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How to build Hamiltonians that transport noncommuting
charges in quantum thermodynamics
Nicole Yunger Halpern 1,2,3,4,5,6✉ and Shayan Majidy 7,8✉

Noncommuting conserved quantities have recently launched a subfield of quantum thermodynamics. In conventional
thermodynamics, a system of interest and an environment exchange quantities—energy, particles, electric charge, etc.—that are
globally conserved and are represented by Hermitian operators. These operators were implicitly assumed to commute with each
other, until a few years ago. Freeing the operators to fail to commute has enabled many theoretical discoveries—about reference
frames, entropy production, resource-theory models, etc. Little work has bridged these results from abstract theory to experimental
reality. This paper provides a methodology for building this bridge systematically: we present a prescription for constructing
Hamiltonians that conserve noncommuting quantities globally while transporting the quantities locally. The Hamiltonians can
couple arbitrarily many subsystems together and can be integrable or nonintegrable. Our Hamiltonians may be realized physically
with superconducting qudits, with ultracold atoms, and with trapped ions.
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INTRODUCTION
One of thermodynamics’ most fundamental and ubiquitous interac-
tions is the exchange of quantities between a system of interest and
an environment. Example quantities include energy, particles, and
electric charge. As the quantities are conserved globally, we call them
‘charges.’ (We call even the local quantities ‘charges’ for convenience,
even though the quantities are not conserved locally). Such
exchanges happen, for example, in electrochemical batteries, in a
cooling cup of coffee, and when a few spins flip to align with a
magnetic field. Given such exchanges’ pervasiveness, studying their
quantum facets is essential for (i) developing the field of quantum
thermodynamics1,2 and (ii) discovering nonclassical features of
quantum many-body thermalization in condensed matter; atomic,
molecular and optical (AMO) physics; high-energy physics; and
chemistry. One important quantum phenomenon is operators’ failure
to commute with each other: Noncommutation underlies uncertainty
relations, measurement disturbance, and more. Therefore, studying
exchanges of noncommuting charges is crucial for understanding
quantum thermodynamics. As a result, noncommuting charges have
been enjoying a heyday3–29 in quantum-information-theoretic (QIT)
thermodynamics.
Lifting the assumption that exchanged charges com-

mute3–5,13,14,27,30,31 has led to discoveries of truly quantum thermo-
dynamics. Example discoveries include a generalization of the
microcanonical state5, resource theories3–8,32, a generalization of the
majorization preorder9, a reduction of entropy production by charges’
noncommutation10, and reference-frame designs11,12. These discov-
eries and others have turned noncommuting thermodynamic charges
into a growing subfield.
Most of the discoveries have, until recently, belonged to QIT

thermodynamics. However, given their fundamental and non-
classical nature, exchanges of thermodynamic noncommuting
charges call for bridges to experiments and to many-body physics.

Building these bridges requires Hamiltonians that transport
noncommuting observables locally while conserving them glob-
ally: as stated in the quantum-thermodynamics review1, ‘an
abstract view of dynamics, minimal in the details of Hamiltonians,
is often employed in quantum information’ and so in QIT
thermodynamics. In contrast, experiments, simulations, and
many-body theory require microscopic Hamiltonians.
Before the present work, it was unknown (i) whether

Hamiltonians that transport noncommuting observables locally,
while conserving them globally, exist; (ii) how such Hamiltonians
look, if they exist; (iii) how to construct such Hamiltonians for
given noncommuting charges; and (iv) for which charges such
Hamiltonians can be constructed. We answer these questions,
enabling the system-and-environment exchange of noncommut-
ing charges to progress from its QIT-thermodynamic birthplace to
many-body physics and experiments. Example predictions that
merit experimental exploration include (i) the emergence of the
quantum equilibrium state in refs. 3–5, (ii) the decrease in entropy
production by noncommuting charges10, (iii) applications of the
entropy decrease to quantum engines33, (iv) the conjecture that
noncommuting charges hinder thermalization14, and (v) the
conjecture’s application to quantum memories. We open the
door to experiments by prescribing how to construct the needed
Hamiltonians. Our construction also enables the generalization, to
noncommuting charges, of many-body–thermalization tools in
condensed matter, AMO physics, and high-energy. Examples
include the eigenstate thermalization hypothesis, out-of-time-
ordered correlators, and random unitary circuits (e.g., refs. 34–42).
This paper introduces a prescription for constructing Hamilto-

