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Less entanglement exhibiting more nonlocality with noisy
measurements
Gaoyan Zhu1, Daniel Dilley2, Kunkun Wang1, Lei Xiao1, Eric Chitambar3 and Peng Xue 1✉

The Clauser–Horne–Shimony–Holt (CHSH) inequality test is widely used as a mean of invalidating the local deterministic theories.
Most attempts to experimentally test nonlocality have presumed unphysical idealizations that do not hold in real experiments,
namely, noiseless measurements. We demonstrate an experimental violation of the CHSH inequality that is free of idealization and
rules out local models with high confidence. We show that the CHSH inequality can always be violated for any nonzero noise
parameter of the measurement. Intriguingly, less entanglement exhibits more nonlocality in the CHSH test with noisy
measurements. Furthermore, we theoretically propose and experimentally demonstrate how the CHSH test with noisy
measurements can be used to detect weak entanglement on two-qubit states. Our results offer a deeper insight into the relation
between entanglement and nonlocality.
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INTRODUCTION
Quantum systems exhibit a wide range of non-classical and
counter-intuitive phenomena, such as quantum entanglement1

and Bell nonlocality2. Bell’s inequality fundamentally provides a
wealth of understanding in what differentiates the classical from
the quantum world. Bell’s insight that nonlocal correlations
between quantum systems cannot be explained classically can
be verified experimentally and has numerous applications in
modern quantum information3–8. A great effort has also been
devoted to understanding the relation between entanglement
and nonlocality9–22. A fundamental problem with most propo-
sals13–15 for testing nonlocality and experiments23–27 performed to
date, is that measurements are assumed to have a deterministic
response in the nonlocality model. It has been shown that this can
only be justified under the idealization, namely, noiseless
measurements28. For Bell’s notion of local causality, the theoretical
work by Clauser et al.29 is critical to enabling an experimental test
without unphysical idealizations, i.e., without the perfect anti-
correlation presumed in Bell’s original proof. Furthermore, Dilley
and Chitambar30 show how to devise the test that is free of the
other idealization that measurements are noiseless, which is never
satisfied precisely by any real experiment. They consider a
scenario in which one party has inefficient detectors and can
only perform noisy measurements and show that the
Clauser–Horne–Shimony–Holt (CHSH) inequality can always be
violated for measurements with any nonzero detection efficiency.
In this work, we perform an experimental violation of the CHSH

inequality under a scenario when one party performs noisy
measurements, which is known as an asymmetric Bell experiment.
It should be mentioned that in our experiments the loopholes of a
Bell test are not closed which requires extremely high experi-
mental costs and rigorous technology31–34. First, we consider a
range of non-maximal two-qubit entangled states and show that
the CHSH inequality can always be violated for any nonzero noise
parameter of the measurement. Surprisingly, less entanglement
exhibits more nonlocality in the CHSH test with noisy

measurements. Furthermore, as an application of the CHSH test
with noisy measurements, we show how it is possible to also
detect the presence of weak entanglement of a two-qubit system.
Our results offer a thorough understanding of the relation
between entanglement and nonlocality.

RESULTS
Theoretical scenarios
First, consider a hybrid scenario in which Alice and Bob share a
two-qubit state. Alice’s detector has perfect efficiency and she can
perform an ideal measurement, while Bob can only perform a
noisy measurement which has a conclusive detection only a
fraction η of the time. Alice randomly chooses to measure her
qubit in the direction âx (x= 0, 1) and the outcome a is denoted
by either 0 or 1. The projector for Alice’s measurement is

ΠA
ajx ¼

1
2
1þ ð�1Þaâx � σ̂½ �; (1)

where σ̂ ¼ σx x̂ þ σy ŷ þ σz ẑ is a vector of Pauli matrices. In a
realistic setup, it might not be possible to obtain a conclusive
measurement outcome. We consider a simple scenario, where an
inconclusive outcome can only arise on Bob’s measurements,
occurring with frequency (1− η) for both of his measurement
choices. Thus, Bob performs a positive operator-valued measure
(POVM) with two outcomes

~Π
B
0jy ¼ η

2 ð1þ b̂y � σ̂Þ þ ð1� ηÞ1;
~Π
B
1jy ¼ η

2 ð1� b̂y � σ̂Þ;
(2)

where b̂y (y= 0, 1) is the direction of Bob’s measurement. The
term ð1� ηÞ1 corresponds to the inconclusive outcome.
The CHSH inequality with detection efficiency η on Bob’s

measurement is

2 � Eð0; 0Þ þ Eð0; 1Þ þ Eð1; 0Þ � Eð1; 1Þj j ¼ Tr ρB1ð Þj j; (3)
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where

