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Optimal verification of the Bell state and
Greenberger–Horne–Zeilinger states in untrusted
quantum networks
Yun-Guang Han 1,2,3, Zihao Li1,2,3, Yukun Wang4 and Huangjun Zhu 1,2,3✉

Bipartite and multipartite entangled states are basic ingredients for constructing quantum networks and their accurate verification
is crucial to the functioning of the networks, especially for untrusted networks. Here we propose a simple approach for verifying the
Bell state in an untrusted network in which one party is not honest. Only local projective measurements are required for the honest
party. It turns out each verification protocol is tied to a probability distribution on the Bloch sphere and its performance has an
intuitive geometric meaning. This geometric picture enables us to construct the optimal and simplest verification protocols, which
are also very useful to detecting entanglement in the untrusted network. Moreover, we show that our verification protocols can
achieve almost the same sample efficiencies as protocols tailored to standard quantum state verification. Furthermore, we establish
an intimate connection between the verification of Greenberger–Horne–Zeilinger states and the verification of the Bell state. By
virtue of this connection we construct the optimal protocol for verifying Greenberger–Horne–Zeilinger states and for detecting
genuine multipartite entanglement.
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INTRODUCTION
Entanglement is the characteristic of quantum mechanics and key
resource in quantum information processing1–3. As typical
examples of bipartite and multipartite entangled states, the Bell
state and Greenberger–Horne–Zeilinger (GHZ) states4,5 play
crucial roles in numerous quantum information processing tasks
and in foundational studies, such as quantum teleportation6–8,
quantum key distribution9,10, quantum random number genera-
tion11, and nonlocality tests12,13. Furthermore, as a special
example of graph states14, GHZ states are useful to constructing
quantum networks15,16 designed for distributed quantum infor-
mation processing, such as quantum secret sharing17,18, quantum
conference key agreement19, and distribution20.
To guarantee the proper functioning of a quantum network, it is

essential to verify the entangled state deployed in the network
accurately and efficiently, especially for untrusted networks21–29.
This scenario has wide applications in quantum information
processing, such as one-sided device-independent (DI) quantum
key distribution30, anonymous communication31,32, and verifiable
quantum secure modulo summation33. Meanwhile, this problem is
tied to the foundational studies on quantum steering in the
asymmetric scenario3,34–36 and the uncertainty principle in the
presence of quantum memory37,38.
Unfortunately, not much is known about quantum verification

in untrusted networks despite its significance. This is because not
all parties in the networks are honest, and the verification problem
gets much more complicated in the presence of dishonest parties.
In particular, traditional tomographic approaches are not applic-
able in the network setting even if their low efficiency is tolerable.
Also, most alternative approaches, including direct fidelity
estimation39 and quantum state verification (QSV)40–45, are not
applicable, although QSV can address the adversarial scenario in

which the source is not trustworthy43–45. DI QSV46 based on self-
testing22,47–52 can be applied in the network setting in principle,
but is too resource consuming and too demanding with current
technologies. For the Bell state and GHZ states, optimal verification
protocols are known when all parties are honest42,53–58. In the
network setting, however, only suboptimal protocols are known in
the literature23–26,29.
In this paper, we propose a simple approach for verifying the

Bell state over an untrusted network in the semi-device-
independent (SDI) scenario in which one party is not honest.
Only local projective measurements are required for the honest
party. In addition, we establish a simple connection between
verification protocols of the Bell state and probability distributions
on the Bloch sphere and reveal an intuitive geometric interpreta-
tion of the performance of each verification protocol. By virtue of
this geometric picture, we construct the optimal and simplest
protocols for verifying the Bell state, which can also be applied to
detecting entanglement in the untrusted network. Moreover, we
determine the sample efficiencies of our SDI verification protocols
in addition to the guessing probabilities.
Furthermore, we establish an intimate connection between the

verification of GHZ states and the verification of the Bell state.
Thanks to this connection, efficient protocols for verifying GHZ
states can easily be constructed from the counterparts for the Bell
state. Notably, this connection enables us to construct the optimal
protocol for verifying GHZ states and for detecting genuine
multipartite entanglement (GME). To put our work in perspective,
we also provide a detailed comparison between SDI QSV
considered in this work and standard QSV as well as DI QSV
based on self-testing. For the Bell state and GHZ states, SDI
verification can achieve almost the same sample efficiency as
standard QSV; by contrast, the sample efficiency in the DI scenario
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is in general quadratically worse in the infidelity unless there exists
a suitable Bell inequality for which the quantum bound coincides
with the algebraic bound.

