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Rate-compatible multi-edge type low-density parity-check
code ensembles for continuous-variable quantum key
distribution systems
Suhwang Jeong 1, Hyunwoo Jung 2 and Jeongseok Ha 2✉

In this paper, we propose a design rule of rate-compatible punctured multi-edge type low-density parity-check (MET-LDPC) code
ensembles with degree-one variable nodes for the information reconciliation (IR) of continuous-variable quantum key distribution
(CV-QKD) systems. In addition to the rate compatibility, the design rule effectively resolves the high error-floor issue which has been
known as a technical challenge of MET-LDPC codes at low rates. Thus, the proposed design rule allows one to implement rate-
compatible MET-LDPC codes with good performances both in the threshold and low-error-rate regions. The rate compatibility and
the improved error-rate performances significantly enhance the efficiency of IR for CV-QKD systems. The performance
improvements are confirmed by comparing complexities and secret key rates of IR schemes with MET-LDPC codes whose
ensembles are optimized with the proposed and existing design rules. In particular, the SNR range of positive secrecy rate increases
by 1.44 times, and the maximum secret key rate improves by 2.10 times as compared to the existing design rules. The comparisons
clearly show that an IR scheme can achieve drastic performance improvements in terms of both the complexity and secret key rate
by employing rate-compatible MET-LDPC codes constructed with code ensembles optimized with the proposed design rule.
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INTRODUCTION
Quantum key distribution (QKD) systems allow two remote parties
to share secret keys by utilizing quantum mechanics1, which is
known to provide unconditional security2,3. In QKD systems, the
secret keys are established by performing the following two
phases: (1) exchanging quantum states through a quantum
channel and (2) post-processing through an authenticated
classical channel4. QKD systems are usually categorized into
discrete-variable QKD (DV-QKD)1,2,4, and continuous-variable QKD
(CV-QKD) systems5–7, according to their modulation techniques
adopted in the quantum state exchanges. In the DV-QKD systems,
the polarization of the single-photon is modulated by the
information while both the amplitude and phase quadrature of
coherent state are modulated in the CV-QKD systems. Recently,
there have been extensive studies on practical CV-QKD system
developments8–10 since CV-QKD systems can be readily deployed
in the existing optical communication infrastructure11 and also
overcome limitations of applicability of DV-QKD systems, e.g., the
requirement of a sophisticated single-photon detector12.
To achieve a higher key rate and longer operation range, it is

important to increase the efficiency of information reconciliation
(IR). In particular, CV-QKD systems operate in the very low signal-
to-noise ratio (SNR) region where error-correcting codes (ECCs) for
the IR must be designed at extremely low rates. It is technically
challenging to design strong ECCs tailored for such a low SNR
region, and there have been extensive efforts13–15 to improve the
efficiency of IR by designing stronger ECCs of low rates. For
instance, Raptor codes are designed at low rates for the IR in
refs.14–17 where Raptor codes have capacity-approaching perfor-
mances. In addition, the rateless feature of Raptor codes enables
the IR to maintain high efficiencies across a range of SNRs.
However, Raptor codes require a high decoding complexity as

compared to other types of ECCs, e.g., multi-edge-type low-
density parity-check (MET-LDPC) codes, due to high check node
degrees, which leads to excessively long decoding latency.
Meanwhile, MET-LDPC codes at low rates, e.g., 1/50, are

employed in the IR for CV-QKD systems due to their good error-
correcting performances and more amenable decoding complex-
ity18–20. In ref. 18, the authors demonstrated high-speed error
correction for MET-LDPC codes utilizing a graphic processing unit
(GPU). In ref. 19, it was shown that a quasi-cyclic code construction
of MET-LDPC codes is suitable for hardware-accelerated decoding.
In the studies18–20, MET-LDPC codes are implemented based on
degree distributions simply taken from an open literature13, and
the authors focus on the demonstrations of practical decoder
implementation for MET-LDPC codes. In this work, we are instead
interested in designing strong MET-LDPC codes.
There have been studies on MET-LDPC code design13,21,22 which

pay their attention only to the optimization of the threshold
performance. Thus, the designed MET-LDPC codes suffer from
high error floors which limit the efficiency of the IR18,19. In
particular, the error floors are mainly due to an anomaly called the
decoder errors, i.e., decoding into wrong codewords, which
requires QKD systems to employ additional error-detection codes
such as cyclic redundancy check (CRC) codes to confirm whether
the decoded codeword is the transmitted one. In the case that a
decoder-error event happens, the QKD system may discard the
shared randomness obtained via the first phase, i.e., exchanging
quantum state over the quantum channel. It is also possible that
the QKD system performs additional communications through a
classical public channel to resolve the problem, which however
leads to extra information leakage and eventually degrades the
secret key rate in the key distillation. In addition, the CRC codes
increase the hardware complexity. Thus, it is highly desirable to
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design MET-LDPC codes without suffering from the error-rate
performance loss due to the high error floors caused by the
decoder errors.
It was shown23 that small-weight codewords of MET-LDPC

codes mainly induce the decoder errors, and thus the design of
MET-LDPC code ensembles must be carried out to avoid small-
weight codewords. Then, MET-LDPC codes without error floors can
be implemented with ensembles that have diminishing average
numbers of small-weight codewords with the growing code
length. It is known that if an MET-LDPC code ensemble satisfy a
certain condition so called, the t-value condition, it has
exponentially few codewords of small weight24. Recently, the t-
value condition is further extended23 to MET-LDPC code
ensembles with degree-one variable nodes which are essential
for code ensembles of low rates to have good threshold
performances25.
The efficiency of IR depends on the code rate of ECC, namely