Eðx; yÞ :¼
X1
a;b¼0

f ða; bÞpða; bjx; yÞ ¼ Tr ðρOA
x � OB

yÞ (4)

is the expected value of the nonlocal function f(a, b)= (−1)a⊕b

computed from the measurement outcomes, and the Bell
operator for this scenario is

B1 ¼ OA
0 � ðOB

0 þ OB
1Þ þ OA

1 � ðOB
0 � OB

1Þ (5)

with the observables OA
x ¼ ΠA

0jx � ΠA
1jx and OB

y ¼ ~Π
B
0jy � ~Π

B
1jy .

Without loss of generality, we choose the directions of Alice and
Bob as

â0 ¼ ẑ; â1 ¼ cos θAx̂ þ sin θAẑ;

b̂0 ¼ ẑ; b̂1 ¼ cos θBx̂ þ sin θBẑ:
(6)

The Bell operator then becomes

B1 ¼
P

i;j2fx;zg
cijσi � σj þ rzσz � 1

¼ ηBCHSH þ 2ð1� ηÞσz � 1;
(7)

where

rz ¼ 2ð1� ηÞ; cxx ¼ �η cosθAcos θB;

cxz ¼ η cosθAð1� sinθBÞ; czx ¼ ηcosθBð1� sin θAÞ;
czz ¼ ηð1þ sinθA þ sinθB � sinθAsin θBÞ;

and BCHSH is the standard Bell operator with η= 1.
It is proven in ref. 30 that in a two-qubit CHSH test with

detection efficiency η for one party and a perfect efficiency for the
other, there exist measurement directions fâ0; â1; b̂0; b̂1g and a
corresponding entangled state ρ such that the CHSH inequality is
violated, i.e., Tr ρB1ð Þ > 2 if η > 1/2. To analyze the entanglement
in the state violating the CHSH inequality, if Tr ρB1ð Þ > 2ð1þ κÞ
for any κ= η− 1/2 ≥ 0, the squared concurrence of the state ρ is
then

C2ðρÞ< ð2η� 1Þ κð2þ κÞþ 2ηð1� ηÞ½ �
ð1�2ηþ 2η2Þ2

þ 2ηð1� ηÞð1þ κÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� κð2þ κÞ� 4ηð1� ηÞ

p
ð1� 2ηþ 2η2Þ2 :

(8)

For any pure state which satisfies C2(ρ)= κ(2+ κ), there exist
suitable measurement directions to obtain the value of the CHSH
inequality Tr ðρB1Þ ¼ 2ð1þ κÞ. For η= 1, as the states are more
entangled the violation of the CHSH inequality becomes larger.
Surprisingly, for 1/2 < η < 1, more nonlocality with less entangle-
ment is shown as the detection efficiency decreases30.
Next, we consider the second scenario, which involves detection

inefficiency for only one of Bob’s measurement choices. That is, for

y= 1, Bob performs a POVM f~ΠB
0j1;

~Π
B
1j1g(2), while for y= 0, Bob

performs a projective measurement ΠB
bj0 ¼ ½1þ ð�1Þbb̂0 � σ̂�=2(1).

The corresponding Bell operator for the second scenario is then
given by

B2 ¼
X

i;j2fx;zg
cijσi � σj þ ðrxσx þ rzσzÞ � 1; (9)

where

rx ¼ �ð1� ηÞ cosθA; rz ¼ ð1� ηÞð1� sin θAÞ;
cxx ¼ �η cosθAcosθB; cxz ¼ cosθAð1� ηsin θBÞ;
czx ¼ η cosθBð1� sin θAÞ;
czz ¼ 1þ η sinθB þ sinθAð1� ηsin θBÞ:

It is shown in ref. 30 that in the second scenario, there exists a state ρ
such that Tr ρB2ð Þ > 2 for any η> 0 and any set of measurement
directions fâ0; â1; b̂0; b̂1g with â0 ≠ ±â1 and b̂0 ≠ ±b̂1.