RESULTS
Verification of the Bell state
Suppose two distant parties, Alice and Bob, want to create the Bell
state Φj i ¼ ð 00j i þ 11j iÞ= ffiffiffi

2
p

as follows: Bob first prepares Φj i in
his lab and then sends one particle of the entangled pair to Alice
using a quantum channel. To verify this state Alice can perform a
random projective measurement from a set of accessible
measurements and then ask Bob to guess the measurement
outcome given the measurement chosen. Each projective
measurement is specified by a unit vector r on the Bloch sphere,
which specifies the two outcomes P ± ¼ ðI± r � σÞ=2, where σ is
the vector composed of the three Pauli matrices. If Bob is honest
and prepares the target state Φj i, then his reduced states
corresponding to the two outcomes P+ and P− have mutually
orthogonal supports, so he can guess the measurement outcome
with certainty by performing a suitable projective measurement.
If Bob is not honest and tries to prepare a different state ρ

instead of Φj i, then his guessing probability—the probability of
successful guess—would be limited. In this case, Alice cannot
distinguish two states that can be turned into each other by local
operations of Bob; nevertheless, she can verify whether the state
prepared is indeed Φj i up to these local operations. Let ρ± ¼
trAðρP ± Þ be the unnormalized reduced states of Bob. To guess the
measurement outcome of Alice, Bob can perform a two-outcome
POVM {E+, E−} to distinguish ρ+ and ρ−. By the Helstrom
theorem59, the maximum guessing probability γ(ρ, r) over all

POVMs (or projective measurements) is given by the formula
γ(ρ, r)= (1+ |∣ρ+− ρ−∣∣1)/2.
Recall that a general two-qubit state has the form

ρ ¼ 1
4

Iþ a � σ � Iþ I� b � σ þ
X
j;k

T jkσj � σk

 !
; (1)

where σj, σk are Pauli matrices (also denoted by X, Y, Z), a and b are
the Bloch vectors of the two reduced states, and T is the
correlation matrix. If ρ is pure, then we can deduce (cf.
Supplementary Note 1),

γðρ; rÞ ¼ 1
2

1þ jjTTrjj� � ¼ 1
2

1þ jj
ffiffiffiffiffiffiffi
TTT

p
rjj

� �
: (2)

To understand the geometric meaning of γ(ρ, r), note that the set
of vectors f

ffiffiffiffiffiffiffi
TTT

p
r : jrj ¼ 1g forms a rotational ellipsoid, which is

called the correlation ellipsoid and denoted by Eρ (cf. the steering
ellipsoid60,61), as illustrated in Fig. 1. The semi-major axis v and
semi-minor axis of Eρ have length 1 and C, respectively, where C is

the concurrence of ρ1,62. In addition, the radius jj
ffiffiffiffiffiffiffi
TTT

p
rjj is

determined by C and the angle between r and the semi-major axis
as follows,

jj
ffiffiffiffiffiffiffi
TTT

p
rjj ¼ jjTTrjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ð1� C2Þðr � vÞ2

q
: (3)

A verification strategy of Alice is determined by a probability
distribution μ on the Bloch sphere, which specifies the probability
of performing each projective measurement. Given the strategy μ
and the state ρ, the maximum average guessing probability of Bob
reads

γðρ; μÞ :¼
Z

dμðrÞγðρ; rÞ ¼ 1
2
þ 1
2

Z
dμðrÞjjTTrjj; (4)

Fig. 1 Geometric illustration of the XYZ protocol in the Bloch sphere. For a given concurrence C, the guessing probability is maximized
when the semi-major axis v of the correlation ellipsoid parallels one of the eight intelligent directions.
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where the bias is a weighted average of radii of the correlation
ellipsoid. Denote by γ2(C, μ) the maximum guessing probability
over all pure states with concurrence at most C. Note that
maximizing γ(ρ, μ) for a given concurrence amounts to choosing a
proper orientation of the correlation ellipsoid so as to maximize
the weighted average of radii, as illustrated in Fig. 1. This intuition
leads to the following theorem as proved in Supplementary Note 1.

