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Reconfigurable quantum phononic circuits via
piezo-acoustomechanical interactions
Jeffrey C. Taylor 1,3, Eric Chatterjee2,3, William F. Kindel1, Daniel Soh 2 and Matt Eichenfield 1✉

We show that piezoelectric strain actuation of acoustomechanical interactions can produce large phase velocity changes in an
existing quantum phononic platform: aluminum nitride on suspended silicon. Using finite element analysis, we demonstrate a
piezo-acoustomechanical phase shifter waveguide capable of producing ±π phase shifts for GHz frequency phonons in 10s of μm
with 10s of volts applied. Then, using the phase shifter as a building block, we demonstrate several phononic integrated circuit
elements useful for quantum information processing. In particular, we show how to construct programmable multi-mode
interferometers for linear phononic processing and a dynamically reconfigurable phononic memory that can switch between an
ultra-long-lifetime state and a state strongly coupled to its bus waveguide. From the master equation for the full open quantum
system of the reconfigurable phononic memory, we show that it is possible to perform read and write operations with over 90%
quantum state transfer fidelity for an exponentially decaying pulse.
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INTRODUCTION
Phonons are becoming increasingly attractive for the processing
and transduction of quantum information. They provide direct
coupling to spins1–13, mediate photon-spin interactions14, and
couple to microwave frequency circuit QED systems via piezo-
electric15–30 and electromechanical31–42 interactions. Thus pho-
nons can connect many different quantum modalities over a
quantum network43 since they act as universal quantum
transducers9. In particular, when simultaneously localized with
photons in optomechanical crystals44,45, phonons interact strongly
enough to have their quantum states teleported over optical fiber
via optomechanical interactions17,18,46,47, thus presenting a route
to optical distribution and networking of microwave frequency
quantum information17,18,24–26,28–30,43. In addition, phonons yield
long decoherence times when operated at cryogenic tempera-
tures. For example, lithographically patterned single crystal
suspended silicon membranes cooled to cryogenic temperatures
have been shown to have phononic lifetimes that are more than 4
orders of magnitude larger than those of superconducting circuit
qubits at the same frequency48,49.
However, the promise of phononics for quantum information

applications hinges upon the enhanced functionality that could be
achieved with active50, as opposed to passive18,51,52, phononic
components. By dynamically reconfiguring phononic circuits, i.e.,
through deterministic tuning of the speed of sound, enhanced
functionalities arise that are not possible with static couplings and
static phase velocities. For example, a high-Q phononic cavity fed
by a waveguide can serve as a memory when the waveguide-
cavity coupling is dynamically switchable from weak to strong.
Phonons can be loaded into the cavity when the coupling is
strong, but long-duration storage with low decoherence necessi-
tates switching back to the weak coupling regime once they are
loaded. At present, the highest-Q cavities suitable for such
quantum information storage have been demonstrated in
suspended Si phononic crystal (PnC) membranes48,49, and
although electrical control of surface acoustic waves has been

demonstrated in LiNbO3
50, the loss channels affecting LiNbO3 PnC

resonators at cryogenic temperature53 have yet to be overcome to
match the performance of Si resonators.
Here we consider how silicon, a non-piezoelectric material, can

be mated with piezoelectric actuators to provide control over
phonon phase velocity to yield useful devices for quantum
information processing. This is analogous to the recent develop-
ments in piezoelectrically strain-tuned photonic integrated
circuits54–57. Instead of employing the electro-acoustic effect of
piezoelectric materials50, we show that acoustomechanical inter-
actions—the interactions of phonons with the materials that
guide them as those materials deform and strain—provide the
necessary tunability and reconfigurability to enable such phononic
circuits. Two principal acoustomechanical effects afford control of
the phase velocity of phonons: a moving boundary effect and an
acoustoelastic effect. These effects are analogous to the opto-
mechanical moving boundary44,58–61 and photoelastic62–64 effects,
which can be used to control the phase velocity of photons. We
employ an exemplary architecture, ScxAl1−xN piezoelectric actua-
tors integrated with silicon PnC circuits, to study how piezo-
electrically actuated strain can be used to produce these
acoustomechanical effects on demand. There are already existing
systems in which low-loss phonons are coupled to piezoelectric
actuators15,16,18,25. We provide a complete design and finite
element method (FEM) analysis of an achievable phase shifting
device architecture that employs a materials system that has been
effectively demonstrated in prior research18,65–68. We use the
phase-shifting waveguide as a building block to describe several
phononic integrated circuit components useful for quantum
information processing, including programmable multi-mode
interferometers (PMMIs), reconfigurable quantum memory qubits,
and addressable quantum memory registers. For the quantum
memory, we use the so-called Scattering–Lindblad–Hamiltonian
(SLH) quantum network formalism69 to describe quantum
information transfer between a flying phononic qubit in a
waveguide and a tunable ultra-high-Q phononic cavity. The SLH
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formalism yields a master equation for the full open quantum
system that we use to optimize the classical control fields and
achieve 90% fidelity in the quantum information transfer.