Comparing these two scenarios, the first one guarantees the
existence of some measurement directions that generate nonlocal
correlations for η > 1/2 and places an upper bound on the
entanglement needed to violate the CHSH inequality. In contrast,
the second scenario says that any measurement direction will do
and also has implications for the relationship between nonlocality
and measurement incompatibility. For any two non-commuting
observables on Alice’s side, nonlocality can always be demon-
strated using incompatible POVMs on Bob’s side in which one of
them is any standard observable and the other is any non-
commuting “coarse-grained” observable, i.e., having the form of
Eq. (2).

Experimental violation of the CHSH inequality with noisy
measurements
We experimentally test the CHSH inequality without unphysical
idealization—noiseless measurements. The experimental setup
illustrated in Fig. 1, consists of an entangled photon source,
entangled state preparation, and polarization measurement35. By
using two adjacent nonlinear crystals (β-barium borate, BBO)
pumped by a 404-nm laser diode to produce spontaneous
parametric down-conversion and a half-wave plate (HWP) with the
setting angle θ ¼ 1

2 arcsin a, we can produce photon pairs in the
family of entangled states

ϕj i ¼ a HHj i þ sinðarccos aÞ VVj i; (10)

where H and V represent horizontal and vertical polarizations,
respectively. Fidelities of the states are about 97%.
Concurrence of the states are obtained from the reconstructed

density matrices via fully state tomography36. The polarization of
each photon is analysed on an arbitrary basis, by means of a
quarter-wave plate (QWP), HWP, and a polarizing beam splitter
(PBS) in each arm. Making 16 measurements of the polarization
correlations in various bases allows tomographic reconstruction of
the density matrix of the two-photon states. Photons are detected
in coincidence using silicon avalanche photodiodes (APDs),
thereby projecting out the large vacuum state from the possibility
of the pump photon not downconverting, and selecting the two-
photon contribution to quantum states. Photon counts are taken

Fig. 1 Experimental setup. Desired quantum states are generated
via type-I spontaneous parametric down-conversion using two joint
β-Barium Borate (BBO) crystals. In the measurement stage, a half-
wave plate (HWP) at θA and a polarizing beam splitter (PBS) on
Alice’s side perform the perfect projective measurement. For Bob’s
side, a POVM is performed by an HWP at θB and a Mach–Zehnder
interferometer with two beam displacers (BDs) and two HWPs at θη
and 45∘ inserted in each arm of the interferometer, respectively. For
the second scenario, BDs and two HWPs are removed from the setup
and an HWP at θB is used to perform a projective measurement
instead of a POVM. Here the noisy parameter of POVM η is adjusted
by tuning the setting angle of the HWP as θη ¼ arccos

ffiffiffi
η

p
=2.
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to be fair samples of the true probabilities for obtaining each
outcome for every preparation-measurement pair.
To test the CHSH inequality, one of the photons is sent to Bob

for his noisy measurement and the other is for Alice’s perfect
measurement. For Alice’s side, the measurement of her observable
OA
x is a standard polarization measurement using an HWP at θA

and a PBS. The HWP is used to map the eigenstate of the
observable corresponding to the eigenvalue 1 into Hj i and the
PBS is for projective measurement of the observable σz—one of
the standard Pauli operators. Two outcomes are read by APDs (DA0

and DA1).
In the first scenario, Bob performs a POVM f~ΠB

0jy ;
~Π
B
1jyg instead of

projective measurement37–43. He needs two steps to implement
the two-outcome measurements. First, a projector (the first term
of ~Π

B
0jy or ~Π

B
1jy ) is realized by an HWP at θB. Then partially

projecting polarizing elements involving two birefringent calcite
beam displacers (BDs) and two HWPs to produce the required
projectors with the appropriate weights, which are encoded into
the angle of one of the HWPs θη ¼ arccos

ffiffiffi
η

p
=2 (η is the efficiency

of the noisy measurement which is simulated here via the optical
implementation of the POVM). Two outcomes of Bob’s measure-
ment are read by APDs (DB0 and DB1). The conditional probability p
(a, b∣x, y), which denotes the probability obtained in the case Alice
chooses to measure her qubit in the direction âx and the outcome
is a, while Bob chooses to measure his qubit in the direction b̂y
with inefficient detectors and the outcome is b, is obtained by the
coincidence counts N(a, b∣x, y) between APDs (DAa,DBb) normal-
izing by the total photon counts. For example, p(0, 0∣1, 1)= N(0,
0∣1, 1)/∑a,bN(a, b∣1,1). For the second scenario, Bob performs a
projective measurement (1) for y= 0 and a POVM (2) for y= 1 via
the above setups, respectively. All the measurement events on
Bob’s side need to be heralded by Alice’s detectors.
Experimental results for the first scenario are shown in Fig. 2a, b.