Theorem 1. Suppose 0 ≤ C ≤ 1; then

γ2ðC; μÞ ¼
1
2
½1þ gðC; μÞ�; (5)

gðC; μÞ :¼ max
v

Z
dμðrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þ ð1� C2Þðr � vÞ2

q
; (6)

where the maximization in Eq. (6) is over all unit vectors.

Any unit vector v that maximizes the integration in Eq. (6) is
called an intelligent direction. For a given concurrence, the
guessing probability is maximized when the major axis of the
correlation ellipsoid parallels an intelligent direction. When C= 1,
the correlation ellipsoid is a sphere, in which case Theorem 1
yields g(C, μ)= 1 and γ2(C, μ)= 1. When C= 0, the correlation
ellipsoid reduces to a line segment, in which case we can deduce

g�ðμÞ :¼ gð0; μÞ ¼ max
v

Z
dμðrÞjr � vj; (7)

γ�2ðμÞ :¼ γ2ð0; μÞ ¼
1
2
þ 1
2
max
v

Z
dμðrÞjr � vj: (8)

Notably, entanglement can be certified in the shared system when
the guessing probability surpasses the threshold γ�2ðμÞ. The
relation between the guessing probability and concurrence for
various verification protocols is illustrated in Fig. 2.

Alternative strategies of the adversary
So far we have assumed that the state ρ prepared by Bob is a two-
qubit pure state and ρA :¼ tr BðρÞ is supported in the local support
of the target Bell state, that is, the subspace spanned by 0j i and
1j i. Can Bob gain any advantage if ρA is not supported in this
subspace? The answer turns out to be negative. Now Alice can first
perform the projective measurement fPA; I� PAg with PA ¼
0j i 0h j þ 1j i 1h j and then apply a verification protocol as before if
she obtains the first outcome and reject otherwise. The maximum
guessing probability γ(C, μ) of Bob for any pure state with C(ρ) ≤ C

is the same as before as shown in the following lemma and
proved in Supplementary Note 3.

Lemma 1. γ(C, μ)= γ2(C, μ) for 0 ≤ C ≤ 1.

Note that γ(C, μ)= 1 when C ≥ 1, in which case Bob can prepare
the target Bell state. So we can focus on the case 0 ≤ C ≤ 1. Define
γ*(μ)≔ γ(0, μ), then γ�ðμÞ ¼ γ�2ðμÞ thanks to Lemma 1, so the
threshold for entanglement detection remains the same as before;
cf. Eq. (8). In conjunction with the convexity of γ2(C, μ) in C (cf.
Lemma S1 in Supplementary Note 2), Lemma 1 implies that

γðC; μÞ ¼ γ2ðC; μÞ � γ�ðμÞð1� CÞ þ C; 0 � C � 1; (9)

which offers the best linear upper bound for γ(C, μ). When the
distribution μ is clear from the context, γ*(μ) is abbreviated as γ* for
simplicity.
Above results can be extended to mixed states, although our

main interest are pure states. Let γ̂ðC; μÞ be the maximum
guessing probability of Bob over all states with concurrence at
most C. Define γ̂2ðC; μÞ in a similar way, but assuming that ρA is
supported in the support of PA. By the following theorem proved
in Supplementary Note 4, γ̂ðC; μÞ and γ̂2ðC; μÞ are weighted
averages of γ*(μ) and γ(1, μ)= 1.

