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Stabilizing multiple topological fermions on a quantum
computer
Jin Ming Koh1✉, Tommy Tai 2, Yong Han Phee3, Wei En Ng3,4 and Ching Hua Lee 3✉

In classical and single-particle settings, non-trivial band topology always gives rise to robust boundary modes. For quantum many-
body systems, however, multiple topological fermions are not always able to coexist, since Pauli exclusion prevents additional
fermions from occupying the limited number of available topological modes. In this work, we show, through IBM quantum
computers, how one can robustly stabilize more fermions than the number of topological modes through specially designed
2-fermion interactions. Our demonstration hinges on the realization of BDI- and D-class topological Hamiltonians on transmon-
based quantum hardware, and relied on a tensor network-aided circuit recompilation approach. We also achieved the full
reconstruction of multiple-fermion topological band structures through iterative quantum phase estimation (IQPE). All in all, our
work showcases how advances in quantum algorithm implementation enable noisy intermediate-scale quantum (NISQ) devices to
be exploited for topological stabilization beyond the context of single-particle topological invariants.
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INTRODUCTION
Many-body quantum effects like particle statistics and Hubbard
interactions underscore some of the most exciting condensed
matter phenomena, such as superconductivity and fractionaliza-
tion1–3. Their interplay with single-particle properties like band
topology is particularly fascinating, with rich fractionalized
quasiparticles emerging out of Coulomb repulsion within dis-
persionless Landau levels, for instance. But unlike in purely single-
body settings, particle statistics often play a central role,
determining all Fermi surface properties like electrical conductiv-
ity. In topological systems, Pauli exclusion also implies that
topological robustness is only conferred upon the few electrons
occupying the limited number of topological modes4.
Compared to single-body topological phenomena realizable in

classical metamaterials, novel many-body phases are traditionally
much harder to engineer and physically demonstrate. This is due
to challenges in accessing and manipulating intrinsically fragile
quantum states, unlike the macroscopic classical degrees of
freedom of photonic, acoustic and electrical circuit lattices5–8.
Fortunately, there is considerable recent experimental progress in
various quantum systems such as ultracold atomic lattices,9,
photonic systems10, silicon11 and trapped ion systems12, which
make Richard Feynman’s vision13 of utilizing quantum systems to
simulate quantum Hamiltonians a reality.
Of particular versatility are universal quantum simulators, also

known as quantum computers, which allow arbitrary quantum
systems to be simulated, thereby in principle enabling any
quantum phenomenon to be physically realized. Through the
appropriate design of sequences of quantum operations, known
collectively as quantum algorithms, quantum computers are
capable of performing a vast array of computational tasks, some
at polynomial or exponential resource advantage over classical
algorithms. Indeed, even in the current noisy intermediate-scale
quantum (NISQ) era, quantum computers have already shown
great promise, with demonstrations of quantum advantage in

limited settings14,15, mapping topology in parameter space16, the
achievement of chemical accuracy in intermediate-scale electronic
structure calculations17, and in neutron scattering and exotic
magnetic phenomena simulations18,19.
This work shall employ computations made with IBM quantum

computers, which not only rank favourably with other cutting-
edge platforms20,21 in hardware performance, such as gate
fidelities and decoherence times, but is also fully accessible via
the cloud. IBM Quantum (IBM Q) currently offers access to up to
65-qubit machines based on superconducting transmon qubits,
and provides an open-source software development kit called
Qiskit22,23. Thus far, IBM Q has been successfully utilized in
simulating spin models24, global quantum quenches25, quantum
chemistry problems26, topological phenomena27–30, machine
learning31 and various other applications32.
We emphasize that quantum computation in the current NISQ-

era is still plagued with significant limitations. Main bottlenecks
include low gate fidelity, decoherence, limited qubit connectivity
and limited number of qubits33, which together impose con-
straints on circuit depth and structure. Amidst qubit noise and
readout error, typical depths of Oð101Þ entangling gate layers are
presently feasible for precision results. Of utmost current priority is
hence the development of error mitigation and circuit optimiza-
tion approaches that maximize computational capability within
hardware bounds, thereby enabling the practical use of quantum
simulators in contexts where classical simulators, for example,
purpose-designed electrical circuits34, are inadmissible.
In this work, we stabilize BDI- and D-class topological boundary

states, as well as demonstrate a full band structure reconstruction
of the fermionic extended Kitaev chain (KC) on IBM quantum
computers. Compared to existing quantum computer realizations
of other topological states27–29, some of which are performed in
parameter space, ours was performed on a longer (12-qubit) chain
with physical open boundaries that host topological modes.
Furthermore, our extended KC Hamiltonian contains multiple
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non-local couplings which presented heavy demands on circuit
depth and complexity, necessitating the use of tensor network-
aided circuit recompilation techniques beyond traditional trotter-
ization. Crucially, by exploiting the quantum nature of the IBM
machines, we engineered effective interactions to stabilize more
fermions than originally allowed by the number of topological zero
modes, hence physically realizing a few-body phenomenon that
has not been possible in existing classical realizations.