We choose six different settings η ¼ 0:55; 0:6; 0:65; 1=
ffiffiffi
2

p
; 0:8; 1

for the noisy measurement. For each η, we choose a family of two-
qubit states ϕj i(10) with squared concurrences 0.1, 0.4, 0.6, 0.7,
0.8, 0.86, 0.92, 0.96, 1, respectively. Then we optimize the
measurement directions fâ0; â1; b̂0; b̂1g for violating the CHSH
inequality. In addition to the above states with fixed squared
concurrences, we also choose the states which violate the CHSH
inequality maximally, for each η.

In Fig. 2a, the solid line signifies the upper bound on the
amount of entanglement needed to violate the CHSH inequality
for a given η. The states with the squared concurrences at or
above the solid line (the shadow area) do not violate the CHSH
inequality. For η > 1/2, there always exists a state maximally
violating the CHSH inequality, and the squared concurrence of this
state is given by the dashed line obtained theoretically. For
η � 1=

ffiffiffi
2

p
, no maximally entangled states (C2= 1) can violate

the CHSH inequality.
In Fig. 2b, we show the value of the CHSH violation versus the

squared concurrence for the first scenario. For η= 1, the value of
the CHSH violation increases with the squared concurrence
linearly and the maximal entangled state Φþ�� �

¼ ð 00j i þ
11j iÞ=

ffiffiffi
2

p
violates the CHSH inequality with Tr ð Φþ�� �

Φþ� ��B1Þ ¼
2:7629 ± 0:0337 by 22 standard deviations. Surprisingly, for
1/2 < η < 1, as the detection efficiency η decreases, more
nonlocality with less entanglement is observed, which agrees
with the theoretical prediction in ref. 30. For example, for η= 0.8,
the state 0:7603 00j i þ 0:6495 11j i with squared concurrence
0.8568 ± 0.0048 violates the CHSH inequality with Tr ðρB1Þ ¼
2:2911 ± 0:0323 by nine standard deviations. Whereas, the
maximally entangled state violates the CHSH inequality with
2.1938 ± 0.0316 by only six standard deviations.
Experimental results of the second scenario are shown in Fig. 2c.

For the POVM of Bob’s side, we choose 5 different settings η= 0.2,
0.4, 0.5, 0.6, 1. For each η, five different two-qubit states ϕj i(10)
whose squared concurrences are 0.1, 0.4, 0.6, 0.7, 0.8, 0.92, 1,
respectively, are chosen. For each η and ϕj i, we optimize the
directions of measurement for both sides fâ0; â1; b̂0; b̂1g to obtain
the maximal violation of the CHSH inequality. Furthermore, we
also choose the states which violate the CHSH inequality
maximally for each η. Similar to the first scenario, except for the
case of η= 1, as the detection efficiency η decreases, more
nonlocality with less entanglement is observed. Take η= 0.6 as an
example, the state 0:8018 00j i þ 0:5976 11j i with squared concur-
rence of 0.8568 ± 0.0167 violates the CHSH inequality with
Tr ðρB1Þ ¼ 2:3257 ± 0:0330 by ten standard deviations. While
the maximally entangled state violates the CHSH inequality with
2.2879 ± 0.0334 by only nine standard deviations. In addition,
different from that in the first scenario, the CHSH inequality can
always be violated for an arbitrary small η > 0 in the second
scenario.

Fig. 2 Experimental results for the first and second scenarios. a Squared concurrence of the state C2(ρ) versus the detection efficiency of
Bob’s noisy measurement η. For a given η, a state with the squared concurrence at or above the solid curve (the shaded area) will never violate
the CHSH inequality. For η > 1/2, there is always a state violating the CHSH inequality maximally and the squared concurrence of the state is
given by the dashed curve. For η � 1=

ffiffiffi
2

p
, no maximally entangled states (C2= 1) can violate the CHSH inequality. In our experiment, more