Theorem 2. Suppose 0 ≤ C ≤ 1; then

γ̂ðC; μÞ ¼ γ̂2ðC; μÞ ¼ ð1� CÞγ�ðμÞ þ C

¼ 1þC
2 þ 1�C

2 max
v

R
dμðrÞjr � vj: (10)

Fidelity as the figure of merit
Next, we consider the fidelity as the figure of merit, which is more
natural for QSV. Here we assume that Bob controls the whole
system except that of Alice, so we can assume that the state ρ
prepared by Bob is pure. Define the reduced fidelity

FBðρÞ :¼ max
UB

Φh jðIA � UBÞρðIA � UBÞy Φj i; (11)

where the maximization is taken over all local unitary transforma-
tions on HB. Denote by γF(F, μ) the maximum guessing probability
over all pure states with FB(ρ) ≤ F. Define γF2ðF; μÞ in a similar way,
but assuming that ρA is supported in the support of PA. It is known
that FB(ρ)= [1+ C(ρ)]/2 ≥ 1/2 for any two-qubit pure state ρ
satisfying PAρA= ρA

63. So γF2ðF; μÞ is defined only for 1/2 ≤ F ≤ 1,
although γF(F, μ) is defined for 0 ≤ F ≤ 1.
The following theorem proved in Supplementary Note 5 clarifies

the relations between γF(F, μ), γF2ðF; μÞ, and γ2(C, μ). The guessing
probabilities γF(F, μ) for various verification protocols are illustrated
in Fig. 3.

Theorem 3. Suppose 1/2 ≤ F ≤ 1; then

γF2ðF; μÞ ¼ γ2ð2F � 1; μÞ � 1� 2ð1� γ�Þð1� FÞ: (12)

Suppose 0 ≤ F ≤ 1; then

γFðF; μÞ ¼ 2γ�F 0 � F<1=2;

γ2ð2F � 1; μÞ 1=2 � F � 1;

�
(13)

γFðF; μÞ � 1� 2ð1� γ�Þð1� FÞ: (14)

Equation (14) offers the best linear upper bound for γF(F, μ)
when 1/2 ≤ F ≤ 1 and demonstrates the robustness of the
verification protocol. Theorems 1 to 3 corroborate the significance
of the threshold γ* in verifying the Bell state and entanglement in
the SDI scenario. Moreover, the threshold γ* determines the
sample efficiency, as we shall see shortly. Therefore, γ* can be

Fig. 2 The guessing probability γ(C)= γ2(C) as a function of the
concurrence C for various verification protocols of the Bell state.
Here the XY protocol and isotropic protocol are introduced in the
main text, while other protocols are proposed in the Supplementary
Material.
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regarded as the most important figure of merit for characterizing
the performance of a verification protocol.

Simplest and optimal verification protocols
Here we propose several concrete verification protocols, including
the simplest and optimal protocols. The main results are
summarized in Table 1 and illustrated in Fig. 2; more details can
be found in Supplementary Note 9.
In the simplest verification protocol, Alice can perform two

projective measurements r1 and r2 with probabilities p1 and p2,
respectively. Here the maximum guessing probability γ(C, μ) only
depends on the angle between r1 and r2 in addition to the
probabilities p1 and p2. Moreover, γ(C, μ) is minimized when r1 ⋅ r2
= 0 and p1= p2= 1/2, in which case we have

gðC; μÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

2

s
; γðC; μÞ ¼ 1

2
þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2

2

s
; (15)

and the guessing probability threshold is γ� ¼ ð2þ ffiffiffi
2

p Þ=4. When
r1= (1, 0, 0)T and r2= (0, 1, 0)T for example, we get the XY protocol.
Previously, ref. 23 proposed an equivalent protocol, but neither
derived the exact formula for the guessing probability nor proved
the optimality of the XY protocol among all two-setting protocols.

To determine the optimal protocol, we need to minimize g(C, μ)
over μ. By Theorem 1, g(C, μ) is convex in μ, so g(C, μ) is minimized
when μ is the uniform distribution on the Bloch sphere, which
yields the isotropic protocol with

gðC; μÞ ¼ 1
2
þ
C2arcsinh

ffiffiffiffiffiffiffiffi
1�C2

p
C

� 	
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p ;
(16)

γðC; μÞ ¼ 3
4
þ
C2arcsinh

ffiffiffiffiffiffiffiffi
1�C2

p
C

� 	
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p ;
(17)

and the guessing probability threshold is γ*= 3/4.
Protocols based on the Pauli Z measurement and measure-

ments on the xy-plane are of special interest to the verification of
GHZ states as we shall see shortly. Prominent examples include
the XYZ protocol (cf. Fig. 1), equator protocol, equator+ Z
protocol, polygon protocol, and polygon+ Z protocol (see
Supplementary Note 9).