RESULTS AND DISCUSSION
Physical motivation and models
Topological robustness is a highly sought-after property exempli-
fied by the extraordinarily long survival duration of boundary states
in specially designed topological lattices35,36. This robustness has
inspired various potential applications like topological lasers and
sensors37,38, and originates from the integer quantization of
topological invariants characterizing the lattice band structure4.
While non-trivial topology has been demonstrated in a wide variety
of classical metamaterials, true quantization of the response can
only be observed in quantum settings (but see refs. 39,40).
Yet, a fully quantum topological fermionic system is also limited

by the fact that there can only be as many topological fermions as
available topological modes. Since the latter is determined by the
topological invariant, which is typically an integer of order Oð100Þ,
it will be of great scientific and practical interest to probe how
quantum interactions can also enhance the number of robustly
surviving fermions beyond what is dictated by the topological
invariant. We shall first introduce our topological lattice models,
and later discuss how specific interactions preserve the fidelity of
multiple fermions by hosting many-body states that are adiaba-
tically connected to non-interacting topological states.
In this work we simulate on a quantum computer the extended

Kitaev model41,42, which is a 1D open chain containing next-
nearest neighbour (NNN) couplings in addition to its underlying
nearest-neighbour (NN) structure, with two sites per unit cell:

HKC ¼ 1
2

PN�1

j¼1
v1 cyj cjþ1 � dyj djþ1

� �
þ Δ1 dyj cjþ1 � cyj djþ1

� �h i(

þ PN�2

j¼1
v2 cyj cjþ2 � dyj djþ2

� �
þ Δ2 eiϕdyj cjþ2 � e�iϕcyj djþ2

� �h i

þPN
j¼1

μ cyj cj � dyj dj
� �)

þ h:c:;

(1)

for N unit cells, chemical potential μ, tunnelling coefficients v1,2,
superconducting pairing Δ1,2, relative phase ϕ, and fermionic
operators cj, dj respectively acting on the A- and B-sublattices of
the j-th unit cell. Our model HKC is an extension of the standard
Kitaev chain model that has been intensely studied for hosting
Majorana zero modes43, which is of particular interest to fault-
tolerant topological quantum computing44. Its extra degrees of
freedom in Eq. (1) allow for smooth tuning across the BDI- and
D-symmetry protected topological (SPT) classes elaborated below,
and will ultimately also be useful in the design of interactions that
preserve the robustness of multiple fermions.
When ϕ= 0, HKC preserves time-reversal symmetry (TRS) in

addition to parity and charge conjugation symmetry, and belongs
to the BDI class of the tenfold-way topological classification45,
characterized by a winding number ν 2 Z. Our particular model
possesses ν= 0, 1, 2 regimes, the first trivial and the latter two
respectively exhibiting twofold and fourfold degeneracy of
midgap topological modes localized at either boundary. Mathe-
matically, 2πν corresponds to the winding of its Berry phase across
one Brillouin zone period (see Supplementary Note 1).

When ϕ≠ 0, TRS is broken and HKC falls into the D-class
characterized by Z2 invariant, with its topologically trivial/non-trivial
phases respectively labelled by Berry phase winding γ= 0, π which
encapsulates the relative configurations of the k and −k paths41,42.
This D-class phase minimally requires NNN couplings, not present in
the BDI class which contains the extremely well-known Su-Schrieffer-
Heeger (SSH) model46,47, and is thus much less frequently
investigated let alone realized in quantum settings48. We note that
the SSH model, which we shall also simulate, is a special case of the
extended Kitaev model upon unitary rotation:

HSSH ¼
XN
j¼1

vcyj dj þ
XN�1

j¼1

wdyj cjþ1 þ h:c:; (2)

with v,w intra-cell and inter-cell hopping coefficients. We remark
that HSSH and HKC are quadratic in the fermionic basis and are, in
principle, efficiently simulable classically49; but with the addition
of quartic interactions, both models cannot be efficiently
classically simulated.

Persistent boundary modes from topological protection
As the first experiments on the IBM quantum computer, we
demonstrate that initial states at the boundary survive much
longer when the Hamiltonian is topological. We emphasize that
this is true for a rather large parameter space of initial states, not
just exact topological eigenstates (see Supplementary Note 4). For
a start, various perfectly localized 1-fermion initial states defined in
Table 1 are evolved via HSSH and HKC.
We utilize a tensor network-aided recompilation technique (see

Methods) to construct quantum circuits for time-evolution, in
order to overcome circuit depth limitations on NISQ hardware. Our
approach is based on prior literature50–52, with added sector-
specificity to enhance performance at larger fermion numbers and
qubit counts. Furthermore, we employ a suite of error mitigation

Table 1. List of initial states αj i ¼ c½α�y vacj i to be evolved by HSSH and
HKC.