values of η in 1=2; 1=
ffiffiffi
2

p� �
are chosen to manifest the behavior around η ¼ 1=

ffiffiffi
2

p
. Black triangles denote the squared concurrence of the states

which do not violate the CHSH inequality for a given η. Red dots denote C2 of the states which violate the CHSH inequality. Blue squares
denote C2 of the states which violate the CHSH inequality maximally. b Violations of the CHSH inequality versus the squared concurrences of
the states for various detection efficiency η. For η < 1, more nonlocality with less entanglement is observed. c Violations of the CHSH inequality
versus the squared concurrences of the states for the second scenario, where only one of Bob’s measurement choices is inefficient. The CHSH
inequality can be violated for an arbitrary η > 0. To show the difference between the first and second scenarios, we choose more values of η in
0; 1=2½ �. Error bars indicate the statistical uncertainty which is obtained based on assuming Poissonian statistics.
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Detecting weak entanglement
Furthermore, we theoretically propose and experimentally
demonstrate how the CHSH test with noisy measurements can
be used to detect the weak entanglement of a two-qubit system.
Consider a two-qubit state

ρ ¼ 1
1þ t

~ϕ
�� � ~ϕ
� ��þ s1� 1
1þ 4s

þ t ~Φ
��� �

~Φ
�� �� !

; (11)

where ~ϕ
�� � ¼ λþ ~0~0

�� �
þ λ� ~1~1

�� �
and ~Φ

��� �
¼ ð ~0~0
�� �

� ~1~1
�� �

Þ=
ffiffiffi
2

p
with

f ~0
�� �; ~1

�� �g being the Schmidt basis of ϕ0j i and λ± being
the Schmidt coefficients. ϕ0j i is the eigenstate of B1 with
the directions of the measurements θA= 0 and
θB ¼ arcsin½ð1� τÞ2=ð1þ τÞ2�. ρ is weakly entangled with a
monotonically decreasing squared concurrence C2(ρ) as para-
meter t varies among the interval

t 2 0;

ffiffiffiffiffi
2τ

p
� 2s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
ð1þ 4sÞ

" !
; (12)

and has an expected value Tr ρB1ð Þ > 2 if

t < 2
1þ 4s�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p

ð1þ 4sÞð�2�
ffiffiffi
2

p
τÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p

and

s 2 0;
1
4
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
� 1Þ

� 	
:

While, for values of t outside of the interval Eq. (12), ρ may exist
stronger entanglement but with no violation of the CHSH
equation. Figure 4 gives an intuitive presentation of such a
situation, which is discussed in detail in the Method part. Such a
property can be used to detect only nonlocal states with weak
entanglement.
For experimental demonstration, we fix the detection efficiency

of Bob’s measurement η= 3/4. We choose total six values of t= 0,
0.02, 0.038, 0.3, 0.6, 0.83 and generate six states with various
parameters t and fixed s= 1/50 and τ= 1/244. In the measurement
stage, the setup is as same as that for the pure state testing the
CHSH inequality B1.
Experimental results are shown as symbols in Fig. 3. In Fig. 3a,

for small t 2 0; 0:791½ Þ, ρ is entangled as its squared concurrence
C2(ρ) > 0 and C2(ρ) decreases with t. For t 2 0:791; 0:865½ �, ρ is
separable since C2(ρ)= 0.
In Fig. 3b, weak entanglement is achieved for small t. The

violation of the CHSH inequality is even larger than that obtained
by the state with more entanglement (with larger t), which can be

seen by comparing Fig. 4a, b. For t 2 0; 0:038½ �, Tr ρB1ð Þ is larger
than 2. The CHSH inequality is then violated for these states, which
indicates Bell nonlocal states. For example, for t= 0, the state has
only weak entanglement with the squared concurrence C2(ρ)=
0.5617 ± 0.0190. However, a violation of the CHSH inequality is still
observed for Tr ρB1ð Þ ¼ 2:0281 ± 0:0301. (Ideally, for t= 0 our
method still allows to demonstrate nonlocality by violating the
CHSH inequality (2.0704). However, the experimental result
2.0281 ± 0.0301 shows that if the error bar is considered the
method is not always valid.). Actually, due to the squared
concurrences in Fig. 3a, the states with t 2 0; 0:791½ Þ are
entangled. However, a violation of the CHSH inequality is only
observed as Tr ρB1ð Þ between 2.070 and 2 (theoretical predic-
tions) for t 2 0; 0:038½ �. The interval of separability will be pushed
left on the graph for smaller values of s and τ; causing a violation
to occur for only small values of parameter t.
The states belonging to the gap between the Bell nonlocal

states with t 2 0; 0:038½ � and the separable states with t 2
0:791; 0:865½ � are so-called entangled Bell local states, which can
be detected via entanglement witnesses45. An entanglement
witness operatorW acting on a bipartite system can be defined via
Peres criterion as

W ¼ 1
2
1� j~Φþih~Φþj; j~Φþi ¼ ðj~0~0i þ j~1~1iÞ=

ffiffiffi
2

p
: (13)

For separable states, Tr(ρW) ≥ 0, while for entangled states, Tr(ρW)
< 0. In Fig. 3c, it is shown that Tr(ρW) < 0 for t 2 0; 0:791½ Þ, which
indicates both Bell nonlocal states and entangled Bell local states
can be detected by the entanglement witness.