Sample efficiency
To construct a practical verification protocol, it is crucial to clarify
the sample efficiency. Although this problem has been resolved in
standard QSV42–44, little is known about the sample efficiency in
the DI and SDI scenarios46. Here we clarify the sample efficiency of
our verification protocols in the SDI scenario. Consider a quantum
device that is supposed to produce the target state Φj i 2 H, but
actually produces the states ρ1, ρ2,…, ρN in N runs. Our task is to
verify whether these states are sufficiently close to the target state
on average. Here the reduced fidelity is a natural choice for
quantifying the closeness since Alice is ignorant to the local
unitary transformations acting on Bob’s system. To guarantee that
the average reduced fidelity of the states ρ1, ρ2,…, ρN is larger
than 1− ϵ with significance level δ (confidence level 1− δ), the
number of tests required is determined in Supplementary Note 6,
with the result

N ¼ ln δ
ln ½1� 2ð1� γ�Þϵ �

 �

� ln δ�1

2ð1� γ�Þϵ : (18)

Note that the sample efficiency is determined by the threshold
γ� ¼ γ�2 defined in Eq. (8).
The minimum threshold γ*= 3/4 is attained for the isotropic

protocol, in which case N � ð2ln δ�1Þ=ϵ, which is comparable to
the number ð3ln δ�1Þ=ð2ϵÞ required in standard QSV42,53. So the
Bell state can be verified in the SDI scenario almost as efficiently as
in the standard QSV. Our protocol can achieve the optimal sample

Fig. 3 Relation between the guessing probability γF(FB) and the
reduced fidelity FB for various verification protocols of the Bell
state. Here the XY protocol and isotropic protocol are introduced in
the main text, while other protocols are proposed in the
Supplementary Material.

Table 1. Concrete protocols for verifying the Bell state in an untrusted quantum network.

Protocol Threshold γ* γ(C) (pure state) γ̂ðCÞ (mixed state) v(C= 0)