Model Regime of
stability

αj i c[α]†

HSSH ν= 1 1L
�� �

cy1
ν= 1 1R

�� �
dyN

Non-SPT 1M
�� �

cydN=2e
HKC (BDI-
Class)

ν= 1, 2 1L1
�� �

1ffiffi
2

p ðcy1 � dy1Þ

ν= 2 1L2
�� �

1ffiffi
2

p ðcy2 � dy2Þ
ν= 1, 2 1R1

�� �
1ffiffi
2

p ðcyN þ dyNÞ
ν= 2 1R2

�� �
1ffiffi
2

p ðcyN�1 þ dyN�1Þ
Non-SPT 1M

�� �
1ffiffi
2

p ðcydN=2e þ dydN=2eÞ
HKC (D-
class)

γ= 0 1L1
�� �

1
2 ðcy1 � eiϕdy1 þ icy2 � ieiϕdy2Þ

γ= 0 1L2
�� �

1
2 ðcy1 � eiϕdy1 � icy2 þ ieiϕdy2Þ

γ= 0 1R1
�� �

1
2 ðcyN�1 þ eiϕdyN�1 þ icyN þ ieiϕdyNÞ

γ= 0 1R2
�� �

1
2 ðcyN�1 þ eiϕdyN�1 � icyN � ieiϕdyNÞ

Non-SPT 3LLL
�� �

1
2 ðcy2 � eiϕdy2 þ icy3 � ieiϕdy3Þc½1L1�yc½1L2�y

γ= 0 4LLRR
�� �

c½1L1�yc½1L2�yc½1R1�yc½1R2�y

The list includes idealized 1-particle edge states localized at certain sites
near the boundary, as well as subscripted ‘M’ states at the middle of the
chain, used for comparison purposes. Some of these states are
adiabatically connected to topological eigenstates, as elaborated in
Supplementary Note 1. Multi-fermion idealized states are constructed
from the respective fermionic creation operators c[α]†—for example
2LR12
�� � ¼ c½1L1�yc½1R2�y vacj i.
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techniques to improve data quality, in particular readout
mitigation (RO)25,53, post-selection (PS)25,54, and averaging across
machines and qubit chains (see Methods). Through
computational-basis measurements on simulation qubits, the
occupancy O ¼ ½ O1h i O2h i¼ Onh i�> for Oj ¼ cyj cj ¼ ð1� σzj Þ=2
along the chain is retrieved, and the extent of evolution away
from ψ0j i, whose occupancy is O0, can be assessed via the
occupancy fidelity

FO ¼ O>O0

�� ��2 2 ½0; 1�: (3)

Note FO is distinct from state fidelity F ¼ ψ0jψh ij j2—see
Supplementary Note 3 for a more detailed discussion.

We present 1-particle time-evolution results for HSSH in Fig. 1a,
comparing raw data, data with RO and PS mitigation, and data
with both. The effectiveness of the error mitigation methods is
clear, with the occupancy fidelity of all initial states approaching
close to exact diagonalization (ED) results with RO and PS applied.
The stability, i.e. persistence, of the initial state is quantified via the
occupancy fidelity FO; the slower the decay in FO, the more
stable the state. As expected, the decay of the initial states 1L

�� �
,

1R
�� �

localized at the left and right boundary sites are slow in the
topological regime, compared to that of the middle-localized state
1M
�� �

, which overlaps negligibly with topological boundary modes;
by contrast, in the trivial regime topological protection does not
exist and all states decay quickly. We remark that edge-localized

Fig. 1 Topologically robust edge states and band structures simulated on quantum computers. a 1-particle time-evolution results for the
SSH model HSSH, with well-preserved occupancy fidelity for perfectly boundary-localized 1L;R

�� �
states when ν= 1 (topological), and rapidly

decaying occupancy fidelity for ν= 0 (trivial) cases and the middle-localized 1M
�� �

state. While raw hardware data already agrees qualitatively
with exact diagonalization (ED) results, the agreement becomes excellent with RO and PS error mitigation. b Exact topological state
wavefunctions at the left boundary, which constitute the dominant components of our 1-site, 2-site and 4-site boundary-localized initial states
detailed in Table 1. c 1-particle time-evolved occupancy fidelity and spatial state density for BDI-class HKC in topological (ν= 2) and trivial (ν=
0) phases; and D-class HKC with ϕ= π/4 in topological (γ= 0) and trivial phases. Again, boundary localized states persist much longer when the
system is topological, despite not being exact eigenstates. Middle initial states recur periodically due to boundary reflection from finite system
length. d IQPE-obtained single-particle band structures for HSSH and HKC, with topological phase transitions marked by changes in 2ν, the
number of degenerate midgap (E= 0) states. For HKC, parameters are held at v1= v2=Δ1=Δ2≡ v, with ϕ= 0 for BDI-class and ϕ= π/4 for
D-class. Time-evolution results are computed on chains with N= 6 unit cells (n= 12 qubits), with error bars obtained from repeated
experiments across different qubit chains and machines (ibmq_paris, ibmq_toronto, ibmq_manhattan, and ibmq_boeblingen); band structure
results are on n= 10 chains with an additional ancilla qubit, with error bars smaller than plot markers. Detailed parameter specifications are
given in Table 2.
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states can be stable even with significant perturbations, which is a
hallmark of topological robustness. For instance, the stability of
1L
�� �

, in the sense of slow decay of FO, is preserved even when
mixed with non-SPT states localized on the neighbouring and
next-neighbouring sites (see Supplementary Note 4).
For HKC with NNN couplings, even relatively delocalized initial

states can exhibit slow decay. We determine ‘idealized’ maximally
localized boundary modes that are adiabatically connected to
topological eigenstates (Supplementary Note 1), that exhibits
negligible decay, such as to facilitate the design of more general
persistent states. In the BDI class, they are 1L1