RESULTS AND DISCUSSION
Principles of an acoustomechanical phase shifter
To develop a strain-actuated phononic phase shifting device, we
must account for how mechanical deformations impact the phase
accumulated when a signal travels in a waveguide. In general, the
phase ϕ accumulated by a phonon propagating a distance L is
given by the product of L and the propagation constant k. By
straining the waveguide, both k and L are altered, and the first-
order difference in the acquired phase is

Δϕ ¼ Δk � Lþ k � ΔL: (1)

Figure 1 outlines how the acoustomechanical effects
contribute to the perturbations Δk and ΔL. The moving
boundary effect (Fig. 1(a)) arises because the modal dispersion
is a function of waveguide geometry. In a continuously
periodic waveguide, the moving boundary effect is captured
by the cross-sectional deformation and the change in path
length, but in a discretely periodic structure the changing
length of the unit cell is also pertinent. The moving boundary
effect is intrinsically coupled to the change of density within
the body, and both are captured by the Jacobian J of the
deformation, which is equal to the determinant of the
deformation gradient tensor and the inverse relative change
in density: J= ∣∂ri/∂Rj∣= ρ0/ρ, where r and R represent the
coordinates of a material particle in the strained and
unstrained states respectively70. The acoustoelastic effect
(Fig. 1(b)) results from strain dependence in the elasticity
tensor. Its scale is determined by intrinsic material properties
which are captured by extending the constitutive relation for
the elastic strain energy density W to third order. Details
regarding this hyperelastic constitutive model are included in

Supplementary Methods 1 and 2. Acoustomechanical effects
are analogous to optomechanical interactions in photonics71,
which also have both a material and geometric component: the
photoelastic and optical moving boundary effects, respectively.
Figure 1 (c) outlines the influence of a static perturbation on the

band structure of a phononic waveguide such that a point
identified with an operating frequency (ki, ω0) becomes (ki, ω0+
Δω). The propagation constant for a wave traveling in the
perturbed structure at ω0 must change by ∣Δk∣= ∣kf− ki∣= (dω/
dk)−1Δω= Δω/vg, where vg= (dω/dk) is the local group velocity.
Therefore, the bandstructure—and in particular the group velocity
—of the guided mode mediates the responsiveness of the
waveguide to the acoustomechanical effects, a fact that we will
exploit here.
In the FEM modeling that follows, we calculate Δk by

considering a unit cell of a discretely periodic waveguide being
quasi-statically strained. With Floquet boundary conditions, we
use FEM to solve for the phonon dispersion as a function of k
across the first Brillouin zone and evaluate vg as a function of k.
Placing bias on the piezoelectric actuators in our simulation
leads to a solution for Δω relative to the unstrained state of the
system. Floquet periodicity isolates the moving boundary
effect within a single waveguide period from the overall
change in path length since it provides a solution for the
dispersion when the unit cell deforms both longitudinally and
cross-sectionally in response to strain.
The additional path length modulation ΔL not captured by the

discretely periodic system depends on the boundary conditions,
the geometry of the piezoelectric loading, and the overall length
of the waveguide. We calculate ΔL by specifying a complete
device geometry and finding the stationary state of the system
when bias is applied to the piezoelectric actuators. We will show
that the overall change in path length ΔL is small and, at least in
the specific example we model, leads to an offset in Δϕ that is on
the order of 1% relative to the change in phase associated with Δk.

Fig. 1 Acoustomechanical impact of strain on a waveguide. a The moving boundary effect describes the change in propagation constant
with a modified cross-sectional geometry and density. The Poisson effect leads to an additional phase shift accumulated from the change in
path length. b Single-crystal silicon behaves acoustoelastically at high strain, resulting in a nonlinear elasticity tensor. c Schematic of band
perturbation under an applied strain. When the operating point shifts from (ki, ω0) to (kf, ω0) a phase shift will accrue over the length of the
strained waveguide.
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Piezoelectrically actuated phononic phase shifter
To realize a phononic phase shifting device, we must specify a
system geometry and assess the voltage dependence of the phase
shift that is induced for signals in a waveguide. Two steps,
corresponding to the two terms in Eq. (1), are required to estimate
the effectiveness that our phononic waveguide system provides
for inducing a phase shift. First, we consider a single period
computational structure with infinitely periodic Floquet boundary
conditions to estimate the phase shift induced by the acousto-
mechanical effects. This periodic system yields an estimate of Δk ⋅
L. Then we construct a finite structure and solve for its stationary
state when bias is applied to the piezoelectric actuators so that we
can obtain a measure of k ⋅ ΔL. Since both terms in Eq. (1) depend
on the operating point in the guided band, the capacity for
shifting the phase depends on this choice of (k0, ω0).
Figure 2 presents our exemplary phase shifter system geometry.