DISCUSSION
Entanglement is a strong nonlocal correlation and an important
resource in the development of technologies and protocols
exploiting the properties of quantum systems46,47. Nonlocality
inequalities set a bound on the possible strength of nonlocal
correlations. Quantum mechanics predicts the existence of
entangled states which violate a nonlocality inequality. Previous
attempts to experimentally test nonlocality have all presumed
unphysical idealizations that do not hold in real experiments,
namely, noiseless measurements. In this work, we perform an
experimental violation of the CHSH test that is free of the
idealizations and rule out local models with high confidence in
two scenarios. For the first scenario, we experimentally demon-
strate that the CHSH inequality can always be violated for any
efficiency η > 1/2 which was originally pointed out by48,49. We
furthermore test the upper bound on the amount of entangle-
ment needed to violate the CHSH inequality for a given η.

Fig. 3 Experimental results for detecting weak entanglement. a Squared concurrence versus the parameter t of a two-qubit state. For small
0 ≤ t < 0.791, ρ is entangled as squared concurrence C2(ρ) > 0. For 0.791 ≤ t ≤ 0.865, ρ is separated as C2(ρ)= 0. b Violations of the CHSH
inequality versus t. The other parameters of the state and the detection efficiency are fixed as s= 1/50, τ= 1/2, and η= 3/4. Bell nonlocal
states with 0 ≤ t ≤ 0.038 violate the CHSH inequality. c Values of the entanglement witness Tr(ρW) versus t. Entangled Bell local states with
0.038 < t < 0.791 can be indicated via the entanglement witness. Symbols are experimental data, which agree with their theoretical predictions
(solid curves).
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Besides, we experimentally study a scenario, which was not
previously considered in the literature. We show that the CHSH
inequality can always be violated for any nonzero noise parameter
of the measurement. Less entanglement exhibits more nonlocality
in both of the scenarios. We also provide an application of testing
the CHSH inequality with a noisy measurement; that is, the
detection of weak entanglement of a two-qubit state. This
approach has possible applications for scientific fields wherein
quantum effects are important and for developing quantum
technologies. For instance, we particularly expect to further
develop it for the construction of entanglement witness that only
detects nonlocal states with low entanglement.

METHODS
Detailed explanation of the experimental results
Experimental results show that for η � 1=

ffiffiffi
2

p
, no maximally entangled

states (C2= 1) can violate the CHSH inequality. It is straightforward to show
why this is true. Note that we can write the expected value Tr ðρB1Þ as

η � 2 ðĉ0; T ρb̂0Þ cos ðθÞ þ ðĉ1; T ρb̂1Þ sin ðθÞ
h i

þð1� ηÞ � 2ðĉ0 cos ðθÞ þ ĉ1 sin ðθÞ; r!Þ
(14)

for measurements fĉ0; ĉ1; b̂0; b̂1g, Alice’s local Bloch vector r!, and the
correlation matrix T ρ . Since a maximally entangled state has local
maximally mixed subsystems, the local Bloch vectors must both be zero
for Alice and Bob. So the second term vanishes and we are left with the
original term Horodecki et al. obtained in ref. 50 with a factor of η.
Therefore, the maximum expected value has to be 2η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1 þ λ2

p
, where λ1, λ2

are the largest eigenvalues of the symmetric matrix T T
ρT ρ . Due to the

positivity of maximally entangled two-qubit states51, both eigenvalues
must be unit which gives the optimal value of 2η

ffiffiffi
2

p
. So maximally

entangled states can only violate the CHSH inequality when η > 1=
ffiffiffi
2

p
as

suggested by the experimental results.