the amount parity bits, which is determined by the quality of the
quantum channel. It is often observed that the quality of the
quantum channel varies in time due to various factors such as the
number of photons affected by the attacker, noise variations, the
thermally induced length fluctuations, the timing jitter, etc. Thus,
to maximize the IR efficiency, the code rate must be adapted to
the variation of quantum channel quality, which can be realized
with multiple encoder and decoder pairs of different rates. While
the scheme with multiple encoder/decoder pairs seems concep-
tually straightforward, it is not a pragmatic solution due to the
growing complexity as the number of pairs increases. In addition,
when the decoding is not successful, the transmitted codeword
must be discarded, and a new codeword of a lower rate will be
requested, which leads to a loss of IR efficiency.
In this work, we instead consider an IR scheme with a rate-

adaptive punctured ECCs which are derived by puncturing the
parity bits of a code, called mother code. The puncturing provides
a sequence of codes whose rates increase from that of the mother
code depending on the number of punctured parity bits. In
addition, the puncturing is carried out in the rate-compatible
fashion26 where a code of higher rate is embedded in codes of
lower rates. That is, punctured bits in a code of a rate must also be
punctured in codes of higher rates than the rate. The beauty of
rate-compatible punctured ECCs is that only one encoder/decoder
pair is needed for the entire range of rates given the puncturing
locations are a priori known to the receiver, which conveniently
resolves the complexity issue in the scheme using multiple
encoder/decoder pairs. More importantly, when the decoding
fails, the scheme with rate-compatible punctured ECCs simply
transmits some punctured parity bits which will be combined with
the already received codeword resulting in a new codeword of a
lower rate. The transmission of punctured parity bits can be
repeated until the receiver successfully decodes the transmitted
codeword. Thus, the scheme with rate-compatible punctured ECCs
is an efficient solution to maximize the IR efficiency at reduced
complexity. Recently, an IR scheme with punctured MET-LDPC
codes was studied in ref. 20 where MET-LDPC codes are randomly
punctured to adapt their rates. However, the recent work20 takes
degree distributions of MET-LDPC codes from ref. 13 which will be
shown to have poor error-floor performances. In addition, the
random puncturing in ref. 20 results in such poor error-floor
performances at all the rates derived from the mother code.
In this work, by utilizing the recent result23 for designing MET-

LDPC codes with both good threshold and error-floor perfor-
mances, this work proposes an IR scheme using optimized rate-
compatible punctured MET-LDPC codes. Since we consider the
rate-compatible puncturing to realize the rate adaptability in this
work, we simply call rate-adaptive punctured MET-LDPC codes as
rate-compatible MET-LDPC codes. The improvements of MET-
LDPC codes in the threshold and error-floor regions allow the IR
scheme to achieve higher key rates and/or longer distances of CV-

QKD systems. The improved error-floor performances enable one
to design CV-QKD systems without resorting to certain error-
detection codes, which not only improves the efficiency of CV-
QKD systems but also reduces the complexity of an IR scheme. In
particular, we propose a design of MET-LDPC code ensembles with
degree-one variable nodes which have exponentially few small-
weight codewords. The designed ensembles allow one to
implement MET-LDPC codes with better performances in both
the threshold and error-floor regions at a reduced decoding
complexity as compared to the ensembles based on the existing
design rules18,19,25. In addition, we will show how to design rate-
compatible MET-LDPC codes while holding the t-value condition
over a range of code rates that the rate-compatible MET-LDPC
codes support. The rate-compatible MET-LDPC codes can be
utilized for implementing efficient IR schemes for CV-QKD
systems. The details of CV-QKD system and the IR scheme
considered in this work will be introduced in “Methods”. We will
conduct performance comparisons among IR schemes with rate-
compatible MET-LDPC codes and a fixed-rate MET-LDPC code. For
implementing the MET-LDPC codes, their code ensembles are
optimized with the proposed design rule and existing design
rules. The performance comparisons clearly show that significant
performance improvements are achievable by employing the rate-
compatible MET-LDPC codes using ensembles with the proposed
design rule.

RESULTS
The t-value condition for MET-LDPC codes
In this work, we consider a Tanner graph of MET-LDPC code
ensemble with degree-one variable nodes shown in Fig. 1 where
the entire set of variable node classes, denoted by V , is partitioned
into the subsets, V1, V2, and Vc

12, and Vc
12 is the complement of

the set V12 ¼ V1 ∪V2. Note that the variable node class V1
consists of two sub-classes denoted by V1;p and V1;np which
represent punctured and unpunctured variable nodes of degree-
one, respectively. Similarly, the check node class C1 consists of two
sub-classes denoted by C1;p and C1;np which represent check
nodes connected to the punctured and unpunctured variable
nodes of degree-one, respectively. In this section, it is assumed
that the all variable nodes of degree-one are unpunctured, and
later in “Results”, we modify the result in ref. 23 to include the MET-
LDPC codes with punctured variable nodes of degree-one.
In a similar manner, the entire sets of check node classes and

edge types in Fig. 1, denoted by C and E, respectively, are
partitioned into C1 and Cc1, and E1, E2, and Ec