nians that overtly move noncommuting charges between
subsystems while conserving the charges globally. The charges
form a finite-dimensional semisimple complex Lie algebra. The
Hamiltonians can couple arbitrarily many subsystems together
and can be integrable or nonintegrable. The prescription also
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produces a convenient basis for the algebra—a basis of charges
explicitly transported locally, and conserved globally, by the
Hamiltonian. The prescription is general, being independent of
any physical platforms. Consequently, the Hamiltonians can be
realized with diverse physical systems, such as superconducting
circuits, ultracold atoms, and trapped ions.
In a special case, the charges form the Lie algebra suðDÞ, N

identical subsystems form the global system, and each subsystem
corresponds to the Hilbert space CD. In this example the Schur-
Weyl duality describes the Hamiltonians’ forms43,44: Let the global
system (formed from the system of interest and the environment)
be many copies of the system of interest. The Hamiltonians are
the linear combinations of the permutations of the copies.
(Hamiltonians have also been engineered to have SU(D)
symmetry without regard to whether noncommuting charges
are transported45,46). Our results are more general than the Schur-
Weyl duality and elucidate the dynamics’ physical interpretation.
First, our prescription governs a much wider class of algebras: all
finite-dimensional, semisimple Lie algebras in which the Killing
form induces a metric. Many physically significant algebras satisfy
these assumptions—for example, the simple Lie algebras, which
include suðDÞ. Second, our results are not restricted to systems
whose Hilbert spaces are CD . Finally, the Hamiltonian form
specified by the Schur-Weyl duality—a linear combination of
permutations—is an abstract construct. How to implement an
arbitrary linear combination of permutations is not obvious. In
contrast, our Hamiltonians have a clear physical interpretation,
manifestly transporting noncommuting charges between sub-
systems. To our knowledge, no other class of Hamiltonians that
transport charges locally and conserve them globally, comparably
general to our class, is known.
This paper begins with our setup, detailed in the below section.

The section ‘Pedagogical explanation’ introduces the Hamiltonian-
construction prescription pedagogically. We also review mathema-
tical background and illustrate the prescription with an example
familiar in quantum information, the Lie algebra suð2Þ. The section
‘Prescription for constructing the Hamiltonians’ synopsizes the
prescription, crystallizing the main result, and presents two properties
of the prescription. A richer example provides intuition in the section
‘su(3) example’: Hamiltonians that transport and conserve charges in
the Lie algebra suð3Þ. The section ‘Discussion’ concludes with
potential realizations of our Hamiltonians in condensed matter, AMO,
and high-energy and nuclear physics.

RESULTS
Setup
Consider a global closed quantum many-body system, as in recent
thermalization experiments47–58. As in conventional statistical
mechanics, the global system is an ensemble of N identical
subsystems. (We use the term ‘ensemble’ in the traditional sense
of statistical physics: a collection of many identical copies of a system
of interest. Such ensembles are often invoked to determine
equilibrium probability distributions59, p. 62). A few of the
subsystems form the system of interest; and the rest, an effective
environment. Each subsystem corresponds to a Hilbert space H of
finite dimensionality d.
We will construct global Hamiltonians, Htot, that conserve

extensive charges defined as follows. Let Qα denote a Hermitian
operator defined on H. We denote by QðjÞ

α the observable defined
on the jth subsystem’s H. Each global observable

Qtot
α :¼

XN
j¼1

QðjÞ
α �

XN
j¼1

1�ðj�1Þ � QðjÞ
α � 1�ðN�jÞ (1)

will be conserved by design:

½Htot;Qtot
α � ¼ 0: (2)

Although the local QðjÞ
α are not conserved, we will sometimes call

them, and the Qα, ‘charges’ for convenience. One might know,
initially, of only c0 charges’ existence.
These c0Qα’s generate a complex Lie algebra A, which we assume

to be finite-dimensional.A consists of all the charges (as well as non-
Hermitian operators, which we ignore). Lie algebras describe many
conserved physical quantities: particle number, angular momentum,
electric charge, color charge, weak isospin, and our space-time’s
metric44,60,61. We focus on non-Abelian Lie algebras, motivated by
quantum thermodynamics that highlights noncommutation: the
commutator exemplifies the Lie bracket, [Qα,Qβ].
We assume four more properties of the algebra, to facilitate our

proofs. A is finite-dimensional and semisimple. Representing an
observable, A is over the complex numbers. Also, on A is defined
a Killing form (reviewed below) that induces a metric. Many
physically significant algebras satisfy these assumptions—for
example, the simple Lie algebras (see the Supplementary Note 1
and refs. 44,60,61).