As in ref. 18, this structure could be fabricated on silicon on
insulator (SOI) wafers such that the functional portion of the
device is situated on a suspended Si membrane where the
intermediate oxide layer has been etched away, for example in a
vapor HF process. We assume that the top device layer of the SOI
is 250 nm thick. To ensure ultra-low propagation losses48,72, five
periods of PnC cladding surround the waveguide defect, which
spans 3 periods. The PnC structure is modeled after the acoustic
shielding used in ref. 48, except for the difference in the thickness
of the SOI wafer’s device layer. The PnC lattice has a pitch a= 530
nm and is defined by holes with geometrical parameters
(expressed in units of a) of width w= 0.31, height h= 0.925,
inner radius of curvature r1= 0.1067, and outer radius of curvature
r2= 0.1022. The infinitely periodic two-dimensional structure
yields a bandgap that extends for nearly 1 GHz both below and
above our targeted operating regime near 5 GHz. The waveguide
is oriented along the [110] direction in the Si lattice. Its
geometrical structure is defined by a central elliptical hole with
a major axis of size h and a minor axis of 0.4h. In addition, the PnC
holes adjacent to the ellipse have outer radii of curvature

increased to a maximal value of rd= (h−w)/2− r1. The resulting
guided band is isolated in frequency at approximately 5 GHz, has a
symmetric displacement profile with respect to its y and z mirror
planes, and has normal dispersion across the entire Brillouin zone.
Sc0.32Al0.68N piezoelectric actuators are made adjacent to the
waveguide to provide strain tuning, and the actuators are
assumed to be suspended for 5 μm on either side of the PnC. A
spacing of 1 μm exists between the PnC and the actuators. The
actuators operate under the influence of a vertical field and
require electrodes above and below the piezoelectric material,
which is 250 nm thick. The bottom electrode of the actuators is
assumed to be constructed in the Si device layer using high
doping that yields metallic electronic conduction68 while the top
electrode is constructed from 75 nm of Al.
Figure 3 shows the strain induced by biases of −50 V and +50 V

across the piezoelectric actuator. The mechanical response of the
system is shown in Fig. 3(a, c), with a 10× augmentation in the
displacement and the transverse strain field syy. Bowing in
the membrane arises due to the asymmetric loading caused by
the top-only placement of the piezoelectric film, which is
consistent with the limitations of multilayer microfabrication
techniques. In Fig. 3(b), the variation in the frequency shift Δf=
Δω/2π across the Brillouin zone is plotted for both the −50 and
+50 V biases, showing that the band frequencies shift by over a
MHz at these biases. In addition, the 50 V transfer function for the
displacement of a representative point in the center of the
waveguide is shown in Fig. 3(d). The first resonance is found at 14
MHz, yielding a minimum switching time of 71 ns.
To analyze the acoustomechanical phase shift Δk ⋅ L we focus on

a particular operating point at 5.1406 GHz with kx= 0.6897π/a and
vg= 312 m/s. This operating point is designated with a double
arrow in Fig. 4(a), which shows the group velocity vg plotted
alongside a magnified plot of the guided modal frequencies.
Biasing the actuators will cause a shift in frequency from which we
can calculate Δk, as described in the previous section. To
incorporate the acoustoelastic effect, we employ a hyperelastic

Fig. 2 Structure of the phase shifter. a Three-dimensional rendered view of a phase shifting waveguide that is 20 periods long. The
waveguide and 5 μm of actuator adjacent to it on either side are suspended. b Geometrical definition of the plan view structure of the PnC
alongside the computed bandstructure. c Plan view geometry of the waveguide. d Bandstructure for the waveguide showing that there is a
fully symmetric mode (blue points) that is isolated in frequency and which is monotonically increasing as a function of kx. The bands are
colored according to their symmetry properties. The overbars in the legend denote inversion symmetry. The insets show the displacement
profiles of the mode at the center of the Brillouin zone and at kx= 0.6897π/a.
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material model with a constitutive relation for the elastic strain
energy density W that includes the effect of the third-order elastic
moduli73. In a hyperelastic material, W exists such that Tij ≡ ∂W/
∂sij