12, respectively, whereEc
12 is the complement of E12 ¼ E1 ∪ E2, and Cc1 ¼ C n C1. The

blocks denoted by ET in Fig. 1 are uniform interleavers each of
which permutes edges of a type. In particular, V1 is the set all
variable node classes of degree-one, i.e., ∑jdi,j= 1 for i 2 V1, and
E1 ¼ fjjdi;j ¼ 1; 8 i 2 V1g. Note that E1 is the set of edge types
corresponding to the variable nodes classes in V1. Meanwhile, C1
is the set of all check node classes which have check nodes
incident with edges of types in E1, i.e., for every i 2 C1, 9 j 2 E1
such that gi,j= 1. Note that the threshold of MET-LDPC code
ensemble will not be defined if a check node is incident with more
than one edge of a type in E1. Thus, each check node of a class in
C1 has a single edge of a type in E1. Then, E2 is the set of all edge
types for the edges incident to the check node of classes in C1
except for the ones of types in E1, i.e., for every j 2 E2, 9 i 2 C1
such that gi,j > 0. The set V2 contains all variable node classes
which have variable nodes incident with edges of types in E2, i.e.,
for every i 2 V2, 9 j 2 E2 such that di,j > 0. It is assumed that for
each edge type of j 2 Ec

12, there exists a check node of class i 2 Cc1
such that gi,j ≥2, which is also considered in ref. 24.
An MET-LDPC code ensemble can also be described with a pair

of multinomials, and the pair of multinomials for the MET-LDPC
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code ensemble in Fig. 1 are given by

νðxÞ ¼P
i2V1
di;j¼1

νi rx1j þ
P
i2V2

νi r
Q
j2E2

xdi;jj

Q
j2Ec

12

xdi;jj

þ P
i2Vc

12

νi r
Q
j2Ec

12

xdi;jj ;

μðxÞ ¼ P
i2C1
gi;j¼1

μix
1
j

Q
k2E2

x
gi;k
k þ P

i2Cc1
μi

Q
j2Ec

1

x
gi;j
j ;

(1)

where the variable node classes in V1, V2, and Vc
12 correspond to

the first, second and third terms in ν(x), respectively, and the
check nodes classes in C1 and Cc1 are represented by the first and
second terms in μ(x), respectively. The code rate of MET-LDPC
code ensemble27 is given by

R ¼ 1�
P

i2CμiP
i2Vνi

: (2)

For an MET-LDPC code ensemble, the average number of
codewords of weight ℓ is expressed by the asymptotic
exponential growth rate defined in Definition 1.
Definition 1 (the asymptotic exponential growth rate)

γðwÞ ¼ lim
n!1

1
n
logAðbnwcÞ; (3)

where A (ℓ) is the average number of codewords of weight ℓ, and w
is the normalized weight.
Meanwhile, for small-weight codewords, i.e., w≪ 1, Theorem 1

tells the asymptotic exponential growth rate, i.e., γ(w) in
Definition 1.
Theorem 1 Ref. 22. For t ≠ 0, we have

γðwÞ ¼ sup
t2T

�log ðtÞw þ Oðw2Þ; (4)

where T is the set of all t values such that

detðI � tΛ0ðtÞP0Þ ¼ 0 (5)

where ~u ¼ ð~u1; ~u2; ¼ ; ~ujEc12 jÞ (resp. ~s ¼ ð~s1;~s2; ¼ ;~sjEc12 jÞ) is a vector
whose elements, ~ui ’s (resp. ~si ’s) are given by uf ðjiÞ ’s (resp. sf ðjiÞ’s) for
1 � i � jEc

12j and a bijective mapping f : Ec
12 ! f1; 2; ¼ ; jEc

12jg,

and Λ0ðtÞ is a square matrix whose elements are given by

Λ0
f ðjÞ;f ðkÞðtÞ ¼

∂2νðxÞ
∂xj∂xk

���
x¼~0

μxj ð1Þ
; (6)

P0 is a square matrix whose elements are given by

P0f ðjÞ;f ðkÞ ¼
∂2μðxÞ
∂xj∂xk

���
x¼1

μxj ð1Þ
; (7)

~0 ¼ ðo1; o2; ¼ ; oneÞ is a vector of length ne, om ¼ t

P
i2C1

μigi;m

μxm ð1Þ for
m 2 E2 and zeros for the other elements.
It is shown in Theorem 1 that an MET-LDPC code ensemble with

degree-one variable nodes has exponentially few codewords of
small weights when the infimum of the solution set for the
equation in Eq. (5) is larger than one, which is the t-value
condition and summarized in Definition 2.
Definition 2 (t-value condition) For an MET-LDPC code ensemble,

the infimum of T is larger than unity. The infimum of T will be called
the t-value of the ensemble.

Rate-compatible MET-LDPC codes for CV-QKD systems
We will show that it is possible to design rate-compatible MET-
LDPC codes with good error-rate performances in both the
threshold and error-floor regions, which is carried out by proving
that there exists a sequence of punctured MET-LDPC code
ensembles of rates with exponentially few codewords of small
weights. To this end, we utilize the design rule in ref. 23 to
optimize an MET-LDPC code ensemble with degree-one variable
nodes for the threshold performance with the constraint of the t-
value condition. It was shown in ref. 23 that MET-LDPC codes
based on the ensemble have good error-rate performances both
in the threshold and error-floor regions. The designed MET-LDPC
code ensemble is called the mother code ensemble from which
MET-LDPC code ensembles of higher rates are derived by
puncturing parity bits of the mother code ensemble. Then, it will
be shown that the punctured MET-LDPC code ensembles derived
from the mother code ensemble also satisfy the t-value condition
regardless of the number of punctured parity bits if the mother