�� �
and 1L2

�� �
as defined

in Table 1, which are localized on the first and second unit cells
respectively. In Fig. 1c, 1L1

�� �
(and 1R1

�� �
) are robust for both ν= 1

and 2 topological sectors, but 1L2
�� �

(and 1R2
�� �

) are robust only for
the ν= 2 sector, which supports two topological boundary modes
at each end. For D-class HKC systems with nonzero ϕ and NNN
couplings, the four idealized boundary states are each localized on
the four boundary sites with ϕ-dependent relative phases
between site orbitals, as defined in Table 1. Indeed, almost
negligible decay was observed (Fig. 1c) for these states in the
topological regimes, compared to the middle-localized 1M

�� �
which

do not benefit from topological robustness; in the trivial regime,
all states decay quickly as expected. The extent of delocalization of
1M
�� �

in all regimes, and of all initial states in the topologically
trivial regime, are detailed in the occupancy density maps of Fig.
1c. While state initialization in the time-evolution circuits for HSSH

and BDI-class HKC are performed through explicit circuit compo-

nents (see Supplementary Note 3), that for 1L;R1;2

���
E
of D-class HKC

are absorbed into our dynamically optimized recompilation
ansatz, so as to minimize incurred costs in circuit depth.

Band structure reconstruction
Our boundary states owe their slow decay to the gapped nature of
their dominant (topological) eigenstate component, as is readily
understood through a two-component approximate treatment.
Consider ψðtÞj i ¼ α ψ1j i þ β ψ2j ie�iΔEt with αj j2 þ βj j2 ¼ 1; then the
state fidelity is FðtÞ ¼ ψðtÞjψð0Þh ij j2 ¼ 1� 4 αj j2 βj j2sin2ðΔEt=2Þ,
which stays near unity as long as αj j2 βj j2 � 1, that is, when a
dominant eigenstate component exists. This can be checked by
comparing all our initial states with exact topological eigenstates
(Fig. 1b). In realistic settings where the initial boundary state
generically overlaps with arbitrarily many eigenstates, the energy
gap between the dominant topological eigenstate and all other
states is crucial to stability. It introduces a separation of frequency
scales that avoids overwhelming destructive interference. Experi-
mentally, this energy gap can be verified from a full reconstruction
of the topological band structure. Below, we first describe our
approach for mapping the band structure, and then present its
results for both single-fermion and two-fermion systems.
To probe and reconstruct the band structure on quantum

hardware, we perform iterative quantum phase estimation (IQPE)55,56,
which supports the estimation of eigenenergies of a simulated
Hamiltonian, in principle to arbitrary precision (see Methods).
Compared to quantum phase estimation (QPE)57,58, IQPE circuits
are shallower and require fewer qubits, and are thus suited for
implementation on current-generation NISQ hardware. IQPE results
for HSSH and HKC in the 1-particle sector are shown in Fig. 1d. The BDI
topological phase transition in HSSH at w= v is apparent, with a pair
of midgap states separating from the bulk and approaching
degeneracy at E= 0 as w/v increases. The HKC model possesses
richer behaviour—in the BDI case, transitions from the ν= 1 phase
into the trivial (ν= 0) and then into ν= 2 phase occur as v/μ
increases, for illustrative v≡ v1= v2=Δ1=Δ2. The ν= 1 phase
exhibits twofold degeneracy of midgap states like in the SSH model,
and the ν= 2 phase exhibits fourfold degeneracy at E= 0 due to

having two zero modes at each boundary. In the D class, twofold
midgap topological degeneracy occurs in the γ= π but not γ= 0
phase. For the latter, fourfold degeneracy is broken as the
eigenenergies split into pairs of positive energy and negative energy
states, which can be regarded as remnants of topological midgap
states. In all cases, the reconstructed band structure from hardware
execution of IQPE closely match ED results.

Topological stability for multiple fermions—non-interacting
case
Compared to existing classical realizations of BDI- and D-class
topological states, our IBM Q realizations possess the advantage of
granting natural access to quantum many-body effects like
fermionic statistics and interactions. We shall first discuss the
former, specifically on the various ways whereby up to four
fermions can simultaneously enjoy topological robustness.
We first consider HSSH and the two-fermion sector, in which two-

fermion boundary states can be constructed either as 2LR
�� � ¼

c½1L�yc½1R�y vacj i with 1 fermion at each boundary, or alternatively
as 2LAA

�� �
or 2LAB

�� �
with one fermion in the 1L

�� �
orbital and the other

in the nearest A or B site. Of these, only 2LR
�� �

has both particles
overlapping significantly with topological boundary modes, so only
it would be conferred stability in the topological phase (Fig. 2b). The
2LAA
�� �

and 2LAB
�� �

states, like 1M
�� �

, are unstable whether topological
modes exist or not, despite one of the fermions being in the
topologically stable orbital 1L

�� �
. The upshot is that since HSSH

possesses only one topological state at each end of the chain, it is
impossible to construct a 2-particle topological state localized at
only one boundary. Generalization to multiple fermions follows.
To realize 2-fermion topological states localized at a single

boundary, the fourfold midgap topological modes of HKC, with
two at each boundary, can be utilized. In particular, the two
fermions can occupy 1L1

�� �
and 1L2

�� �
near the left boundary,

resulting in 2L12
�� �

, or analogously 2R12
�� �

for the right boundary.
Relaxing the requirement of localization on a single edge, robust

states such as j2LRij i ¼ c½1Li �yc½1Rj �yjvaci are all possible, where i, j∈
{1, 2}. Indeed, hardware results indicate these states are conferred
stability in the topological regime; the contrast against the non
topologically protected middle-localized 2M

�� �
is drastic (Fig. 2c).