74. When only the second-order elastic strain energy is included
and W=W2, the hyperelastic constitutive relation is equivalent to
the conventional definition of the elasticity tensor via the stress-
strain relation Tij= cijklskl. Including the third-order term W3 in the
elastic strain energy models the acoustoelastic effect and yields a
strain-dependent correction to the stress tensor which we call the
‘phonoelastic’ tensor, the components of which are derived in
Supplementary Note 1 for the case of diamond cubic Si. The
variation of Δf with V, both including (W=W2+W3) and
excluding (W=W2) the third order strain energy term is shown
in Fig. 4(b). The acoustoelastic effect reverses the polarity and
alters the magnitude of Δf, showing that optimization of phase
shifts in these systems requires a careful design that takes into
account both the acoustoelastic and moving boundary effects. A
similar calculation for an alternative waveguide geometry with
a= 2.07 μm, and which operates near 1.5 GHz, is presented in
Supplementary Note 2 and shows only a marginal contribution
from W3. In both cases, there is a significant nonlinearity in Δf that
arises due to the broken symmetry in the placement of the
piezoelectric actuators. If the piezo load could be exclusively
applied in the plane of the PnC membrane, the variation of Δf with
V would be linear (Supplementary Note 3).
The total phase shift accumulated over a length L of strained

waveguide is given by the product of L ⋅ Δk. If we assume that the
desired phase shift ranges from −π to +π, we can express the
device length needed as a function of the actuator bias,

Lðk; VÞ ¼ vgðkÞ
2 � jΔf ðk; VÞj (2)

where the sign of Δf determines whether the phase velocity
increases or decreases. For the device described in Figs. 2 and 3, a
negative (positive) bias with tensile (compressive) syy strain yields
a forward (backward) phase shift because the frequency shift is
negative (positive). Since the frequency shift is nonlinear, voltages
of differing magnitudes are required for positive and negative
phase shifts if the length is held constant, as illustrated in Fig. 4(c).
In a linear system in which the piezo load could be exclusively
applied in the plane of the PnC membrane, the figure of merit for
a phase shifter would be the product (V⋅L)π but this quantity does
not yield a linear relation due to the underlying nonlinearity in Δf,
as shown in Fig. 4(d). Despite this bowing-induced nonlinearity,
the 5 GHz system described here is stiff enough to achieve
compressive stress at positive bias, although the phase shifting
response in compression is muted. As the extent of the
piezoelectric transducer’s overhang increases, the tensile phase
shift at negative bias improves at the expense of the compressive
phase shift at positive bias and the switching time. These effects
are demonstrated by the 1.5 GHz system described in Supple-
mentary Note 2, which we present with a membrane overhang
that extends for more than 5× longer than we have specified in
the 5 GHz system.
In order to use these phase shifters for quantum or classical

information processing, the propagation loss incurred over the
length of the phase shifting waveguide must be small. We
consider two loss mechanisms: intrinsic losses from phonon-
phonon scattering and two-level systems48 and Anderson
localization like defects from fabrication imperfections. Regarding
intrinsic mechanisms, refs. 48,49 provide experimental demonstra-
tions of PnC resonators in suspended Si that yield qubit lifetimes
in excess of 1 s in a 10’s of mK cryogenic environment. The
suspended Si membrane waveguide we have described above has

Fig. 3 Effect of bias. a, c Displacement at −50 V and +50 V with a 10× enhancement. The transverse normal component of strain field syy is
plotted according to the color scale. b Frequency shift Δf evaluated across the entire Brillouin zone at both −50 V and +50 V. d The frequency
response of the system where the total displacement for a representative point in the center of the waveguide is plotted versus frequency.
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similar critical dimensions, requires identical fabrication techni-
ques, and operates in the same cryogenic conditions. Therefore,
we expect that the energy decay length in our waveguide should
be of commensurate order to the product of the lifetime of the
previously demonstrated resonators (≳1 s) and the speed of sound
(phase velocity) for the waveguide, which at the operating point
we have described is approximately 7900m/s. Thus the 1/e energy
decay length is greater than 1 km, whereas the necessary length
to achieve a ±π phase shift in our devices is on the order of 10’s of
μm. The waveguide transmission expected over a 10 μm phase
shifter is expð1� 10�8Þ, so there is essentially no intrinsic
waveguide loss at the relevant length scale. With respect to
Anderson localization, as is true for slow light photonic
waveguides75, defects in the fabrication of our phononic system
will yield localized resonances (cavities) along the waveguide. This
additional source of loss also does not appear to be an issue at the
relevant length scales and frequencies. In particular, ref. 76

demonstrates a phononic cavity fabrication precision of ±0.3%
relative to a center frequency of 6 GHz, with a phonon
transmission of 89% between two cavities spaced 43 μm apart
for waveguides with a similarly low group velocity to those we are
proposing. The loss of 11% along that waveguide was measured
at room temperature and is due to loss mechanisms that vanish at

cryogenic temperature, leading to the ultra-long decoherence
times measured in refs. 48,49.
To assess the purely mechanical phase shift arising from the

change in path length, we construct a finite structure in which the
piezoelectric actuator extends for the central 20-periods of a
waveguide that is 220 periods long. The details of this calculation
are provided in Supplementary Note 4. For the operating point at
k= 0.6897π/a and a voltage of −50 V, this finite structure yields a
phase shift due to the mechanical change in path length k ⋅ ΔL
that is approximately 0.1°. Since Δk ⋅ L ≈ 97° over 20 periods of the
periodic phase shifter structure at −50 V, we conclude that the
phase shift captured by the periodic computational system will be
dominant in our phase-shifting device structure.