Pedagogical explanation
This section describes the prescription for constructing Hamilto-
nians Htot that conserve noncommuting charges globally [Eq. (2)]
while transporting them locally:

Htot;QðjÞ
α

h i
≠ 0 (3)

for some site j. (In every such commutator throughout this paper,
one argument implicitly contains tensor factors of 1, so that both
arguments operate on the same Hilbert space.) We construct two-
body interaction terms, then combine them into many-body
terms. This explanation provides a pedagogical introduction; the
prescription is synopsized in the section ‘Prescription for
constructing the Hamiltonians’. Here, we illustrate each step with
an algebra familiar in quantum information, suð2Þ, which
describes spin-1/2 angular momentum.
Table 1 lists the simple Lie algebras. Every Cartesian product of

simple Lie algebras yields a semisimple Lie algebra A. Such an
algebra generates a semisimple Lie group G. For example, if A
consists of angular momentum, A ¼ suðDÞ. The corresponding G
consists of rotations: G ¼ SU ðDÞ.
An algebra has two relevant properties, a dimension and a rank

(Table 1). The dimension, c, equals the number of generators in a
basis for the algebra.(We chose the notation c to evoke the c
introduced in14. There, c was defined as the number of charges. As
explained in the section ‘Setup’ under Results, those charges
would form a Lie algebra. Infinitely many charges would therefore
exist, the c in14 would equal infinity, and results in14 would be

Table 1. Simple Lie algebras: c denotes an algebra’s dimension, and r
denotes the rank.

Algebra Dimension (c) Rank (r) c/r

so(2D) D(2D− 1) D 2D− 1

sl(D+ 1) (D+1)2− 1 D D+ 2

so(2D+ 1) D(2D+ 1) D 2D+ 1

sp(2D) D(2D+ 1) D 2D+ 1

g2 14 2 7

f4 52 4 13

e6 78 6 13

e7 133 7 19

e8 248 8 31

We implicitly omit soð2Þ and soð4Þ, which are not simple61. Also suðDÞ is a
simple Lie algebra. However, including suðDÞ would be redundant: the
complexification of suðDÞ is isomorphic to slðDÞ.
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impractical. We therefore define c as the Lie algebra’s finite
dimension.) For example, su(2) has the Pauli-operator basis {σx, σy,
σz} and so has a dimension c= 3. The rank, r, has a significance
that we will encounter shortly.
A representation of A is a Lie-bracket-preserving map from A to

a set of linear transformations. The adjoint representation maps
from A to linear transformations defined on A. If x 2 A, the
adjoint representation ad(x) acts on y 2 A as ad(x)(y) := [x, y]. The
adjoint representation features in the Killing form, which we
review now. The definition of A involves a vector space V defined
over a field F. A map V × V→ F is a form. The Killing form is the
symmetric bilinear form

ðx; yÞ :¼ TrðadðxÞadðyÞÞ: (4)

We say that x and y are Killing-orthogonal if (x, y)= 0. We say that
subalgebras A1 and A2 are Killing-orthogonal if, for all x 2 A1 and
y 2 A2, (x, y)= 0. We will use the Killing form to construct the
preferred basis of charges for A.
Our construction begins with another basis: every finite-

dimensional semisimple complex Lie algebra A has a Cartan–Weyl
basis. In fact, A has infinitely many. Convention may distinguish one
Cartan-Weyl basis. We use the conventional suð2Þ basis for
concreteness. We use this basis, in our example, for concreteness. In
general, one selects an arbitrary Cartan-Weyl basis. The basis contains
generators of two types: Hermitian operators and ladder operators.
The number of Hermitian operators is the algebra’s rank, r.