The occupancy density maps concur that these 2-fermion edge
localized states persist almost perfectly in the topological phase,
but diffuses in the trivial phase.
As a generalization to larger numbers of effective particles, we

demonstrate that up to 4 fermions can enjoy stability in the
D-class HKC system, with each occupying a different topological
mode. Indeed, the 4-fermion state 4LLRR

�� �
is robust compared to

the middle-localized 4M
�� �

state in the topological phase (Fig. 2c).

Stability for multiple fermions—interacting case
Quantum interactions can present new phase transitions59 and
avenues of stability with no non-interacting analogues60,61. The
understanding of strongly correlated topological models is also
crucial in understanding the phenomenology of real materi-
als62,63. While weak interactions may only perturb the stability
of SPT boundary modes, strong interactions can drastically
break the symmetry protection altogether, leading to new
preferred states. Our time-evolution and IQPE methods, hinging
on circuit recompilation, readily supports the study of strongly
correlated models, facilitating digital quantum computers as
alternative experimental platforms from existing ultracold
atomic lattices64 or photonic crystals65.
We consider two-body Hubbard interactions which have

been commonly used to model strong density-density inter-
actions64,66. Among the simplest 1D topological model with
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interactions is the SSH-Hubbard model, which has been
explored in various contexts67,68. We are interested in Hubbard
interactions that directly compete with the boundary-
localization of SSH topological modes. Specifically, we consider
interactions between all successive sites (U2), sites within the
same unit cell (U4), and same sublattice sites across adjacent
unit cells (U5). Our interacting SSH model is then obtained by
adding these interaction terms to Eq. (2), HSSH

full ¼ HSSH þ HSSH
int ,

with

HSSH
int ¼ �ðU2 þ U4Þ

PN
j¼1

cyj cjd
y
j dj

�U2
PN�1

j¼1
cyjþ1cjþ1d

y
j dj � U5

PN�1

j¼1
cyjþ1cjþ1c

y
j cj;

(4)

where cyj (d
y
j ) creates a fermion in the A (B) sublattice of the j-th

unit cell. We emphasize that these interactions are homo-
geneous across all unit cells, and do not induce boundary
effects on their own, without the interplay with topological
boundary localization. The schematic in Fig. 3a illustrates the
interaction terms in Eq. (4). The U4 and U5 terms are
intentionally chosen to induce asymmetry across the two
sublattices—they impact states with inhomogeneous polariza-
tions differently, such as SSH topological modes which occupy
one sublattice exclusively. We dynamically evolve on IBM Q
various boundary-localized 2-fermion states 2LR

�� �
, 2LAB
�� �

, 2LAA
�� �

,
2RAB
�� �

, 2RBB
�� �

, schematically shown in Fig. 3b. As before, the
superscripts indicate the edge localization (left/right) of the 2
fermions, while the subscripts indicate the occupied sublat-
tices; we remind the reader that the chain starts with an A-site
on the left.
Our chosen 2-particle interactions have enabled us to achieve

stable multi-fermion boundary states due to either topological
localization or interaction-induced polarization, and often the inter-
play of both. As such, we can for instance produce stable states
localized on a single boundary in HSSH

full , reminiscent of topological
states, but yet existing even in the topologically trivial regime of the
non-interacting part HSSH. The conferred stability generally increases

with interaction strength at diminishing returns; beyond U/w~ 10,
little additional stability is gained from stronger interactions. Yet, the
impact of the topological character of the non-interacting terms in
our systems remains significant even in the face of arbitrarily strong
interactions.
In Fig. 3c–d, we present the evolution of various boundary-

localized 2-fermion initial states subject to strong interactions U2,U4

or U5 of relative strength 10. While such strong interactions may
seem clearly dominant compared to the non-interacting HSSH part,
the topological character of HSSH still affects the evolution of most of
these states significantly. When U2 is switched on (Fig. 3c), 2LAB

�� �
(and

equivalently 2RAB
�� �

, not shown) retain near-perfect fidelity, even
when the chain is topologically trivial. For the 2LR

�� �
initial state

localized at both boundaries, topology enables a longer survival
time. To obtain stable 2-fermion states localized at a single boundary,
we may switch on U4 and U5; when U5 > 0, both types of left
boundary modes ( 2LAB

�� �
and 2LAA

�� �
) are stabilized. On the other hand,

to obtain stable right boundary states, we require U4 > 0 as well, such
as to balance with U5. This is reflected from the stability plot in
parameter space (Fig. 3e)—the time-averaged occupancy fidelity FO

for the left-localized 2-particle boundary states is minimal along the
U4=U5 diagonal, being greatly destabilized relative to the right-
localized modes. The preferential stabilization at either boundary by
U4 and U5 is a consequence of their coupling of specific sublattice
pairs on finite chains; when the interaction couples all sublattices like
for U2, two-fermion boundary modes are stable on both edges, and
the preferential stability is not observed.
Earlier, we showed that the stability of initial boundary states

can be maintained even when they differ rather significantly from
topological ansatz states (Supplementary Note 4). We now extend
the same remark to boundary states that are not topologically
protected, but which are conferred robustness under the
combination of topology and interaction-induced effects. In
Fig. 3f, we mix 2LAA