Details on the proposal of detecting weak entanglement
We theoretically propose and experimentally demonstrate how CHSH tests
with noisy measurements can be used to detect weak entanglement on
two-qubit states. Consider a two-qubit state ρ in Eq. (11) of the main text. It
has an expected value Tr ρB1ð Þ > 2 if

t < 2 1þ 4s�
ffiffiffiffiffiffiffiffiffi
1þ τ2

p

ð1þ 4sÞð�2�
ffiffi
2

p
τÞþ

ffiffiffiffiffiffiffiffiffi
1þ τ2

p ;

s 2 0; 14 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ τ2

p
� 1Þ


 �
;

(15)

where ~ϕ
�� � ¼ λþ ~0~0

�� �
þ λ� ~1~1

�� �
and ~Φ

��� �
¼ ð ~0~0
�� �

� ~1~1
�� �

Þ=
ffiffiffi
2

p
with

f ~0
�� �; ~1

�� �g being the Schmidt basis of ϕ0j i and λ± being the Schmidt

numbers. The state

ϕ0j i ¼
ffiffi
τ

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þτÞð1þτ2�τ

ffiffiffiffiffiffiffiffi
1þτ2

p
Þ

p

�1þτ�
ffiffiffiffiffiffiffiffi
1þτ2

pffiffiffiffi
2τ

p 00j i þ ðτ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
Þ 01j i þ �1�τþ

ffiffiffiffiffiffiffiffi
1þτ2

pffiffiffiffi
2τ

p 10j i þ 11j i
h i (16)

with f 0j i; 1j ig being the computational basis, is the eigenstate of B1

corresponding to the eigenvalue 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

p
(τ= 2η− 1) with the directions

of the measurements θA= 0 and θB ¼ arcsin½ð1� τÞ2=ð1þ τÞ2�. The

Schmidt numbers are λ± ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
± ð1� τÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

pq
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

pp
. By doing

the singular value decomposition of the matrix form of ϕ0j i, given by the
isomorphism between four vectors and 2 × 2 matrices, we are able to
obtain the transformation ~ϕ

�� � ¼ 1� V ϕ0j i by the use of a local rotation V
which is defined in the computational basis as

V ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ τÞ

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

pp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

pp
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

pp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ2

pp
 !

: (17)

The concurrence of the state ~ϕ
�� � can be calculated as

C ¼ 2jλþλ�j ¼
ffiffiffiffiffiffiffiffi
2τ

1þτ2

q
.

For experimental demonstration, we fix the detection efficiency of Bob’s
measurement at η= 3/4. For simplification, we generate the state

ρ0 ¼ 1
1þ t

1
1þ 4s

ϕj i ϕh j þ s1� 1ð Þ þ t Φ�j i Φ�h j
� 	

(18)

in the computational basis with ϕj i ¼ λþ 00j i þ λ� 11j i and Φ�j i ¼ ð 00j i �
11j iÞ=

ffiffiffi
2

p
and the desired state ρ can be obtained by a change of basis, i.e.,

ρ ¼ 1� Vρ01� V. We choose a total of six values of t= 0, 0.02, 0.038, 0.3,
0.6, 0.83 to generate six different states and fixed s= 1/50 and τ= 1/2.
In the measurement stage, for Alice’s side, the setup is the same as that

for the pure state testing of the CHSH inequality. For Bob’s side, an extra
unitary transformation Vy~Π

B
bjyV is applied to perform a change of basis52,53.

This unitary combines with another rotation that maps the eigenstate of
the observable OB

y , corresponding to the eigenvalue 1, into Hj i and is
realized by the HWP at θB. The rest is the same as that for the pure state
testing of the CHSH inequality associated with the Bell operator B1.
Experimental results are shown in Fig. 4. The parameters of the state and

the detection efficiency are fixed as s= 1/50, τ= 1/2, and η= 3/4. For 0 ≤ t
< 0.791 and t > 0.865, ρ is entangled as squared concurrence C2(ρ) > 0. For
0.791 ≤ t ≤ 0.865, ρ is separated as C2(ρ)= 0. Bell nonlocal states with 0 ≤
t ≤ 0.038 and t > 13.428 violate the CHSH inequality. For small t= 0, the
state has only weak entanglement with the squared concurrence C2(ρ)=
0.5617 ± 0.0190. However, a violation of the CHSH inequality is observed
for Tr ρB1ð Þ ¼ 2:0281± 0:0301. For larger t= 30, the state with stronger
entanglement C2(ρ)= 0.8116 ± 0.0239 and it violates the CHSH inequality
by the value Tr ρB1ð Þ ¼ 2:0083± 0:0310. The violation is even smaller.
Thus, we can use the violation of the CHSH inequality with noisy
measurements to detect weak measurements.
For the entanglement witness, in our experiment, as we actually

generate the state ρ0 , we measure Tr ðρ0W 0Þ which is equivalent to Tr(ρW),
where W 0 ¼ 1

21� Φþ�� �
Φþ� �� and Φþ�� �

¼ ð 00j i þ 11j iÞ=
ffiffiffi
2

p
.