These operators commute with each other. If r > 1, we rescale the
operators to endow them with unit Hilbert-Schmidt norms:

TrðQy
αQαÞ ¼ 1: (5)

We include these operators, Qα=1,2, …, r, in our preferred basis. In
the su(2) example, r= 1; and Q1= σz, whose eigenstates ± zj i
correspond to the eigenvalues ±1. The Qα’s generate a subalgebra,
a Cartan subalgebra.
The Cartan-Weyl basis contains, as well as Hermitian operators,

ladder operators. They form pairs L±β, for β ¼ 1; 2; ¼ ; c�r
2 : Since

the Cartan-Weyl basis has c elements, and r of them are Hermitian,
there are c− r ladder operators. Each β corresponds to two ladder
operators, one raising (+β) and one lowering (−β). Hence β runs
from 1 to c�r

2 . Each L±β raises or lowers at least one Qα. In the su(2)
example, the ladder operators σ ± z ¼ 1

2 ðσx ± iσyÞ raise and lower
σz: L± z ∓ zj i ¼ ± zj i. In other algebras, an L±β can raise and/or
lower multiple Qα’s. Examples include suð3Þ (explained in the
section ‘su(3) example’).
From each ladder-operator pair, we construct an interaction

that couples subsystems j and j0. Let Jðj;j
0Þ

β denote a hopping
frequency. An interaction that transports all the charges between j
and j0, while conserving each charge globally, has the form

Hðj;j0Þ /
Xðc�rÞ=2

β¼1

Jðj;j
0 Þ

β LðjÞþβL
ðj0 Þ
�β þ LðjÞ�βL

ðj0Þ
þβ

� �
: (6)

We assemble the other terms in Hðj;j0Þ from other Cartan-Weyl
bases, constructed as follows. Let U denote a general element of
the group G. We conjugate, with U, each element of our first
Cartan-Weyl basis: For α= 1, 2,…, r and β ¼ 1; 2; ¼ ; c�r

2 ,

Qα 7!UyQαU ¼ Qαþr ; and (7)

L± β 7!UyL± βU ¼ L± βþc�r
2ð Þ: (8)

We include the new Qα’s (for which α= r+ 1, r+ 2,…, 2r) in our
preferred basis for the algebra.
We constrain U such that each new Qα is Killing-orthogonal to (i)

each other new charge Qβ and (ii) each original charge Qγ:

ðQα;QβÞ ¼ ðQα;QγÞ ¼ 0 (9)

for all α, β= r+ 1, r+ 2,…, 2r and all γ= 1, 2,…, r. This orthogonality
restricts U, though not completely. The new Qα’s generate a Cartan
subalgebra Killing-orthogonal to the original Cartan subalgebra. The
new ladder operators contribute to the interaction:

Hðj;j0Þ /
Xc�r

β¼1

Jðj;j
0 Þ

β LðjÞþβL
ðj0 Þ
�β þ h:c:

� �
: (10)

In the su(2) example, U can be represented by
a �b�

b a�

� �
;

wherein a; b 2 C and ∣a∣2+ ∣b∣2= 1. The prescription restricts U
only via the Killing-orthogonality of U†σzU to U. We enforce only
this restriction in the Supplementary Note 2. Here, we choose a U
for pedagogical simplicitly: U ¼ ð1þ iσyÞ=

ffiffiffi
2

p
, such that Qα+r=

Q2= σx. The new ladder operators, σ ± x :¼ 1þiσyffiffi
2

p
� �

σ ± z
1þiσyffiffi

2
p

� �
,

create and annihilate quanta of the x-component of the angular
momentum. The interaction becomes

Hðj;j0Þ /
X
β¼z;x

Jðj;j
0Þ

β σ
ðjÞ
þβσ

ðj0Þ
�β þ h:c:

� �
: (11)

We repeat the foregoing steps: write out the form of a
general U 2 G. Conjugate each element of the original Cartan-
Weyl basis with U. Constrain U such that the new Qα’s are
orthogonal to each other and to the older Qα’s. Include the new
Qα’s in our preferred basis for the algebra. Form a term, in Hðj;j0 Þ,
from the new ladder operators L±β.
Each Cartan-Weyl basis contributes r elements Qα to the

preferred basis. The basis contains c elements, so we form c/r
mutually orthogonal Cartan-Weyl bases. c/r equals an integer for
the finite-dimensional semisimple complex Lie algebras, accord-
ing to Proposition 1 in the section ‘Prescription for constructing
the Hamiltonians’. Table 1 confirms the claim for the simple Lie
algebras. Our algebra’s finite dimensionality ensures that our
prescription halts. The two-body interaction is now

Hðj;j0Þ ¼
Xc�r
2 �cr

β¼1

Jðj;j
0 Þ

β LðjÞþβL
ðj0 Þ
�β þ h:c:

� �
: (12)

Why is the preferred basis {Qα} preferable? First, the basis
endows the Hamiltonian with a simple physical interpretation:
Hðj;j0Þ transports all these charges locally while conserving them
globally. Second, the basis is (Killing-)orthogonal.
In the su(2) example, c/r= 3/1= 3. Hence we construct three

Cartan-Weyl bases, using two SU(2) elements. If the first unitary
was ð1þ iσyÞ=

ffiffiffi
2

p
, the second unitary is ð1� iσx þ iσy þ iσzÞ=2, to

within a global phase. Consequently, Q3= σy, the preferred basis
for A is {σz, σx, σy}, and

Hðj;j0Þ ¼
X

β¼x;y;z

Jðj;j
0Þ

β σ
ðjÞ
þβσ

ðj0Þ
�β þ h:c:

� �
: (13)

Next, we constrain the interaction to conserve every global
charge:

½Hðj;j0Þ;Qtot
α � ¼ 0 8α ¼ 1; 2; ¼ ; c: (14)

The commutation relations (14) constrain the hopping frequencies

Jðj;j
0 Þ

α . The frequencies must equal each other in the suð2Þ example:

Jðj;j
0 Þ

α � Jðj;j
0Þ for all α. The Hamiltonian simplifies to19

Hðj;j0Þ ¼ Jðj;j
0Þ σ!ðjÞ � σ!ðj0Þ

: (15)

This Heisenberg model is known to have SU(2) symmetry and so
to conserve each global spin component σtot

α :¼ PN
j¼1 σ

ðjÞ
α . But the

Hamiltonian is typically written in the dot-product form (15), as

Hðj;j0Þ /
X

α¼x;y;z

σðjÞ
α σðj

0Þ
α : (16)

N. Yunger Halpern and S. Majidy
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or in the z-biased form Hðj;j0Þ / 2ðσðjÞ
þzσ

ðj0Þ
�z þ σ

ðjÞ
�zσ

ðj0Þ
þz Þ þ σ

ðjÞ
z σ

ðj0 Þ
z .

None of these three forms reveals that the Heisenberg model
transports noncommuting charges between subsystems. Our
expression (13) and our prescription do. In relativistic field
theories, making the action manifestly Lorentz-invariant is
worthwhile; analogously, making the Hamiltonian manifestly
transport noncommuting charges locally, while conserving them
globally, is worthwhile. Furthermore, our prescription constructs
Hamiltonians that overtly transport noncommuting charges locally
and conserve the charges globally not only in this simple suð2Þ
example, but also for all finite-dimensional semisimple complex
Lie algebras on which the Killing form induces a metric—including
algebras for which this prescription does not produce the
Heisenberg Hamiltonian. Supplementary Note 3 discusses a
generalization of the simple form (15).
We have constructed a two-body interaction Hðj;j0 Þ that couples

subsystems j and j0. We construct k-body terms H j;j0;¼ ;jðkÞð Þ by
multiplying two-body terms (12) together, constraining the

couplings such that ½H j;j0;¼ ;jðkÞð Þ;Qtot
α � ¼ 0, and subtracting off

any fewer-body terms that appear in the product. Section II C
details the formalism. In the suð2Þ example, a three-body
interaction has the form (see Supplementary Note 2)

Hðj;j0;j00Þ / Hðj;j0ÞHðj0;j00ÞHðj00 ;jÞ (17)

/ Jðj;j
0;j00Þ ðσxσyσz þ σyσzσx þ σzσxσyÞ

�
�ðσzσyσx þ σxσzσy þ σyσxσzÞ

�
:

(18)

wherein Jðj;j
0 ;j00Þ 2 R.

The Hamiltonian we constructed may be integrable. For example,
the one-dimensional (1D) nearest-neighbor Heisenberg model is
integrable62. Integrable Hamiltonians have featured in studies of
noncommuting charges in thermodynamics21. But one might wish
for the system to thermalize as much as possible, as is promoted by
nonintegrability37,63. Geometrically nonlocal couplings, many-body
interactions, and multidimensional lattices tend to break integrability.
Hence one can add terms Hðj;j0Þ and Hðj;j0;¼ ;jðkÞÞ to the global
Hamiltonian Htot, and keep growing the lattice’s dimensionality, until
Htot becomes nonintegrable. Nonintegrability may be diagnosed
with, e.g., energy-gap statistics37. In the suð2Þ example, one can
break integrability by creating next-nearest-neighbor couplings or by
making the global system two-dimensional19.

