead to a highly revised understanding of the
dynamics of a driven SQUID. We discuss measurable effects of
such anomalous capacitances, such as a strongly enhanced qubit
relaxation rate, and a nonzero Berry phase. Finally, we establish a
connection between the here proposed vector potential gauge for
continuous circuit geometries and irrotational gauge developed in
ref. 7 for discrete circuits. In doing so, we also provide an estimate
for the validity of the lumped-element approach, given a certain
driving frequency.

METHODS
More general Hamiltonians from continuum electrodynamics
In the “Results” secion, we showed the choice of gauge that leads to a
Lagrangian and Hamiltonian satisfying the irrotational condition of You
et al.7. Here we show another choice that leads to forms that resemble
the more general Lagrangians/Hamiltonians that arise in the previous
discrete circuit analysis. For this purpose however, we first need the
correct definition for the kinetic energy term which enters the
Lagrangian.
We start with the definition for the energy stored in a capacitor via the

electric power43,

EQ ¼
Z t

dt0 VI ; (64)

where the lower integration limit is not specified as it merely provides an
irrelevant constant shift (which we disregard here). Through I= ∂tQ, we
may immediately substitute the time integral for an integral over charge,

EQ ¼
Z Q

dQ0 VðQ0Þ ; (65)

or, through partial integration, for an integral over voltage

EQ ¼ VQ�
Z V

dV 0 QðV 0Þ � VQ� EV : (66)

Identifying Q as the canonically conjugate momentum, we see that EQ
and EV are related through a Legendre transformation. We thus conclude
that the kinetic energy in the Lagrangian is given by T= EV [see also Eq.
(19) in the main text], whereas EQ corresponds to the kinetic energy of
the Hamiltonian. Importantly, for the irrotational gauge, where the
energies are quadratic in both V and Q, EQ= EV, and the above
distinction is moot. However, for the gauges considered in this appendix,
there will appear linear terms where this distinction is important, and the
definition of the Lagrangian kinetic energy via the voltage integral is
imperative.
To continue, we introduce a variably shifted irrotational gauge. This is a

simple variant on the irrotational gauge introduced in the main text. We
now divide the electric field into two parts as in Eq. (11),

E ¼ E0Q þ E0_B: (67)

Here E0 satisfies the same conditions as EQ, except that Eq. (9) is replaced
by an shifted island charge:

ϵ

I I
Si

d2x ni � E0Q
� � ¼ Q� Q0ðtÞ ¼ Q� _f 0ðtÞ : (68)

Note that this island charge function Q0(t) should not be confused with the
offset gate charge ng. ng is a real physical quantity, while Q0(t), merely
parametrizing a new set of gauges, cannot appear in any physical
observable. Equation (68) emphasizes that the shifted charge function can
be taken to be time dependent, and we will assume that this time
dependence is expressed as the time derivative of a fixed function f0(t).
The solution for the electric field is thus of the form

E0Q ¼ Q� Q0ð Þe : (69)

The other contribution to the field, ϵ
H H

Si
d2x ni � E0Q
� � ¼ Q� Q0ðtÞ ¼

Q� _f 0ðtÞ :, must likewise be changed; instead of corresponding to zero
island charge, it will require the island charge

ϵ

I I
Si

d2x ni � E0_B
	 


¼ _f 0ðtÞ ; (70)

resulting in

E0_B ¼ F½ _B� � _f 0e ; (71)

and the resulting new vector potential

A0
irr ¼ �F½B� þ f 0e : (72)

In this gauge the constitutive equation (17) is replaced by

Q� Q0ðtÞ ¼ CtotV
0
irr; (73)

defining the island potential V 0 in the new gauge (it is again uniform in
space across the island). The new kinetic energy in the Lagrangian is

T 0irr ¼
Ctot

2

_φ0

2e
þ

_f 0
Ctot

 !2

: (74)

This introduces the superconducting phase variable in the variably-shifted
irrotational gauge, _φ0 . After Legendre transformation, this leads to the full
Hamiltonian

bH0
irr ¼

ð2eÞ2
2Ctot

bn0 � _f 0
2e

 !2

�
X
k

EJk cos bφ0 þ ϕk;irr þ
2ef 0
Ctot

� �
; (75)

where the shift 2ef0/Ctot of the phase in the Josephson term follows from

the line integral of the new A0 in Eq. (72). Indeed, bHirr ¼ bUbH0bUy � ibU∂tbUy
,

with bU ¼ e�i2ef 0bn=Ctot . Here we see the more general form for the kinetic
energy, with both quadratic and linear number operators, as it occurs in
Eqs. (13-14) of7.

Berry curvature
Here, we show how to arrive at the approximate expression for the Berry
curvature in Eq. (54). Assuming in particular that ng is close to 1/2, we write
the Hamiltonian given in Eq. (52) in the sub-basis of either one or zero
extra Cooper pair on the island, 1j i; 0j i
bHlow � 1

2
EC 1j i 1h j � 0j i 0h jð Þδng � 1

2
EJ ϕð Þ 1j i 0h je�i

δϕB
2 þ 0j i 1h jeiδϕB2

h i
(76)

with δng= ng− 1/2. This Hamiltonian has the eigenvalues ± 1
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2Cδn
2
g þ E2J ϕð Þ

q
and the corresponding eigenvectors

±j i ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ±

ECδngffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2Cδn

2
g þ E2J ϕð Þ

qvuut 1j i ∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 ∓

ECδngffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2Cδn

2
g þ E2J ϕð Þ

qvuut ei
δϕB
2 0j i

0B@
1CA:

(77)

Denoting �j i as the even parity ground state m= 0, the above
eigenvector can be plugged into Eq. (54).
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