XY 1
2 þ 1

2
ffiffi
2

p � 0:854 1
2 þ 1

2

ffiffiffiffiffiffiffiffi
1þC2

2

q
1
4 ½2þ

ffiffiffi
2

p þ ð2� ffiffiffi
2

p ÞC � 1ffiffi
2

p ð1; 1; 0ÞT

XYZ 1
2 þ 1

2
ffiffi
3

p � 0:789 1
2 þ 1

2

ffiffiffiffiffiffiffiffiffiffi
1þ2C2

3

q
1
6 ½3þ

ffiffiffi
3

p þ ð3� ffiffiffi
3

p ÞC � 1ffiffi
3

p ð1; 1; 1ÞT

Isotropic 3
4 ¼ 0:75 3

4 þ
C2arcsinh

ffiffiffiffiffiffiffi
1�C2

p
C

� �
4
ffiffiffiffiffiffiffiffi
1�C2

p 3þC
4 any direction

Equator 1
2 þ 1

π � 0:818 1
2 þ 1

π Kð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2

p
Þ 1

2π ½π þ 2þ ðπ � 2ÞC � any direction in the xy-plane

Polygon(3) 5
6 � 0:833 4þ

ffiffiffiffiffiffiffiffiffiffi
1þ3C2

p
6

5þC
6 any vertex direction

Equator +Z 1
2 þ 1ffiffiffiffiffiffiffiffi

4þπ2
p � 0:769 − 1þC

2 þ 1�Cffiffiffiffiffiffiffiffi
4þπ2

p 1ffiffiffiffiffiffiffiffi
4þπ2

p ðπ; 0; 2ÞT

Polygon(3)+Z 1
2 þ 1ffiffiffiffi

13
p � 0:777 − 1

2 þ 1ffiffiffiffi
13

p þ 1
2 � 1ffiffiffiffi

13
p

� �
C 1ffiffiffiffi

13
p ð3; 0; 2ÞT

Here γ(C) (γ̂ðCÞ) is the maximum guessing probability for pure (mixed) states with concurrence at most C, and v(C= 0) is an intelligent direction for C= 0.
Entanglement can be certified when the guessing probability surpasses the threshold γ� ¼ γð0Þ ¼ γ̂ð0Þ. The XY protocol and isotropic protocol are the simplest
and optimal verification protocols, respectively. All protocols listed, except for the isotropic protocol, can be generalized to GHZ states.
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complexity because it is tied to a steering inequality whose
quantum bound coincides with the algebraic bound. In contrast,
the sample complexity in the DI scenario is quadratically worse in
the scaling with 1/ϵ, that is, N / ðln δ�1Þ=ϵ2 46 (cf. Supplementary
Note 7).

Verification of the GHZ state
Next, consider the GHZ state Gnj i ¼ ð 0j i�n þ 1j i�nÞ= ffiffiffi

2
p

of n-
qubits with n ≥ 3. To verify this state, the n parties can randomly
perform certain tests based on local projective measurements. In
each test, the verifier (one of the parties) asks each party to
perform a local projective measurement as specified by a unit
vector on the Bloch sphere and return the measurement outcome.
If all parties are honest, then only the target state Gnj i can pass all
tests with certainty, so the GHZ state can be verified. In the
presence of dishonest parties, letD be the set of dishonest parties,
who know which parties are honest or dishonest and who may
collude with each other; let H be the set of honest parties
(including the verifier), who do not know which other parties are
honest or dishonest. The goal is to verify Gnj i up to local unitary
transformations on the joint Hilbert space of D23,24. Assuming
jDj; jHj 	 1, then Gnj i may be regarded as a Bell state shared
between H and D. So the verification of the GHZ state is closely
tied to the verification of the Bell state. Actually, there is no
essential difference when jHj ¼ 1.
However, a key distinction arises when jHj 	 2 because each

member ofH can only perform local projective measurements on
his/her party. So the potential tests that the verifier can realize are
restricted. Careful analysis in Supplementary Note 10 shows that
only two types of tests for verifying the GHZ state Gnj i can be
constructed from local projective measurements. In the first type,
all parties perform Z measurements, and the test is passed if they
obtain the same outcome. In this way the verifier can effectively
realize the Z measurement on VH, where VH is the two-
dimensional subspace spanned by

N
j2H 0j ij and

N
j2H 1j ij .

In the second type of tests, party j performs the X(ϕj)
measurement with

P
jϕj ¼ 0mod 2π, where XðϕjÞ ¼ e�iϕj 0j i 1h j þ

eiϕj 1j i 0h j corresponds to the Bloch vector ðcosϕj; sinϕj; 0ÞT, and
each ϕj is decided by the verifier. The test is passed if the number
of outcomes −1 is even. Suppose ϕ1, ϕ2,…, ϕn are chosen
independently and uniformly at random from the interval [0, 2π).
Then ϕH :¼Pj2Hϕj mod 2π is uniformly distributed in [0, 2π).
Given ϕ∈ [0, 2π), the average of

N
j2HXðϕjÞ under the condition

ϕH ¼ ϕ reads�O
j2H

XðϕjÞ



ϕ

¼ e�iϕ
O
j2H

ð 0j i 1h jÞj þ eiϕ
O
j2H

ð 1j i 0h jÞj : (19)

In this way, the verifier can effectively realize the X(ϕ) measure-
ment on VH, where ϕ is completely random. A similar result holds
when ϕj are chosen independently and uniformly at random from
the discrete set f2kπ=MgM�1

k¼0 with M ≥ 3 being a positive integer.
By the above analysis, the verifier can effectively realize