Quantum information processing devices
In the following sections, we describe how our phononic phase
shifting device platform can be applied to store, route and process
quantum information. Storage is accomplished by implementing a
phononic cavity with tunable coupling. Information can be routed
and processed with Mach–Zehnder interferometers (MZI). In
addition, our waveguide geometry lends itself to fine tuning of
dispersion (Supplementary Note 5) and suggests the construction
of mirrors with tunable reflectivity (Supplementary Note 6). When

Fig. 4 Phase shifter performance. a The group velocity and frequency of the waveguide band, with an arrow designating the operating point
at kx= 0.6897π/a. b Voltage dependence of Δf computed using two different constitutive relations. c Waveguide length L±π versus applied
bias, showing the conditions required to achieve a ±π phase shift. d The figure of merit (V⋅L)π plotted versus V, emphasizing the effect of the
bowing deformation on the phase shift.
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these elemental phononic devices are coupled to superconduct-
ing circuits via piezoelectric interactions18, more advanced
quantum information processing operations result. For example,
we later describe how an addressable quantum memory arises
from using MZI as unitary transformation operators on waveguide
spatial modes. The interferometers can direct signals into qubit
memories comprised of cavities with tunable coupling. In addition,
since the SOI fabrication process is scalable, our device platform
could be used to yield large networks of MZI for universal linear
phononics, as has been shown with photonics77.

Phononic cavity with tunable coupling
To construct a phononic cavity with tunable coupling suitable for
a quantum memory device, we combine a pair of the phononic
phase shifters described above with a cavity of high intrinsic Q,
following an analogous photonic device experimentally demon-
strated in ref. 78. In this scheme, a high-Q cavity serves as a storage
medium where the cavity’s coupling to a bus waveguide can be
controlled via interferometrically combining the leakage channels
in two different directions. Consider the cavity evanescently
coupled to a phononic waveguide shown in Fig. 5(a). This cavity
has an isolated resonance at 5.14 GHz with a fully symmetric
displacement profile (Supplementary Note 7). Thus it can couple
with the previously described operating point in the guided band
of our phase shifting waveguide. Based on recent results48,49, we
assume that the cavity is at cryogenic temperatures and has
intrinsic Q in excess of 1010 so that its intrinsic loss rate κi is on the
order of 2π × 1 Hz. The evanescent coupling is characterized by a
raw output coupling rate κe in each direction along the
waveguide. To capture a flying phonon incident on the cavity
from the waveguide, κe must be greater than bandwidth of that

flying phonon. This can be achieved by adjusting the proximity of
the cavity and waveguide through the phononic lattice or by
modifying the geometry of the lattice between them.
A block diagram of the essential components for the

memory architecture is shown in Fig. 5(b) and a schematic of
a possible realization is shown in Fig. 5(c). There are two-phase
shifters involved, but the essential operating components for
the memory are constituted by the subsystem that is
demarcated with a dashed line in Fig. 5(b). Along with the
mirror, this subsystem consists of the cavity and the principal
phase shifter to the right of the cavity. Quantum information
traveling along the waveguide interacts with the phonon cavity
twice, once traveling to the right and a second time traveling
from the left after reflecting from the mirror. The system
dynamics result from an interference of three waves at the left
output port of the cavity: (1) the input wave that is transmitted
past the cavity, (2) the raw rightward-traveling output from the
phonon cavity, and (3) the raw leftward-traveling output.
Waves (1) and (2) have a round trip propagation phase that is
dependent on the state of the principal phase shifter, allowing
for the interference between each of these waves and wave (3)
to be controlled. The system functions as a memory when the
phase shift induced by the principal phase shifter during the
round trip is tuned so that the net leftward-traveling output
from the cavity is nulled and the net coupling is minimized. The
larger input-output (IO) phase shifter on the left side of the
schematic functions in opposition to the principal phase shifter
and ensures that the output from the overall system is in phase
with the input.
In the context of this phononic memory scheme, reliably

capturing a signal requires tailoring the coupling dynamics between

Fig. 5 Phononic memory architecture. a Phononic cavity with an isolated resonance at 5.14 GHz. The cavity has an intrinsic loss rate κi ~ 1Hz
and an extrinsic loss rate κe which can be tuned by adjusting the spacing between the cavity and the waveguide. b Block diagram showing
the essential components of the system. c Schematic structure of the phononic quantum memory device.
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the waveguide and cavity to the signal’s pulse shape. To define the
pulse shape, we consider the example of a flying phononic input
signal in the waveguide that originates from the decay of a 5.14 GHz
superconducting qubit that is coupled to the waveguide via the
piezoelectric effect18. We assume that the superconducting output
resonator and the phononic waveguide are coupled with a fixed
rate r, yielding an exponentially decaying acoustic pulse shape with
power decay rate r. The total transfer time between the super-
conducting output resonator and the phononic cavity, including the
intermediate decay process into the phononic waveguide, must
happen faster than the qubit’s coherence time T�

2. To meet this
requirement, we choose a decay rate r= 2π × 100 kHz that is greater
than an order of magnitude faster than state-of-the-art transmon
qubit decoherence rates 79–81. Finally, we can choose a nominal
value for the extrinsic waveguide-to-cavity coupling rate of κe= 3r
that will enable effective capture of our signal prototype by ensuring
that the waveguide-to-cavity coupling is faster than the resonator-
to-waveguide coupling.
Since the cavity acts as an open quantum system (coupled

with the environment), it is important to go beyond the
traditional Hamiltonian formalism that governs a closed Hilbert
space. Instead, we adopt the quantum input-output theory in
the Markovian limit82 and apply the SLH formalism69. This is
justified by the fact that the input acoustic wave carries a single
quantum of mechanical vibration, which is either lost to the
large environment or transferred to the cavity as stored
information. Since the loss rate from the cavity is much less
than the oscillation frequency, it can be modeled as a nearly
closed Hilbert space with only a perturbative coupling to the
environment. Propagation losses that occur continuously in the
waveguides would typically be modeled as discrete losses,
implemented by including a beam splitter in the path of the
waveguide with a beam splitter ratio that corresponds to the
waveguide loss. As discussed above, the propagation losses
that occur over the 10’s of μm lengths needed to construct our
quantum memory device are of the order 10−8. As we will
show, the infidelity of our system is of order 10−1 to 10−2; thus,

we can safely ignore the contribution to the infidelity resulting
from propagation losses.
In the Heisenberg picture, the master equation governing the

time-evolution of the annihilation operator ac for the bosonic
quantized field in the phononic cavity for this system is
(Supplementary Note 8):

_ac ¼ � 1
2

4κecos
2 θðtÞ

2

� �
þ κi

� �
ac � 2

ffiffiffiffiffi
κe

p
cos

θðtÞ
2

� �
ain �

ffiffiffiffi
κi

p
f i;

(3)

where θ(t) represents the temporal profile of the phase shift
induced by the principal phase shifter upon the rightward-
traveling output, −θ(t)/2 represents the profile of the phase shift
induced by the IO phase shifter upon the overall (rightward-
traveling) input and overall (leftward-traveling) output each, ain is
the input field, and fi is the vacuum input through the intrinsic loss
channel. We also obtain the following input-output relation:

aoutðtÞ ¼ ainðtÞ þ 2
ffiffiffiffiffi
κe

p
cos

θðtÞ
2

� �
ac: (4)

The system behaves as a single conventional resonant cavity
with no scattering from input to output, and also possesses a real-
valued raw output amplitude rate of 2κeð1þ cosðθðtÞÞÞ.
The fidelity is maximized by optimizing the phase profile θ(t)

that is applied to the phase shifters. See Supplementary Note 9 for
a derivation of this optimal profile, which we calculate as the
following:

θðηÞ ¼
0; 0< η< ηc

cos�1 r
2κe

e�
r
κe
η A1 � A2e

� r
κe
η

� ��1 � 1
� �

; η> ηc

(
; (5)

Fig. 6 Simulation result of the phononic cavity with tunable coupling. The simulation parameters can be found in the main text. a Fidelity
as a function of r/κe. b θ(t), with time in units of 1/κe, given r= κe/3. c Maximum fidelity as a function of δM, and the corresponding δC.
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where η= κet denotes time in dimensionless phase units, and the
constants A1, A2, and ηc are defined in the following manner:

A1 ¼ 16

4
ffiffiffiffi
κe
r

p þ
ffiffiffiffi
r
κe

q� �2

8
4þ r

κe

 !� 8
4� r

κe

þ 8
4þ r

κe

 !� 2
4κer �1

; (6)

A2 ¼ 1; (7)

ηc ¼
2

4� r
κe

ln
8

4þ r
κe

 !
: (8)