Fig. 1 Tanner graph of MET-LDPC code ensemble with degree-one variable nodes. The block denoted by ET are uniform interleaver each of
which permutes edges of a type.
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code ensemble has a certain structure. In the next section, we will
show that rate-compatible MET-LDPC codes with good error-floor
performances can be implemented using the punctured MET-
LDPC code ensembles.
In the design of punctured MET-LDPC code ensembles, we

puncture only degree-one variable nodes due to a few practical
reasons. The Tanner graph in Fig. 1 shows that each degree-one
variable node is incident to a different check node whose
neighboring variable nodes are all unpunctured except for the
degree-one variable node. Thus, the punctured degree-one
variable nodes are one-step-recoverable (1-SR)28, i.e., recoverable
in the first iteration of the belief-propagation (BP) decoding. It was
demonstrated in ref. 28 that punctured LDPC codes have good
threshold performances when only 1-SR variable nodes are
punctured. In addition, the generation of coded bits for the
punctured variable nodes can be performed with a linear
complexity, which reduces the complexity of progressive parity
bit generation and transmission.
For an MET-LDPC code ensemble with the degree distribution

pair in Eq. (1), the degree distribution of the punctured MET-LDPC
code ensemble becomes

ν0ðxÞ ¼P
i2V1;p
di;j¼1

νi r0x1j þ
P

i2V1;np
di;j¼1

νi r1x1j

þP
i2V2

νi r1
Q
j2E2

xdi;jj

Q
j2Ec

12

xdi;jj þ P
i2Vc

12

νi r1
Q
j2Ec

12

xdi;jj ;

μ0ðxÞ ¼ P
i2C1;p
gi;j¼1

μix
1
j

Q
k2E2

x
gi;k
k þ P

i2C1;np
gi;j¼1

μix
1
j

Q
k2E2

x
gi;k
k þ P

i2Cc1
μi

Q
j2Ec

1

x
gi;j
j ;

(8)

where V1 ¼ V1;p ∪V1;np , V1;p , and V1;np indicate the sets of
punctured and unpunctured degree-one variable node classes,
respectively, and r0 and r1 represent the channels for the
punctured the unpunctured variable nodes, respectively. The
code rate of the punctured MET-LDPC code ensemble becomes

Rπ ¼ 1�
P

i2C=C1;p
μiP

i2V=V1;p
νi
¼ 1�

P
i2Vμi�π

P
i2VνiP

i2Vνið1�πÞ

¼
P

i2Vνið1�πÞ�
P

i2Cμi þ π
P

i2VνiP
i2Vνið1�πÞ

¼ R
1�π ;

(9)

where π is the fraction of punctured degree-one variable nodes.
It should be noted that in the belief-propagation (BP) decoding,

the punctured degree-one variable nodes in V1;p output their
messages of zero log-likelihood ratio (LLR) value regardless of
decoding iterations. In addition, for the check nodes incident to
punctured variable nodes, the messages to unpunctured neigh-
boring variable nodes are bounded by the LLR value of zero. Thus,
the punctured degree-one variable nodes and their incident check
nodes do not participate in the BP decoding, which allows us to
exclude the punctured nodes from the ensemble. That is, the MET-
LDPC code ensemble with punctured degree-one variable nodes
can be expressed with an equivalent degree distribution pair that
has only unpunctured variable nodes. Then, the equivalent MET-
LDPC code ensemble is given by

ν0ðxÞ ¼ P
i2V1;np
di;j¼1

νi r1x1j þ
P
i2V2

νi r1
Q
j2E2

x
d0i;j
j

Q
j2Ec

12

xdi;jj

þ P
i2Vc

12

νi r1
Q
j2Ec12

xdi;jj ;

μ0ðxÞ ¼ P
i2C1;np
gi;j¼1

μix
1
j

Q
k2E2

x
gi;k
k þ P

i2Cc1
μi

Q
j2Ec

1

x
gi;j
j ;

(10)

where d0i;j is the degree of the variable node class i 2 V2 for j 2 E2.
Note that the removal of punctured variable nodes deletes some
edges in E2 and check nodes of C1, which makes the degree d0i;j

less than or equal to di,j. i.e., d
0
i;j � di;j . The degree d0i;j is decided in

such a way that the numbers of edges in E2 from variable nodes
and check nodes are the same after removing the punctured
variable nodes and their incident check nodes, which is so called
the socket count equality23.
For the equivalent code ensemble in Eq. (10), we have to test

the t-value condition23 to confirm that the punctured MET-LDPC
code ensemble has exponentially few codewords of small
weight. It is also especially important to know the maximum
proportion of punctured bits below which the t-value condition
of the mother MET-LDPC code ensemble holds. In Theorem 2,
we will prove that the t-value condition of a mother code
ensemble holds regardless of the proportion of punctured bits
when the mother code ensemble has a certain structure. While
the theorem is limited to MET-LDPC codes with the structure, it
will be shown that some good mother MET-LDPC code
ensembles can be readily designed even if the structural limit
is imposed.
Theorem 2 For the MET-LDPC code ensemble of three edge types

of E1 ¼ f1g, E2 ¼ f2g, and Ec
12 ¼ f3g with gi,2= 0 for all i 2 Cc1, the

following arguments are true:

1. If a mother code ensemble satisfies the t-value condition,
punctured MET-LDPC code ensembles also satisfy the t-value
condition regardless of the amount of punctured bits.

2. If a mother code ensemble does not satisfy the t-value
condition, none of punctured MET-LDPC code ensembles
satisfies the t-value condition.