Prescription for constructing the Hamiltonians
Here, we synopsize the prescription elaborated on in the section
‘Pedagogical explanation’. Then, we present two results pertinent
to the prescription. We construct, as follows, Hamiltonians that
transport noncommuting charges locally and conserve the
charges globally:

1. Identify an arbitrary Cartan-Weyl basis for the algebra, A.
2. The Cartan-Weyl basis contains r Hermitian operators that

commute with each other. Scale each such operator such that
it has a unit Hilbert-Schmidt norm [Eq. (5)]. Label the results
Qα=1,2, …, r. Include them in the preferred basis for the algebra.

3. The other Cartan-Weyl-basis elements are ladder operators
that form raising-and-lowering pairs: L±β, for β= 1, 2,…c− r.
From each pair, form one term in the two-body interaction,
Hðj;j0Þ [Eq. (6)].

4. Write out the form of the most general element U 2 G of
the Lie group G generated by A. Conjugate each charge
Qα and each ladder operator L±β with U [Eq. (7)]. The new
charges and new ladder operators, together, form
another Cartan–Weyl basis.

5. Constrain U such that every new charge Qα is Killing-
orthogonal to (i) each other new charge and (ii) each
charge already in the basis [Eq. (9)].

6. Include each new Qα in the basis for A.
7. From each new pair L±β of ladder operators, form a term

in the two-body interaction Hðj;j0 Þ [Eq. (10)].
8. Repeat steps 4-7 until having identified c/r Cartan-Weyl

bases, wherein c denotes the algebra’s dimension. Each
Cartan-Weyl basis contributes r elements Qα to the
preferred basis for A. The basis is complete, containing
r � cr ¼ c elements.

9. Constrain the two-body interaction to conserve each
global charge [Eq. (14)], for all α= 1, 2,…, c. Solve for the

frequencies Jðj;j
0Þ

β that satisfy this constraint.
10. If a k-body interaction is desired, for any k > 2: Perform the

following substeps for ℓ= 3, 4,…, k: Multiply together ℓ
unconstrained two-body interactions (12) cyclically:

H j;j0;¼ ;jðℓÞð Þ ¼ Hðj;j0ÞHðj0;j00Þ ¼H jðℓ�1Þ;jðℓÞð Þ ´HðjðℓÞ;jÞ: (19)

Constrain the couplings so that ½H j;j0;¼ ;jðℓÞð Þ;Qtot
α � ¼ 0 for all

α. If H j;j0;¼ ;jðℓÞð Þ contains fewer-body terms that conserve all
the Qtot

α , subtract those terms off.
11. Sum the accumulated interactions H j;j0 ;¼ ;jðkÞð Þ over the

subsystems j; j0; ¼ to form Htot.
12. If Htot is to be nonintegrable, add longer-range interactions

and/or large-kk-body interactions until breaking integrabil-
ity, as signaled by, e.g., energy-gap statistics.

Having synopsized our prescription, we present two properties
of it. The first property ensures that the prescription runs for an
integer number of iterations (step 8).

Proposition 1. Consider any finite-dimensional semisimple com-
plex Lie algebra. The algebra’s dimension, c, and rank, r, form an
integer ratio: c=r 2 Z> 0.
We prove this proposition in the Supplementary Note 4. The

second property characterizes the prescription’s output.

Theorem 1. The charges Q1, Q2,…,Qc produced by the prescrip-
tion form a basis for the algebra A.

Proof. The charges are Killing-orthogonal by construction: (Qα,
Qβ)= 0 for all α, β. The Killing form induces a metric on A by
assumption. Therefore, the Qα are linearly independent according
to this metric.. The prescription produces c charges (step 8). c
denotes the algebra’s dimension, the number of elements in each
basis for A. Hence every linearly independent set of cA elements
forms a basis for A. Hence the Qα form a basis.