Note that in time units, tc= ηc/κe represents the threshold time
at which the cavity is sufficiently populated such that the net
output coupling profile (a function of the phase θ) can thereafter
be dynamically tuned so as to zero out the net input-output loss
through destructive interference between the reflected rightward-
traveling input and the raw leftward-traveling output of the cavity-
mirror system. The fidelity as a function of r/κe is shown in Fig. 6(a).
Given the ratio r/κe= 1/3, the optimal phase profile (Fig. 6(b))
yields a fidelity of 96.9%. The rate of increase of the phase profile
sets the scale for the necessary switching time of the phase shifter,
while the lengths of the phase shifters dictate the voltage scale

required on each one following Fig. 4(c). The maximum rate of
increase for the phase is limited by the 14 MHz resonance in the
transfer function (Fig. 3(d)), which corresponds to a rate of change
dθ/d(κet) ≈ 23 for κe= 2π × 300 kHz. We satisfy this condition by
setting the time interval between consecutive discrete phase
values such that the slope never exceeds the above value. In
particular, the rise is sharpest immediately after the critical time tc
is passed. Here, we find that setting the next point in time as
1.1κetc keeps the slope within the physically achievable range. This
corresponds to a time interval of 0.1κetc. A full-quantum
simulation on QuTiP (Quantum Toolbox in Python)83 reveals that
the fidelity remains at 96.9% (equivalent to the value calculated
for continuous time) even with this interval, implying that the time
steps are sufficiently Riemann-like. However, this idealized fidelity
calculation does not account for the finite time that it takes for a
signal to propagate through the principal phase shifter and return
to the cavity. During this interim, the population of the cavity
changes, thereby disturbing the carefully designed destructive
interference between the leftward-traveling input and the
leftward-traveling raw output and resulting in increased loss.
See Supplementary Note 10 for a detailed derivation of the time-
evolution of the cavity operator in the presence of delay. For a
given round trip time δF from the cavity to the mirror and back, a
time lag can be introduced to the phase profile of the mirror as

Fig. 7 SU(2) phononic Mach–Zehnder interferometer switch. a Schematic diagram. b Phase shift L ⋅Δk versus voltage V for a 100 period
phase shifter operated at 5.1406 GHz with kx= 0.6897π/a. c Output power as a function of phase shifter bias for the Mach–Zehnder
interferometer.
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well as to the temporal profile of the cavity detuning. We label
these time delays as δM and δC, respectively. For δF ≈ 60 ns, Fig. 6
(c) depicts the results of a numerical simulation calculating the
maximum fidelity as a function of δM, along with the correspond-
ing value of δC. The maximum fidelity approximately equals 89.0%,
attained when δM= 21 ns and δC=−34 ns.
Because the signal must pass by the cavity and reflect back to

the cavity before the interference effect can take hold, we must
minimize the time cost associated with instantiating the
interference in order to maximize the fidelity of the transfer.
Therefore, in our suggested device realization shown in Fig. 5(c)
the more capable tensile operating sense is employed for the
principal phase shifter, which extends for only ten periods. The
cladding surrounding the cavity extends for seven periods, and
there is an additional one period separating the phase shifter and
the cladding, so the total path length in the waveguide between
the cavity and the mirror is 18 periods, or 9.54 μm. Since vg= 312
m/s, the time delay δF associated with a signal passing from the
cavity, through the principal phase shifter, reflecting at the mirror,
and returning to the cavity is 61 ns. The voltage required to
achieve a +π phase shift in the principal phase shifter is
approximately −85 V. On the other hand, since the time it takes
for the signal to pass through the IO phase shifter does not affect
the transfer fidelity of the memory, we relax the length
requirement on it to 40 periods. Consequently, the bias required
for a −π phase shift upon passing twice through the input phase
shifter is +35 V.
Improving the fidelity of the device specified in Fig. 5(c) above

90% is immediately possible by shortening the length of the
principal phase shifter, necessitating an increased bias on its
piezoelectric actuators. Since δF determines the fidelity limit,
additional improvements could be made by identifying a
waveguide geometry that yields a larger phase shift at a higher
group velocity to decrease the time cost associated with trapping
the qubit in the cavity. Decreasing the operating voltage would
improve the compatibility with the cryogenic environment in
which the system will exist. We hypothesize that further study of
the scaling of the acoustoelastic effect with decreasing feature
size could yield an augmented frequency shift. Smaller feature
sizes would likely increase the operating frequency and also place
more stringent the demands on the electron beam lithography
process required to fabricate the PnC and waveguide.

Programmable multi-mode phonon inteferometers
In photonic information processing, MZI are critical building blocks
for both classical and quantum applications because they can be
multiplexed together to provide an SU(N) transformation from N
input spatial modes to N output modes84. The same is true for
phononic processors. Figure 7(a) shows an SU(2) transformation

Uð2Þ ¼ i
eiϕ=2 sin θ=2 eiϕ=2 cos θ=2

e�iϕ=2 cos θ=2 �e�iϕ=2 sin θ=2

 !
(9)

that would be achieved by arranging the previous section’s phase
shifters in differentially biased pairs both between (θ) and after (ϕ)
a pair of 50:50 beam splitters and combiners. The mode-
combining and mode-splitting directional couplers convert input
modes a1 and a2 into output modes b1;2 ¼ ð1= ffiffiffi