Proof For an MET-LDPC code ensemble of three edge types of
E1 ¼ f1g, E2 ¼ f2g, and Ec

12 ¼ f3g with gi,2= 0 for all i 2 Cc
1, the

ensemble in Eq. (1) can be rewritten as

νðxÞ ¼ P
i2V1
di;1¼1

νi rx11 þ
P
i2V2

νi rx
di;2
2 xdi;33 þ P

i2Vc
12

νi rx
di;3
3 ;

μðxÞ ¼ P
i2C1
gi;1¼1

μix
1
1x

gi;2
2 þ P

i2Cc1
μix

gi;3
3 :

(11)

For the ensemble in Eq. (11), the equality in Eq. (5) can be
expressed as

2
μx3 ð1Þ

� P
i2V2
di;3¼2

νi tdi;2þ1 þ P
i2Vc

12
di;3¼2

νi t

8><
>:

9>=
>;

´

P
i2Cc

1
μi gi;3ðgi;3�1Þ
μx3 ð1Þ

¼ 1:

(12)

Suppose that there exists a solution t ≤1 satisfying the equality in
EQ. (12), which implies

X
i2V2
di;3¼2

νi þ
X
i2Vc

12
di;3¼2

νi

8>><
>>:

9>>=
>>;

´
2
P

i2Cc1μigi;3ðgi;3 � 1Þ
μx3ð1Þ2

� 1; (13)

where the lefthand side in Eq. (13) is obtained by replacing t in Eq.
(12) with unity and is larger than or equal to the lefthand side in
Eq. (12). Thus, when the inequality in Eq. (13) does not hold, the
solutions of the equality in Eq. (12) must be larger than unity, i.e.,
infT> 1. That is, the t-value condition, i.e., infT> 1, can be
equivalently expressed as

X
i2V2
di;3¼2

νi þ
X
i2Vc

12
di;3¼2

νi

8>><
>>:

9>>=
>>;

´
2
P

i2Cc1μigi;3ðgi;3 � 1Þ
μx3ð1Þ2

<1: (14)

If degree-one variable nodes in the ensemble of Eq. (11) are
punctured with a fraction of π, the punctured ensemble can be
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represented as

ν0ðxÞ ¼ P
i2V1;np
di;1¼1

νi rx11 þ
P
i2V2

νi rx
d0i;2
2 xdi;33 þ P

i2Vc
12

νi rx
di;3
3 ;

μ0ðxÞ ¼ P
i2C1;np
gi;1¼1

μix
1
1x

gi;2
2 þ P

i2Cc1
μix

gi;3
3 :

(15)

For the degree distribution pair in Eq. (15), the equality in Eq. (5)
can be expressed as exactly the same as the one in Eq. (12) except
that di,2 is changed to d0i;2, which however does not affect the
inequality in Eq. (14). Thus, if the t-value condition holds for the
mother code, so does for all punctured code ensembles.◻
For arbitrary MET-LDPC code ensembles shown in Fig. 1, it is

mathematically intractable to express in a closed-form the
maximum proportion of punctured parity bits below which the
t-value condition holds. However, it is sufficient to numerically test
whether the punctured MET-LDPC code ensemble of the highest
rate satisfy the t-value condition since the ones of lower rates have
additional parity bits, which does not induce smaller weight
codewords.

Performance evaluations
In this section, we compare error-rate performances and
efficiencies of IR schemes that have rate-compatible MET-LDPC
codes and fixed-rate MET-LDPC codes implemented using code
ensembles with/without satisfying the t-value condition. Refer to
“Methods” for the CV-QKD system in which the IR schemes are
employed. We consider the multidimensional reconciliation with a
dimension of 8. It is known in ref. 29 that the channel can safely be
assumed to be a binary-input additive-white-Gaussian-noise (BI-
AWGN) channel. For decoding MET-LDPC codes, we employ the
sum-product algorithm in which the maximum number of
iteration is set to 1000. The iterative decoding terminates when
all the parity checks are satisfied even before the iteration reaches
the preset maximum number of iterations. The error-rate
performances are measured in terms of both bit-error rate (BER)
and word-error rate (WER) which are evaluated at each SNR value
by transmitting codewords until a hundred failed codewords are
observed. In addition, the practicality of the MET-LDPC codes is
compared in terms of three different metrics, i.e., the maximum
variable node degree dmax, the maximum check node degree gmax,
and a normalized edge density in ref. 30 which is defined as the
average number of edges per message bit, i.e., jEj=ðR � nÞ where
jEj, R, and n are the total number of edges, code rate and code
length, respectively. The maximum degrees are often used as a
measure of decoding latency31 while the normalized edge density
is adopted to measure the decoding complexity in ref. 30.
First, we design a mother MET-LDPC code ensemble by

optimizing the ensemble for the threshold performance22 with
the constraint of the t-value condition23. The MET-LDPC code
ensemble is optimized at a code rate of 0.02 for the BI-AWGN
channel, and is denoted by C1 in Table 1. For comparisons, we take
a code ensemble in ref. 19, and denote it by C2 in Table 1. Note
that C1 has its t-value of 1.0078 > 1 and thus satisfies the t-value
condition. Whereas C2 has its t-value of 0.9743 < 1 and does not
meet the t-value condition. The t-value condition tells when the
number of small-weight codewords diminishes, which is obtained
by a balance of degree-one and degree-two of edge types at
nodes. In the design of C2, the code optimization is carried out
only for a good threshold performance, which more weighs the
degree-one nodes and thus results in poor error-floor perfor-
mances. Based on the degree distributions of C1 and C2, two MET-
LDPC codes of length 106 are implemented with random parity-
check matrices, and they are denoted by C1 and C2, respectively.
In this work, MET-LDPC codes are denoted by bold symbols, e.g.,
C1 and C2, while their ensembles are represented by script
symbols, e.g., C1 and C2, respectively. Their BER and WER