Fig. 4 Experimental results of concurrence and violations of the CHSH inequality. a Squared concurrence versus the parameter t of a two-
qubit state. For 0 ≤ t < 0.791 and t > 0.865, ρ is entangled as squared concurrence C2(ρ) > 0. For 0.791 ≤ t ≤ 0.865, ρ is separated as C2(ρ)= 0. b
Violations of the CHSH inequality versus t. The other parameters of the state and the detection efficiency are fixed as s= 1/50, τ= 1/2, and η=
3/4. Bell nonlocal states with 0 ≤ t ≤ 0.038 and t > 13.428 violate the CHSH inequality. Symbols are experimental data, which agree with their
theoretical predictions (solid curves).
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Experimental implementation of POVMs
To quantify the quality of the experimental realization of the POVMs, we
define a modified two-norm distance38 between the experimentally
reconstructed matrix Gexp and the ideal one Gth as

DðGexp;GthÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr ðGexp � GthÞ

2
h i

TrðG2
th Þ

vuuut : (19)

The value of the distance ranges between 0 for a perfect match and
ffiffiffi
2

p
for

a complete mismatch. To reconstruct the matrix form of Gexp, we perform
the measurement tomography54. More specifically, single photons are
prepared in four testing states Hj i, Vj i, Rj i ¼ ð Hj i þ i Vj iÞ=

ffiffiffi
2

p
and

Dj i ¼ ð Hj i þ Vj iÞ=
ffiffiffi
2

p
, and are detected by APDs in coincidence with the

trigger photons after passing through the optical setup for realizing a
certain POVM element. Photon counts give the measured probabilities.
From these, we can obtain the matrix forms of all the elements of
the POVMs via maximum-likelihood estimation. In our experiment, all the
distances turn out to be smaller than 0.03, which validates the
experimental realizations of the POVMs.

Experimental generation of mixed states
To detect weak entanglement, we generate mixed state ρ0(18) and fix the
parameters as s= 1/50, κ= 1/2, and η= 3/4. The mixed state is then
ρ0 ¼ 1

1þt ð2527 ϕj i ϕh j þ 1
541þ t Φ�j i Φ�h jÞ, where ϕj i ¼ 0:851 00j i þ 0:526 11j i.

We generate the two-photon pure entangled states and introduce
quantum noise in a controlled way on one of the state subsystems55,56.
As illustrated in Fig. 1 of the main text, by tuning the setting angle θ1 of the
HWP, we can generate two-photon pure entangled states with real
coefficients. For example, with θ1 ¼ 1

2 arccosð0:526Þ, ϕj i is generated via
type-I spontaneous parametric down-conversion using two BBO crystals.
By introducing quantum noise through a depolarizing channel ε(ρ)= (1−
3p/4)ρ+ p(σxρσx+ σyρσy+ σzρσz)/4, we can also generate a Werner state
ρW ¼ ð1� pÞ Φ�j i Φ�h j þ p1=4. The depolarizing channel is introduced in a
controlled way by employing two liquid crystal retarders (LCs) in the path
of photon A. The LCs act as phase retarders, with the relative phase
between the ordinary and extraordinary radiation components depending
on the applied voltage. Precisely, Vπ and V1 correspond to the case of LCs
operating as HWP and as the identity operator, respectively. The two LCs’
optical axes are set at 0∘ and 45∘ with respect to the V polarization. Then,
when the voltage is applied, one of the LC acts as a σz on the single-qubit
and the other as σx. The simultaneous application of Vπ on both LCs
corresponds to the σy operation. By controlling the activation time and the
period of the LCs activation cycle, we can generate the Werner state ρW
with an arbitrary coefficient. Thus, we generate the pure entangled state
ϕj i and the Werner state ρW respectively, and then by choosing different
exposure time for each state, i.e., the time for coincidence measurement
for each state, we can generate the mixed state ρ0 . The ratio between
exposure times for ϕj i and ρW is 25

27 : ð 227 þ tÞ.

DATA AVAILABILITY
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