�� �
with 2LBB

�� �
perturbation, neither of which

are SPT, and examine their evolution under varying U2 interac-
tions. When U2= 0, as expected, FO is relatively low; but for U2 > 0
an increase in FO is observed, reaching≳ 90% for U2≳ 5/2.

a)

c)

SSH
Stable
Unstable

KC
Stable
Stable
Unstable

Unstable

Unstable

b)

Fig. 2 Multiple fermions on topological chains. a Schematic illustrating the enhanced stability of two-fermion edge states in HKC as
compared to HSSH. States not localized at edges are unstable. b 2-fermion time-evolution results for HSSH when ν= 1, with occupancy fidelity
preserved only for the initial state 2LR

�� �
, which is perfectly localized on both edges. The left-localized 2LAB

�� �
and 2LAA

�� �
states decay as rapidly as

1M
�� �

regardless of topology; indeed it is impossible to construct 2-fermion robust states localized on a single edge. c In contrast, HKC in the
BDI-class ν= 2 phase stabilizes the left-localized 2-fermion 2L

�� �
state, as well as various other states localized at both edges. Up to 4 fermions

can occupy the fourfold topological modes of HKC, as demonstrated in the D-class on 4LLRR
�� �

. In contrast to the non-topological middle-
localized 4M

�� �
, the boundary-localized 4LLRR

�� �
is greatly stable. Time-evolution results are for N= 6 unit cells (n= 12 qubit), with error bars

obtained from repeated experiments across different qubit chains and machines (ibmq_paris, ibmq_toronto, and ibmq_manhattan). Detailed
parameter specifications are given in Table 2.

J.M. Koh et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2022)    16 



This stabilization holds across a wide range of mixing amplitudes.
Most interestingly, the stabilization occurs only in the topological
phase of HSSH—indeed in the trivial regime, U2 has virtually no
effect on state stability. Hence, neither topology nor interactions
alone suffices to enable the observed perturbation-robust
stabilization of non-SPT states.
Similarly, one can study Hubbard interactions on the extended

Kitaev model. We again focus on interaction terms that induce
sublattice asymmetry, and thus left/right boundary asymmetry for
topological modes. The extended Kitaev chain (Eq. (1)), however,
has longer-range couplings compared to the SSH model (Eq. (2)).
The NNN hoppings and pairings were crucial in the non-
interacting model to demonstrate a richer topology, exhibiting
more than one pair of topological modes in the ν= 2 phase of the
BDI class. We thus consider interactions that compete with this
topology, specifically between occupied A-sites of NN (U2) an NNN
(U3) unit cells, with HKC

full ¼ HKC þ HKC
int,

HKC
int ¼ �U2

XN�1

j¼1

cyj cjc
y
jþ1cjþ1 � U3

XN�2

j¼1

cyj cjc
y
jþ2cjþ2; (5)

These interactions are schematically illustrated in Fig. 3a. In the
BDI class of the non-interacting part HKC, we dynamically evolve
the various 2-fermion states used earlier, 2LAA

�� �
and 2LBB

�� �
, which

now have large overlaps with the topological modes of the non-
interacting Kitaev chain HKC (see Fig. 3b for schematics). Recall that
the BDI-class of HKC can host up to two pairs of topological modes

at the two boundaries. As shown in Fig. 4a, the presence of either
interaction (U2 or U3) worsens the fidelity of all 2-particle boundary
modes when ν= 2. These interactions hence disrupt the
symmetry protection conferred in the BDI class. When ν= 1,
there is one fewer pair of topological boundary modes, but the
states 2LA0A

�� �
and 2RB0B

�� �
—which do not overlap significantly with

any non-interacting topological mode—now enjoy enhanced
robustness in the presence of interactions. Also, all edge-localized
modes can be made robust in the topologically trivial case ν= 0.
In the D class of HKC, we demonstrate that U3 interactions can

confer stability to 3- and 4- fermion states (Fig. 4b), which carry a
greater number of fermions on a boundary than available
topological modes, and are hence topologically unprotected.
The stability of SPT 2L12

�� �
is not destroyed when U3 is imposed, and

simultaneously the non-SPT 3LLL
�� �

and 4LLLR
�� �

are stabilized, in
both the γ= 0 topological and trivial phases of HKC, the latter
more pronounced. Though not shown in the main text, U2 has a
similar but weaker effect (see Supplementary Note 4). We are thus
able to engineer, in both HSSH and (both BDI- and D-classes of)
HKC, enhanced stability of edge modes that goes beyond what can
be achieved from standard topology alone. These results
demonstrate how NNN Hubbard interactions can lead to avenues
of interesting dynamical behaviour, which is not wholly surprising,
given that they are known to lead to new phases like topological
Mott phases in other contexts imbued with appropriate lattice
structure, for example, the honeycomb lattice69.