performances on the BI-AWGN channel are compared in Fig. 2
where it is witnessed thatC2 has a high error-floor. The high error-
floor associated with C2 is mainly due to the decoder errors, i.e.,
decoding into wrong codewords, caused by small-weight code-
words as predicted by the test of the t-value condition. To
substantiate the claim, we depict the decoder-error rate (DER) in
Fig. 2 where the DER and WER overlap each other in the error-floor
region. It should also be noted that the WER and BER of C2 have a
wide gap, which is due to the fact that the decoder-error events
are caused by small-weight codewords23. On the contrary, for the
competing code, i.e., C1, we do not observe any decoder-error
event until its WER and BER reach 10−4 and 10−5, respectively, and
thus no error-floor appears in Fig. 2.
Now, based on the two mother code ensembles, i.e., C1 and C2

in Table 1, we design rate-compatible MET-LDPC code ensembles
which have their code rates between 0.02 and 0.025, equivalently,
π∈ [0, 0.2]. The equivalent degree distributions for the rate-
compatible MET-LDPC codes at the highest code rate, i.e., 0.025,
are described in Table 1, where the ones based on the code
ensembles C1 and C2 are denoted by Cπ1 and Cπ2 , respectively. Note
that both the ensembles C1 and C2 are not designed for
puncturing. It is possible to investigate into a design rule which
also takes the puncturing into account, while it is beyond the
scope of this work. Since the puncturing is carried out in the rate-
compatible fashion26, it enables one to progressively transmit
additional parity bits when a decoding failure happens or an error-
detection code finds out a decoder-error event. Note that the rate-
compatible MET-LDPC code using C1, i.e., Cπ1 in Table 1, also
satisfies the t-value condition which is tested with the equivalent
degree distribution pair in the Cπ1 row of Table 1. It should be
noted that the ensemble of the mother code, C1, has the structure
discussed in Theorem 2, and thus the t-value condition is always
satisfied regardless of the amount of punctured parity bits.
Meanwhile, it is shown in Table 1, the code ensemble using C2
does not satisfy the t-value condition. It is also noticed in Table 1
that the thresholds of C1 and Cπ1 are better than those of C2 and Cπ2
while both C1 and Cπ1 have lower complexities in terms of all the
complexity measures, i.e., edge density, maximum variable
node, and check node degrees. Thus, the rate-compatible MET-
LDPC codes constructed with ensembles using the proposed
design rule not only outperform the rate-compatible MET-LDPC
codes using the existing design rule but also have practical
advantages.
By puncturing the MET-LDPC codes, i.e., C1 and C2 in Fig. 2,

two rate-compatible MET-LDPC codes of rate 0.025 (equivalently,
π= 0.2) are implemented and evaluated in terms of BER and WER
on the BI-AWGN channel in Fig. 3 where the rate-compatible MET-
LDPC codes are denoted by Cπ

1 and Cπ
2 . Note that while the rate-

compatible MET-LDPC codes Cπ
1 and Cπ

2 are obtained by
puncturing their mother codes C1 and C2, the asymptotic
behaviors of Cπ

1 and Cπ
2 , e.g., thresholds and t-value conditions,

are given by the degree distributions in the Cπ1 and Cπ2 rows of
Table 1, respectively. As predicted by Theorem 2, the rate-
compatible MET-LDPC code, Cπ

2 suffers from the error floors as its
mother code, i.e., C2 in Fig. 2, does. Whereas the error-floor does
not appear in the error rates of Cπ

1 as predicted by the test of the
t-value condition for the equivalent degree distribution pair. The
comparison of error-rate performances in Fig. 3 confirms the
results in “Results”.
The key rate of CV-QKD systems is often9,19 assumed as

K ¼ ð1�WERÞðβIAB � χBEÞ: (16)

However, a recent work16 shows that the key rate formula in Eq.
(16) does not reconcile with the results of quantum information
theory in some situations. In particular, the issue can happen
when the error rates of ECCs are relatively high, which is
frequently encountered in long-distance CV-QKD systems. Thus,
instead of the key rate in Eq. (16), as suggested in ref. 16, we use a
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bound on the key rate which is given by

K ¼ ð1�WERÞðβIABÞ � χBE; (17)

where β is the IR efficiency defined as Rπ/IAB, Rπ is the code rate, π
is the maximum fraction of punctured bits when the IR succeeds,
IAB is the mutual information of the virtual Gaussian channel, and
χBE is the Holevo bound on the information leaked to the
eavesdropper, Eve11. The secret key rate depends on various
physical parameters such as the length and standard loss of fiber
and homodyne detector efficiency, etc. In this work, we take the
physical parameters from ref. 19 where the noise in the quantum
channel denoted by χtot modeled as the sum of noises from the
fiber and detector denoted by χline and χdet, respectively. Then, the

Fig. 2 BER and WER comparison between existing MET-LDPC
code and optimized MET-LDPC code. Based on the degree
distributions of C1 and C2, two MET-LDPC codes of length 106 are
implemented with random parity-check matrices, and they are
denoted by C1 and C2, respectively.
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Fig. 3 BER and WER comparison between the punctured code of
existing MET-LDPC code and optimized MET-LDPC code. By
puncturing the MET-LDPC codes, i.e., C1 and C2 in Fig. 2, two
rate-compatible MET-LDPC codes of rate 0.025 (equivalently, π= 0.2)
are implemented and evaluated in terms of BER and WER on the BI-
AWGN channel. The rate-compatible MET-LDPC codes based on C1
and C2 are denoted by Cπ