projective measurements along the z-axis or on the xy-plane
when represented on the Bloch-sphere of VH, but not other
projective measurements (assuming jHj 	 2). Each verification
protocol of the GHZ state corresponds to a probability distribution
μ on the Bloch sphere that is supported on the equator together
with the north and south poles. Moreover, for all protocols in
Table 1 except for the isotropic protocol (cf. Supplementary Notes
9 and 10), the guessing probabilities are the same as in the
verification of the Bell state. To be specific, γ(C, μ) and γF(F, μ) can
be defined as before; Theorems 1, 3, and Lemma 1 still hold,
except that now C refers to the bipartite concurrence between H
and D. Although variants of the XY protocol and equator protocol
were proposed previously23,24, such exact formulas for the
guessing probabilities are not known in the literature. To optimize

the performance, μ should be uniform on the equator, which leads
to the equator+ Z protocol; the optimal probability pZ for
performing the Z measurement depends on C or F as before.
A quantum state ρ is genuinely multipartite entangled (GME) if

its fidelity with the GHZ state tr ðρ Gnj i Gnh jÞ is larger than 1/264.
The GME can be certified if the guessing probability surpasses the
threshold γF(1/2)= γ*. This threshold is minimized at the special
equator+ Z protocol with pZ= 4/(4+ π2)= 0.288, in which case
we have

γFð1=2Þ ¼ γ� ¼ 1
2
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ π2
p � 0:769: (20)

This threshold is only 2.5% higher than the optimal threshold 3/4
for certifying the entanglement of the Bell state based on the
isotropic protocol.
The sample efficiency for verifying the GHZ state can be

determined following a similar analysis applied to the Bell state.
The formula in Eq. (18) still applies, except that the choice of
verification protocols is restricted. Now the minimum of γ* is
achieved at a special equator+ Z protocol [cf. Eq. (20)]. So the
GHZ state can be verified in the SDI scenario with almost the same
efficiency as in the standard QSV57, as illustrated in Fig. 4. In the DI
scenario, by contrast, it is in general impossible to achieve such a
high efficiency unless one can construct a Bell inequality for which
the quantum bound coincides with the algebraic bound46.
Notably, the three-qubit GHZ state can be verified with such a
high efficiency by virtue of the Mermin inequality46,50.
It should be pointed out that all our protocols for verifying GHZ

states are applicable even in the presence of an arbitrary number of
dishonest parties as long as the verifier is honest. Meanwhile, these
protocols are useful for detecting GME. For some cryptographic
tasks such as anonymous quantum communication, the security for
all honest parties can be guaranteed at the same time with the
assistance of a trusted common random source (CRS)23. In this case,
the number of honest parties can affect the security parameter.

DISCUSSION
We proposed a simple and practical approach for verifying the Bell
state in an untrusted quantum network in which one party is not
honest. We also established a simple connection between
verification protocols of the Bell state and probability distributions
on the Bloch sphere together with an intuitive geometric picture.
Based on this connection, we derived simple formulas for the

Fig. 4 Sample complexities for verifying the Bell state and GHZ
states in three different scenarios. In standard QSV, the Bell state
and GHZ states can be verified with the same sample complex-
ity42,57. In the SDI scenario, the isotropic protocol is chosen for
verifying the Bell state and the optimized equator+ Z protocol is
chosen for verifying the GHZ states. In the DI scenario, the Mermin
inequality is employed for verifying the three-qubit GHZ state46,50.
Here the significance level is chosen to be δ= 0.01.
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guessing probability as functions of the concurrence and reduced
fidelity. Meanwhile, we clarified the sample efficiency of each
verification protocol and showed that the sample efficiency is
determined by the threshold in the guessing probability. More-
over, we constructed the optimal and simplest protocols for
verifying the Bell state, which are also very useful to detecting
entanglement in the untrusted network.
Furthermore, we reduce the verification problem of GHZ states

to the counterpart of the Bell state, which enables us to construct
the optimal protocol for verifying GHZ states and for detecting
GME. Our work shows that both Bell state and GHZ states can be
verified in the SDI scenario with the same sample complexity as in
standard QSV. By contrast, the sample complexity in the DI
scenario is in general quadratically worse. This work is instru-
mental to verifying entangled states in untrusted quantum
networks, which is crucial to guaranteeing the proper functioning
of quantum networks. In addition, this work is of intrinsic interest
to the foundational studies on quantum steering. In the future, it
would be desirable to generalize our results to generic bipartite
pure states, stabilizer states, and other quantum states.
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