SSH = 10

SSH = 10 SSH = = 10

a) b) c)

d)

e) f)Interacting SSH Interacting SSH Perturbed

ℱ
ℱ ℱTopological Trivial

Interacting SSHg)

Topological Trivial

Fig. 3 Stabilizing 2-fermion states in the interacting SSH model. a Schematic illustration of the 2-particle Hubbard interaction terms HSSH
int

and HKC
int . b The various 2-fermion initial boundary states that we dynamically evolve. They are named according to the sublattice occupancy of

the two fermions—superscripts indicates the edges (left/right) the particles reside in, while subscripts indicate the occupied sublattices. c–d
Time-evolution results for 2-fermion initial states on HSSH

full . For H
SSH
full , both left (AA) and right (BB) boundary states are stabilized when U2 ≠ 0

only, while either AB states are preferentially stabilized when U5 ≠ 0 only and U4 ≈ U5. In addition, the left (AA) boundary state is stable when
U5 ≠ 0. e In the U4-U5 parameter space, having U4 ≈ U5 minimizes average occupancy fidelity FO of the 2-fermion left boundary state 2LAB

�� �
,

leading to fastest decay. f The U2 interaction can stabilize the perturbed state
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
2LAA
�� �þ a 2LBB

�� �
, in which neither of the constituent states

are topologically protected. This stabilization works only in the topological phase. g IQPE-obtained 2-fermion band structure of HSSH
full . An

additional interaction-induced band appears below, with bandgap increasing linearly with interaction strength. Time-evolution results are for
N= 6 unit cells (n= 12 qubits), with error bars obtained from repeated experiments; band structure results are on n= 7 qubits, one of which is
an ancilla; error bars smaller than plot markers. See Table 2 for detailed parameter specifications.
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Finally, we present the full two-fermion band structure of the
interacting SSH model (Eq. (4)) reconstructed on quantum
hardware using IQPE (Fig. 3g). Similar results are obtained
against U5 instead of U2 (Supplementary Note 4). With strong
interactions, an additional band of energies whose large gap
scales linearly with interaction strength appears. However, the
interpretation of this additional set of bands is not straightfor-
ward. The interacting Hamiltonian does not share the same
eigenstates as its non-interacting counterpart; in fact differ-
ences in eigenstate wavefunctions are drastic even for modest
U ~ v, w comparable to the non-interacting HSSH. One therefore
cannot hope to understand the separation of the band purely
using the non-interacting eigenstates. Moreover, ED reveals
that the band does not necessarily contain 2-fermion boundary-
localized modes, even though initial 2-fermion boundary-
localized states can be stabilized in some cases. The near-

perfect fidelity of these stabilized 2-particle boundary modes,
some representatives having been previously demonstrated
(Fig. 3), is due to strong overlap with one of the many
eigenstates ψj i of the interacting Hamiltonian; but the location
of ψj i in the band structure may be in either set of bands.

Discussion and outlook
By realizing the interacting extended Kitaev Chain on IBM
quantum computers, we have demonstrated how various
boundary states can be robustly preserved by topological
mechanisms of BDI- and D-class symmetries. Importantly, this
topological protection is not limited to topological eigenstates,
and interplays non-trivially with 2-body interactions and Pauli
exclusion statistics in multi-fermion settings. Most spectacularly,
we discovered avenues where interactions allow more fermions to
be stabilized at one boundary than suggested by the number of
available topological modes alone. Our work also illustrates how
tensor network-aided circuit recompilation techniques beyond
traditional trotterization enable the simulation and full band
structure reconstruction of complex topological Hamiltonians on
quantum circuits. Our approach can be further extended to more
sophisticated many-body interacting Hamiltonians, presenting
new opportunities and raising the state-of-the-art in the quantum
simulation of strongly correlated topological systems.

METHODS
Quantum simulation of state evolution
Given an initial state ψ0j i and a time-independent Hamiltonian H∈ {HSSH,HKC},
the time-evolved state is ψðtÞj i ¼ UðtÞ ψ0j i, with propagator U(t)= e−iHt. A
schematic of the quantum circuit performing time-evolution is given in Fig. 5a.
Traditional implementation of U(t) on quantum circuits entails expanding the
Hamiltonian H in the spin-1/2 basis and employing trotterization70,71; but
acceptable trotterization error requires numerous time steps, yielding
infeasibly deep circuits. Furthermore, each trotter step, comprising terms
e�iβσσΔt for Pauli strings σ and coefficients βσ (see Supplementary Note 3),
requires layers of entangling gates scaling with the weight of σ, thus impairing
its usefulness for models with longer-range couplings.
To transcend these limitations, we employ an implementation strategy

known as circuit recompilation, built upon prior studies50–52. A circuit

Table 2. Summary of parameter specification used in all figures.

Figure Regime Parameters

1a, 2b, 3c–g, SSH ν= 1 v= 1/2, w= 1.

SSH ν= 0 v= 3/2, w= 1.

1c, 2c, 4b KC BDI-Class ν= 2 μ= 1, v1=Δ1= 1/2, v2=Δ2= 5, ϕ=
0.

KC BDI-Class ν= 0 μ= 7, v1=Δ1= 5/2, v2=Δ2= 0, ϕ=
0.