1 and Cπ
2 , respectively.
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noise due to fiber of length ℓ with a transmittance T= 10αℓ/10 is
given by χline= 1/T− 1+ ε where α= 0.2dB/Km is the standard
loss of a single-mode fiber, and the excess channel noise
(measured in shot noise units) is ε= 0.01 for 0 Km ≤ ℓ ≤100 Km,
and ε= 0.01+ 0.001 × (ℓ− 100) for 100 Km ≤ ℓ ≤170 Km. Mean-
while, the noise in the homodyne detector is given by χdet ¼
ð1þ VelÞ=η� 1 where η and Vel represent the homodyne detector
efficiency and additive electronic noise, respectively, and it is
assumed that η= 0.606 and Vel= 0.041. Then, the total noise in
the quantum channel follows as χtot ¼ χ line þ χdet=T . In addition,
the SNR of the virtual Gaussian channel is expressed as VA/(1+
χtot) where VA is a modulation variance of Alice and has to be
optimized to achieve the highest key rate13.
We define (1−WER) × β in Eq. (17) as an effective efficiency

which depends on both the WER and the efficiency of ECC, i.e., the
maximum code rate at which the IR is successfully performed. We

consider IR schemes with rate-compatible MET-LDPC codes by
puncturing C1 and C2 in Fig. 2 as their mother codes. In addition,
an IR scheme with the MET-LDPC code at a fixed rate of 0.02
denoted by C2 in Fig. 2. The effective efficiencies of three
schemes are compared in Fig. 4 where R-CC1 and R-CC2 indicate
the IR schemes with the rate-compatible MET-LDPC codes using
C1 and C2, respectively. Meanwhile, the IR scheme with the fixed-
rate MET-LDPC code of C2 is denoted by C2 in Fig. 4. The
performance comparison in Fig. 4 is carried out over a range of
SNR values over which the maximum effective efficiencies of three
schemes are observed. In practice, the SNR values are adjusted by
controlling the modulation variance, VA at a given length of fiber,
ℓ. In Fig. 4, the efficiencies of the three schemes are depicted with
the curves in blue, red, and black, respectively. In the IR scheme
with C2, the shared randomness obtained via the quantum
channel will be discarded when the decoding for ECC fails.
Meanwhile, the IR schemes with R-C C1 and R-C C2 transmit

Fig. 5 Comparisons of key rates. The key rate is evaluated in terms
of bits per pulse for the three IR schemes denoted by R-C C1, R-C
C2, and C2 when the length of fiber is assumed to be ℓ= 90 Km.

Fig. 6 Comparisons of key rates. a The key rate is evaluated in
terms of bits per pulse for the three IR schemes denoted by R-C C1,
R-C C2, and C2 when the length of fiber is assumed to be ℓ=
80 Km. b The key rate is evaluated when the length of fiber is
assumed to be ℓ= 85 Km.

Fig. 4 Comparisons of effective efficiency. We compare the
effective efficiencies, i.e., (1−WER) × β of the IR schemes with three
different error-correcting codes denoted by R-C C1, R-C C2, and C2
in which R-C C1 and R-C C2 indicate the IR schemes with the rate-
compatible MET-LDPC codes using C1 and C2, respectively.
Meanwhile, the IR scheme with the fixed-rate MET-LDPC code of
C2 is denoted by C2 .
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additional parities when Alice requests on the decoding failure,
which results in significant improvements of efficiency. However,
the scheme with R-C C2 suffers from decoder-error events, which
requires additional parity bits for the CRC code. In the case that
the decoding for CRC code detects a decoder-error event, i.e.,
u0≠u, the scheme discards the shared randomness obtained via
the communication over the quantum channel. On the contrary,
the scheme with R-C C1 has no decoder-error event as the
consequences of Theorem 2 promise. The comparisons in Fig. 4
quantitively demonstrate the performance improvements
obtained by employing the rate-compatible MET-LDPC codes
based on the ensemble satisfying the t-value condition. That is,
the scheme with R-CC1 has a clear performance advantage over a
wide range of SNR values as compared to the other two schemes,
i.e., R-C C2 and C2.
It should be mentioned that the comparison between the

schemes withC2 and R-CC2 has a crossover at the SNR of −15dB.
In the region of SNR less than −15dB, the variation of efficiency, β

is relatively small while the WER of C2 drastically improves with
the growing SNR value since the threshold of error rate for C2

starts at around −15.3dB as shown in Fig. 2. Meanwhile, the
improvement of WER for R-C C2 is limited since the retransmis-
sions of parity bits lead to decoder-error events. This is why the
scheme with C2 has better effective efficiency in the region of
SNR less than −15dB. Note that efficiency is defined as the ratio of
code rate and channel capacity. Thus, the efficiency β of the
scheme with C2 sharply decreases as the SNR value further
increases passing the crossover point, i.e., −15dB, considering that
the capacity grows while the rate is fixed. On the contrary, it is not
serious for the scheme with R-C C2 due to the rate adaptability,
i.e., the code rate adapts to the channel quality. It is noticed in Fig.
4 that the scheme with R-C C2 outperforms the one with C2. As
compared to the two schemes with C2 and R-C C2, the scheme
with C1 does not suffer from the decoder-error events while
taking the advantage of rate adaptability, which provides the