suð3Þ example
Section II B illustrated the Hamiltonian-construction prescription
with the algebra suð2Þ. The suð2Þ example offered simplicity but
lacks other algebras’ richness: In other algebras, each Cartan–Weyl
basis contains multiple Hermitian operators and multiple ladder-
operator pairs. We demonstrate how our prescription accommo-
dates this richness, by constructing a two-body Hamiltonian that
transports suð3Þ elements locally while conserving them globally.
Such Hamiltonians may be engineered for superconducting
qutrits, as sketched in Discussion. However, this suð3Þ example
only illustrates our more general prescription, which works for all
finite-dimensional semisimple complex Lie algebras on which the
Killing form induces a metric.
Each basis for suð3Þ contains c= 8 elements. The most famous

basis consists of the Gell-mann matrices, λk=1,2, …, 8
64. The λk

generalize the Pauli matrices in certain ways, being traceless and
Killing-orthogonal. From the Gell-mann matrices is constructed
the conventional Cartan-Weyl basis65, reviewed in the Supple-
mentary Note 5. The r= 2 Hermitian elements are Gell-mann
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matrices:

Q1 ¼ λ3; and Q2 ¼ λ8: (20)

Q1 and Q2 belong in the preferred basis of charges for suð3Þ. For
pedagogical clarity, we will identify all the charges before
addressing the ladder operators.
A general element U∈ SU(3) contains eight real parameters. In

the Euler parameterization66,

U ¼ eiλ3ϕ1=2eiλ2ϕ2=2eiλ3ϕ3=2eiλ5ϕ4=2

´ eiλ3ϕ5=2eiλ2ϕ6=2eiλ3ϕ7=2eiλ8ϕ8=2 :
(21)

The parameters ϕ1, ϕ3, ϕ5, ϕ7∈ [0, 2π); ϕ2, ϕ4, ϕ6∈ [0, π]; and
ϕ8 2 ½0; 2 ffiffiffi

3
p

πÞ. We now constrain U, identifying the instances Ui

that map the first charges to Q3 ¼ Uy
i Q1Ui and Q4 ¼ Uy

iiQ2Uii that
are Killing-orthogonal to each other and to the original charges.
Supplementary Note 5 contains the details. We label with a
superscript (i) the parameters used to fix Ui: ϕ

ðiÞ
1 , ϕðiÞ

3 , ϕðiÞ
7 , ϕðiÞ

8 , and
n(i). For convenience, we package several parameters together:

aðiÞ :¼ 1
2 ϕðiÞ

3 � ϕðiÞ
7 � ffiffiffi

3
p

ϕðiÞ
8 þ πnðiÞ þ π

2

� �
, and bðiÞ :¼ aðiÞ þ ϕðiÞ

7 . In

terms of these parameters, the new charges have the forms (see
Supplementary Note 5)

Q3 ¼ 1ffiffi
3

p ð�1ÞnðiÞþ1 sinðaðiÞ � bðiÞÞλ1
h

�ð�1ÞnðiÞ cosðaðiÞ � bðiÞÞλ2 � sinðaðiÞÞλ4
� cosðaðiÞÞλ5 þ sinðbðiÞÞλ6 þ cosðbðiÞÞλ7

i
and

(22)

Q4 ¼ ð�1ÞnðiÞffiffi
3

p ð�1ÞnðiÞþ1 cosðaðiÞ � bðiÞÞλ1
h

þð�1ÞnðiÞ sinðaðiÞ � bðiÞÞλ2 þ cosðaðiÞÞλ4
� sinðaðiÞÞλ5 þ cosðbðiÞÞλ6 � sinðbðiÞÞλ7

i
:

(23)

Q3 has the same form as Q5 and Q7, which satisfy the same Killing-
orthogonality conditions. Similarly, Q4 has the same form as Q6

and Q8. The later charges’ parameters a(ℓ) and b(ℓ) are more
restricted, however (see Supplementary Note 5). We have
identified our preferred basis of charges.
Let us construct the ladder operators and Hamiltonian. Each

Cartan–Weyl basis contains c− r= 8− 2= 6 ladder operators. The
conventional Cartan–Weyl basis contains ladder operators formed
from Gell-man matrices:

L± 1 :¼ 1
2 ðλ1 ± iλ2Þ; L± 2 :¼ 1

2 ðλ4 ± iλ5Þ;
and L± 3 :¼ 1

2 ðλ6 ± iλ7Þ:
(24)

Transforming these operators with unitaries Uii,iii,iv yields L±4
through L±12, whose forms appear in the Supplementary Note 5.
From each ladder operator, we form one term in the two-body
Hamiltonian (6).
Finally, we determine the hopping frequencies Jðj;j

0Þ
α , demanding

that ½Hðj;j0Þ;Qtot
α � ¼ 0 for all α. For all possible values of the a(ℓ), b(ℓ),

and n(ℓ), if all the frequencies are nonzero, then all the frequencies

equal each other. We set Jðj;j
0Þ

α � 4
3 Jðj;j

0Þ , such that

Hðj;j0Þ ¼ Jðj;j
0Þ X8

α¼1

λðjÞα λðj
0 Þ

α /
X8
α¼1

QðjÞ
α Qðj0Þ

α : (25)

The Hamiltonian collapses to a simple form analogous to the suð2Þ
example’s Eq. (16) (see Supplementary Note 3).