KC D-Class γ= 0 μ= 1, v1=Δ1= 1/2, v2=Δ2= 5, ϕ=
π/4.

KC D-Class γ = 0a μ= 5, v1=Δ1= 4, v2=Δ2= 0, ϕ= π/
4.

4a KC BDI-Class ν= 2 μ= 1, v1=Δ1= 1/2, v2=Δ2= 5, ϕ=
0.

KC BDI-Class ν= 1 μ= 1, v1=Δ1= 2, v2=Δ2= 1, ϕ= 0.

KC BDI-Class ν= 0 μ= v1=Δ1= 5/2, v2=Δ2= 0, ϕ= 0.

aThis regime contains eigenstates that are adiabatically connected to the
ν= 0 phase as we approach BDI class (ϕ→ 0).

KC BDI-Class = 15 KC BDI-Class = 15a)

b)

Fig. 4 Stabilizing multi-fermion states in the BDI- and D-class interacting KC models. a In BDI-class HKC, the stability of 2-fermion boundary
states competes with the topological localization when interactions U2 or U3 are nonzero. U2 and U3 preferentially stabilize the left successive
sublattice A (AA0) and next successive sublattice A (A0A) modes respectively. b In D-class HKC, the U3 interaction stabilizes the 3- and
4-fermion states 3LLL

�� �
and 4LLLR

�� �
, which are unstable originally. Time-evolution results are for N= 5 unit cells (n= 10 qubits), with error bars

obtained from repeated experiments. See Table 2 for detailed parameter specifications.
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ansatz (Fig. 5c) comprising nL ≤ 8 repetitive layers of general U3 rotation
and CX entangling gates is iteratively optimized, through tensor network-
based quantum simulation72, to approach the intended unitary. Specifi-
cally, the U3 angles χ= (θ, ϕ, λ) are fine-tuned with L-BFGS-B with basin-
hopping (see Supplementary Note 3). We design the circuit ansatz to
contain no longer-range CXs, in order to conform to qubit connectivity on
hardware, and the CXs are placed in a brickwork pattern to maximize
entangling power, to accommodate the intended unitary in as few layers
as possible. This technique yields order-of-magnitude shallower circuits
than trotterization at comparable error rates, and is critical in our
acquisition of high-quality experiment data on NISQ hardware. For larger
fermion numbers (≥3), we improve the optimization procedure to focus on
the relevant sectors, referred to as sector-specific recompilation, so as to
overcome the impairment in performance brought about by the increased
entanglement in evolved states.
We employ error mitigation techniques to improve the quality of

hardware results—first, readout error mitigation (RO) reverses bit-flips
during measurement based on prior calibration of qubits25,53; second,
post-selection (PS) is performed on particle number25,54. Indeed, since
HSSH
full and HKC

full are number-conserving, time-evolved states that fall
outside the particle number sector of ψ0j i are unphysical and can be
discarded; no additional circuit depth is incurred since the measurements
for O suffice. To feasibly accommodate the number of qubits n used in
our simulations (7 ≤ n ≤ 13), we adopt a tensored RO scheme that differs
from the open-source implementation in Qiskit22. See Supplementary
Note 2 for an introductory overview of quantum computation, and
Supplementary Note 3 for technical details of our abovementioned
quantum simulation methods.
We end the section with a conceptual remark pertaining to the mapping

between the fermionic models and the spin-1/2 qubits on the quantum
computers. In traditional trotterization, the Jordan-Wigner or Bravyi-Kitaev

transforms70,71 map the fermionic Hamiltonian into spin chains; the
constituent Pauli strings are then naturally expressible on quantum circuits.
In comparison, using circuit recompilation, instead of assembling quantum
circuits from a fixed set of formulae, an approximate mapping between the
fermionic propagator and spin-1/2 quantum gates is dynamically
determined during optimization.

Iterative quantum phase estimation
Given U ψj i ¼ e2πiϕ ψj i for unitary U and eigenstate ψj i, IQPE estimates the
eigenphase ϕ ∈ [0, 1), in principle to arbitrary precision. Setting U= e−iHt

allows the inference of eigenenergy E=−2πϕ/t of ψj i. As mentioned,
compared to QPE57,58, IQPE circuits are shallower and require fewer qubits
—only a single ancilla qubit and a single controlled-unitary block is
required. There is no need for multi-qubit inverse Fourier transforms.
Truncating the binary expansion ϕ= 0. ϕ1ϕ2…ϕm to m bits, IQPE iterates
from k=m to k= 1; in iteration k, a controlled-U2k�1

block and a feedback
Rz(ωk)=−2π(0.0ϕk+1ϕk+2…ϕm) rotation are applied, and the ancilla qubit
is measured to determine ϕk. An IQPE circuit diagram is shown in Fig. 5b.
To minimize circuit depth, the initialization of ψj i and the controlled-

unitary block are implemented via recompilation; RO mitigation is applied
to all qubits, and PS is applied to the simulation qubits to select for specific
particle number sectors. Indeed, by performing IQPE over numerous ψj i—
which need not be exact eigenstates, since superposition states collapse at
measurement and yield expected eigenenergies nonetheless—the band
structure of the Hamiltonian H can be recovered at arbitrarily high
resolution. See Supplementary Note 3 for further implementation details.
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