Fig. 7 Block diagram of reverse-reconciliation CV-QKD systems. The quantum channel is modeled as a virtual BI-AWGN channel, and a rate-
compatible MET-LDPC code is assumed as the ECC whose rate is set to the maximum value or the capacity of the virtual BI-AWGN channel by
puncturing parity bits.
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performance superiority over the range of SNR values over the
competing IR schemes, i.e., the ones with C2 and R-C C2.
The key rate in Eq. (17) is evaluated in terms of bits per pulse for

the three IR schemes in Fig. 5 where the length of fiber is assumed
to be ℓ= 90 Km. It is clearly witnessed that the IR scheme with R-C
C1 outperforms the other two schemes over a wider range of SNR
values. In addition, Fig. 6 shows that the IR scheme with R-C C1
consistently performs better than the other schemes at different
lengths of fiber of ℓ= 80 Km and 85 Km. In practice, the
modulation variance VA is determined to make the CV-QKD
system operate at a certain SNR value of the virtual Gaussian
channel. The adjustment of VA requires a precise channel
estimation of the quantum channel, which is hard to achieve in
practice. Thus, the SNR value has some variations, and the IR
scheme must be designed robust to the SNR variation. In this
sense, the IR scheme with R-C C1 has clear advantages of both
performance and practicality.

DISCUSSION
In this paper, we proposed a design rule of multi-edge type low-
density parity-check code ensembles with degree-one variable
nodes. It was shown that the design rule allows one to implement
rate-compatible MET-LDPC codes with good performances both in
the threshold and low-error-rate regions. It is also demonstrated
that the rate-compatible MET-LDPC codes can improve the
efficiency of information reconciliation for CV-QKD systems.

METHODS
Information reconciliation of QKD system
In this work, we consider the IR scheme for CV-QKD systems introduced in
ref. 15 where the scheme employs rate-compatible error-correcting codes,
i.e., rate-compatible MET-LDPC codes in this work. The IR scheme is
depicted in Fig. 7 where Alice transmits Gaussian random variables xi �
Nð0; σ2AÞ for i= 1, 2,…, d over the quantum channel, and for each
Gaussian random variable xi, Bob receives a noisy observation yi= xi+ ni
from the quantum channel where ni � Nð0; σ2nÞ and σ2n indicates the noise
power. Then, Alice and Bob have the correlated random vectors x= (x1, x2,
…, xd) and y= (y1, y2,…, yd), respectively, which are normalized to x0 ¼
x=jjxjj and y0 ¼ y=jjyjj where ∣∣x∣∣ and ∣∣y∣∣ are the Euclidean norms of the
vectors x and y, respectively, and d is called the dimension of
multidimensional reconciliation29.
In the reverse reconciliation32, Bob generates a uniformly random binary

sequence u from the quantum random number generator (QRNG), and
encodes the sequence u into a codeword ξ, i.e., a codeword of MET-LDPC
code in this work. Then, Bob divides ξ into sub-groups of coded bits of
length d. Suppose that one of the sub-groups is denoted by c= (c1, c2,…
cd) which is converted to a spherical codes c0 as follows:

ðc1; c2; ¼ ; cdÞ ! c0 ¼ ð�1Þc1ffiffiffi
d

p ;
ð�1Þc2ffiffiffi

d
p ; ¼ ;

ð�1Þcdffiffiffi
d

p
� �

: (18)

Note that c0 is uniformly distributed on the unit sphere in the d
dimensional Euclidean vector space. For a pair of vectors, c0 and y0 , Bob
calculates the linear mapping Mðy0; c0Þ in ref. 29 such that

Mðy0; c0Þ � y0 ¼ c0: (19)

The mapping Mðy0; c0Þ is transmitted to Alice over the classical channel.
When Alice receives the mapping Mðy0; c0Þ, she performs Mðy0; c0Þ � x0 ¼
c0 þ e where e follows a Gaussian distribution with zero mean29. According
to ref. 29, as the dimension denoted by d grows, the d consecutive
instances of the physical Gaussian channel, i.e., the quantum channel, are
reformulated to d copies of a virtual BI-AWGN channel29. Since this work
focuses on the benefit of rate-compatible MET-LDPC codes, it is assumed
for simplicity that the dimension is fixed to d= 8 at which the quantum
channel can be modeled as a BI-AWGN channel as shown in Fig. 7. Since
the gain in key rate is mainly due to the proposed coding scheme, the gain
is also achievable with different dimensions. The transmission of sub-group
c is repeated until the entire codeword ξ is transmitted. Then, in practical
systems, the received signal c0 þ e is often represented as a log-likelihood

ratio (LLR) vector denoted by L in Fig. 7, and the LLR vector L is fed to the
ECC decoder as its input.
In this work, a rate-compatible MET-LDPC code is assumed as the ECC in

Fig. 7, and the rate of ECC is set to the maximum value or the capacity of
the virtual BI-AWGN channel by puncturing parity bits. If the decoding at
the Alice side fails, she requests for additional parity bits. Upon the request,
Bob transmits additional parity bits by sending a sequence of mappings
corresponding to the punctured parity bits to be transmitted. The request
and transmission will be continued until Alice successfully obtains her
estimate of the message u0 . In some cases, the estimate u0 is different from
the true message u, which can be detected by employing an additional
error-detection code such as a CRC code. In Fig. 7, the parity bits for CRC
code is denoted by r. Note that the transmission of parity bits for the CRC
code degrades performance of the IR scheme, which can be avoided by
carefully designing the ECC. More details of the IR of CV-QKD can be found
in refs. 15,19.
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