DISCUSSION
We have presented a prescription for constructing Hamiltonians
that transport noncommuting charges locally while conserving
the charges globally. The Hamiltonians can couple arbitrarily many

subsystems together and can be integrable or nonintegrable. The
prescription produces, as well as Hamiltonians, preferred bases of
charges that are (i) overtly transported locally and conserved
globally and (ii) Killing-form-orthogonal. This construction works
whenever the charges form a finite-dimensional semisimple
complex Lie algebra on which the Killing form induces a metric.
Whether there exists any Hamiltonians that transport charges
locally, while conserving the charges globally, outside of those
found by our prescription, is an interesting open question for
theoretical exploration.
This work provides a systematic means of bridging noncommuting

thermodynamic charges from abstract quantum information theory
to condensed matter, AMO physics, and high-energy and nuclear
physics. The mathematical results that have accrued3–25 can now be
tested experimentally, via our construction. This paper’s introduction
highlights example results in that merit testing. Such experiments’
benefits include the simulation of quantum systems larger than what
classical computers can simulate, the uncovering of behaviors not
predicted by theory, and the grounding of abstract QIT thermo-
dynamics in physical reality.
In addition to harnessing controlled platforms to study

noncommuting charges’ quantum thermodynamics, one may
leverage that quantum thermodynamics to illuminate high-energy
and nuclear physics. Such physics includes non-Abelian gauge
theories, such as quantum chromodynamics. How to define and
measure such theories’ thermalization is unclear67. One might gain
insights by using our dynamics as a bridge from quantum
thermodynamics to non-Abelian field theories.
As mentioned above, the Heisenberg model (13) can be

implemented with ultracold atoms and trapped ions68–73.
Reference19 details how to harness these setups to study
noncommuting thermodynamic charges. We introduce a more
complex example here: We illustrate, with superconducting
qubits, how today’s experimental platforms can implement the
suð3Þ instance of our general prescription.
Superconducting circuits can serve as qudits with Hilbert-space

dimensionalities d ≥ 274. Qutrits have been realized with transmons,
slightly anharmonic oscillators75. The lowest two energy levels often
serve as a qubit, but the second energy gap nearly equals the first.
Hence the third level can be addressed relatively easily76. Super-
conducting qutrits offer a tabletop platform for transporting and
conserving suð3Þ charges as in the section ‘su(3) example’.
Experiments with ≤5 qutrits have been run77,78, Furthermore,

many of the tools used to control and measure superconducting
qubits can be applied to qutrits76,79–88. A noncommuting-charges-in-
thermodynamics experiment may begin with preparing the qutrits in
an approximate microcanonical subspace, a generalization of the
microcanonical subspace that accommodates noncommuting
charges14. Such a state preparation may be achieved with weak
measurements19, which have been performed on superconducting
qudits through cavity quantum electrodynamics89.
T�
2 relaxation times of ~39 μs, for the lowest energy gap, and

~14 μs, for the second-lowest gap, have been achieved78. Mean-
while, two-qutrit gates can be realized in ~10− 102 ns78,90,91.
Some constant number of such gates may implement one three-
level gate that simulates a term in our Hamiltonian. If the number
is order-10, information should be able to traverse an 8-qutrit
system ~10 times before the qutrits decohere detrimentally.
According to numerics in Yunger et al.14, a small subsystem nears
thermalization once information has had time to traverse the
global system a number of times linear in N. Therefore, realizations
of our Hamiltonians are expected to thermalize the system
internally. The states of small subsystems, such as qutrit pairs, can
be read out via quantum state tomography76,79–82. Hence
superconducting qutrits, and other platforms, can import non-
commuting charges from quantum thermodynamics to many-
body physics, by simulating the Hamiltonians constructed here.
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