2
p Þða1;2 þ ia2;1Þ

and can be realized by evanescently coupling the PnC
waveguides85.
For specificity, we assume that the phase shifters in this

structure are 100 periods long, and that the same 5.1406 GHz
operating frequency is employed as was used in the above
sections. Figure 7(b) shows the relationship between voltage and
phase for a single phase shifter, using the data from Fig. 4. As an
example of how the 2-mode interferometer operates, consider the
case where an incoming signal is present in only one of the input

channels of the interferometer. The power in the two inter-
ferometer outputs is a function of the phase difference θ between
the two paths and is proportional to ð1 ± sin θÞ=2. The bias levels
on the phase shifters are specified on the abscissas in Fig. 7(c),
showing that the complete range of interference between the
channels is accessible at less than ±25 V.
Cascading networks of these SU(2) transformations enable

PMMIs to be created that implement SU(N) transformations
between N inputs and N outputs84. These piezoelectrically
actuated, acoustomechanically tuned phononic PMMIs would be
highly analogous to recently demonstrated piezoelectrically
actuated, optomechanically tuned photonic PMMIs55. Combining
these PMMI-enabled SU(N) transformations with non-classical
phononic sources such as Fock states or squeezed states would
enable universal linear phononic quantum processing, analogous
to universal linear quantum optical processors77. Finally, by
combining these PMMI-enabled SU(N) transformations with the
quantum phononic memory elements described above, an
addressable quantum memory register can be created. In this
way, M phononic modes can be coupled with arbitrary amplitudes
and phases to N quantum phononic memory qubits, where M ≤ N.
We sketch one possible network structure in Fig. 8, where six
phononic qubit input modes can be routed into any one of six
memories through a six-mode PMMI using the decomposition
algorithm from ref. 86. The phase screening element D preceding
the PMMI consisists of phase shifters on each of the input ports
and is required to realize any arbitrary transformation in U(N)84. An
alternative formulation of the phase screen is possible such that it
follows the PMMI transformation86,87.
As discussed previously, propagation losses in cryogenic

suspended Si PnC waveguides are negligible at the length scales
necessary to produce the MZI arrays in question. Therefore, the
performance of the MZI arrays will be mainly determined by the
quality of the splitting and combining elements. Like their
photonic crystal waveguide counterparts, such splitting and
combining elements rely on the simple physics of the overlap of
the phononic exponential tails in regions where the waveguides
are evanescent. The feasibility of constructing such systems has
been shown in recent experiments88,89, and thus high-fidelity
PMMI-enabled SU(N) transformations should be viable.
We have proposed harnessing piezo-acoustomechanical inter-

actions in non-piezoelectric materials induced by strain actuators
to engineer a promising class of phononic phase-shifting devices.
Quantum information processing elements such as PMMIs,
reconfigurable quantum memories, switches, and tunable mirrors
can be constructed by integrating phase-shifting elements into
PnC waveguide circuits. Although we have focused on a particular
set of materials, ScxAl1−xN films deposited on SOI wafers, the

Fig. 8 Schematic of an addressable phononic memory con-
structed from a PMMI terminated with an array of cavities that
can store quantum phononic information. The phase screening
elements in D, shown as gray boxes, represent single-mode phase
shifters (Fig. 2) while the blue boxes represent the U(2) MZI elements
(Fig. 7) that make up the PMMI, and the green boxes represent
cavities with tunable coupling (Fig. 5).
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design concepts we have presented are also applicable to LiNbO3,
diamond, GaAs, and other low loss acoustic materials that are
amenable to phononic information processing25. For example,
incorporating the nonlinear piezoelectric effect90 could aid in the
design of quantum phononic components in LiNO3 and GaAs,
both of which benefit from prior studies regarding of higher order
constitutive properties91,92. The 43m point group of GaAs also
shares the same symmetry reduction in the third order elastic
moduli as the m3m point group of Si93, so the elastic constitutive
model applied here is directly transferable to GaAs. While this
paper has focused on using quasi-static strain with piezoelectric
transducers to produce the requisite modulation of phonon phase
velocity, it may also be possible to use microwave frequency
control fields and intrinsic acoustic nonlinearities (analogous to χ(2)

and χ(3) optical nonlinearities) to dynamically modulate cavity
coupling rates and reconfigure circuits94,95. We anticipate that
further exploration of acoustomechanical interactions in these
material platforms will yield a rich variety of quantum information
processing devices that have the potential to form the building
blocks of a generation of quantum hardware where quantum
information processing and storage takes place in the phononic
domain.

METHODS
Finite element modeling was performed using COMSOL Multiphysics96.
Silicon was modeled as a hyperelastic material with a user-defined elastic
strain energy density. Additional information regarding COMSOL imple-
mentation and computational methodology is provided in Supplementary
Methods 3 and 4. We analytically solve for the optimal phase shift temporal
profile and input-to-resonator fidelity from the SLH equations by following
the procedure from ref. 97. The associated numerical simulations were
performed using Matlab98.
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