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Machine learning of high dimensional data on a noisy
quantum processor
Evan Peters 1,2,3✉, João Caldeira3, Alan Ho4, Stefan Leichenauer5, Masoud Mohseni4, Hartmut Neven4, Panagiotis Spentzouris3,
Doug Strain4 and Gabriel N. Perdue 3

Quantum kernel methods show promise for accelerating data analysis by efficiently learning relationships between input data
points that have been encoded into an exponentially large Hilbert space. While this technique has been used successfully in small-
scale experiments on synthetic datasets, the practical challenges of scaling to large circuits on noisy hardware have not been
thoroughly addressed. Here, we present our findings from experimentally implementing a quantum kernel classifier on real high-
dimensional data taken from the domain of cosmology using Google’s universal quantum processor, Sycamore. We construct a
circuit ansatz that preserves kernel magnitudes that typically otherwise vanish due to an exponentially growing Hilbert space, and
implement error mitigation specific to the task of computing quantum kernels on near-term hardware. Our experiment utilizes 17
qubits to classify uncompressed 67 dimensional data resulting in classification accuracy on a test set that is comparable to noiseless
simulation.
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INTRODUCTION
Quantum kernel methods (QKMs)1–4 provide techniques for
utilizing a quantum co-processor in a machine learning setting.
These methods were recently proven to provide a speedup over
classical methods for certain specific input data classes5. They
have also been used to quantify the computational power of data
in quantum machine learning algorithms and drive the conditions
under which quantum models will be capable of outperforming
classical ones6. Prior experimental work1,7–11 has focused on
artificial or heavily preprocessed data, hardware implementations
involving very few qubits, or circuit connectivity unsuitable for
noisy intermediate-scale quantum (NISQ)12 processors; recent
experimental results show potential for many-qubit applications of
QKMs to high energy physics13.
In this work, we extend the method of machine learning based

on QKM up to 17 hardware qubits requiring only nearest-neighbor
connectivity. We use this circuit structure to prepare a kernel
matrix for a classical support vector machine to learn patterns in
67-dimensional supernova data for which competitive classical
classifiers fail to achieve 100% accuracy. To extract useful
information from a processor without quantum error correction
(QEC), we implement error mitigation techniques specific to the
QKM algorithm and experimentally demonstrate the algorithm’s
robustness to some of the device noise. Additionally, we justify
our circuit design based on its ability to produce large kernel
magnitudes that can be sampled to high statistical certainty with
relatively short experimental runs.
We implement this algorithm on the Google Sycamore

processor that we accessed through Google’s Quantum Comput-
ing Service. This machine is similar to the quantum supremacy
demonstration Sycamore chip14, but with only 23 qubits active.
We achieve competitive results on a nontrivial classical dataset
and find intriguing classifier robustness in the face of moderate
circuit fidelity. The experiments we design highlight that NISQ

processors are capable of utilizing tens of qubits to succeed at
classification tasks, and our results motivate further theoretical
work on noisy kernel methods and on techniques for operating on
real, high-dimensional data without additional classical preproces-
sing or dimensionality reduction.
A common task in machine learning is supervised learning,

wherein an algorithm consumes datum-label pairs ðx; yÞ 2
X ´ f0; 1g and outputs a function f : X ! f0; 1g that ideally
predicts labels for seen (training) input data and generalizes well
to unseen (test) data. A popular supervised learning algorithm is
the Support Vector Machine (SVM)15,16, which is trained on inner
products 〈xi, xj〉 in the input space to find a robust linear
classification boundary that best separates the data. An important
technique for generalizing SVM classifiers to non-linearly separ-
able data is the so-called kernel trick that replaces 〈xi, xj〉 in the
SVM formulation by a symmetric positive definite kernel
function17 k(xi, xj). Since every kernel function corresponds to an
inner product on input data mapped into a feature Hilbert
space18, linear classification boundaries found by an SVM trained
on a high-dimensional mapping correspond to complex, non-
linear functions in the input space.
QKMs can potentially improve the performance of classifiers by

using a quantum computer to map input data in X � Rd into a
high-dimensional complex Hilbert space, potentially resulting in a
kernel function that is expressive and challenging to compute
classically. It is difficult to know without sophisticated knowledge
of the data generation process whether a given kernel is
particularly suited to a dataset, but perhaps families of classically
hard kernels may be shown empirically to offer performance
improvements. In this work, we focus on a non-variational QKM,
which uses a quantum circuit U(x) to map real data into quantum
state space according to a map ϕðxÞ ¼ UðxÞ 0j i. The kernel
function we employ is then the squared inner product between
pairs of mapped input data given by k(xi, xj)= ∣〈ϕ(xi)∣ϕ(xj)〉∣2,
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which allows for more expressive models compared to the
alternative choice6 〈ϕ(xi)∣ϕ(xj)〉.
In the absence of noise, the kernel matrix Kij= k(xi, xj) for a fixed

dataset can therefore be estimated up to statistical error by using
a quantum computer to sample outputs of the circuit U†(xi)U(xj)
and then computing the empirical probability of the all-zeros
bitstring. However, in practice, the kernel matrix K̂ ij sampled from
the quantum computer may be significantly different from Kij due
to device noise and readout error. Once K̂ ij is computed for all
pairs of input data in the training set, a classical SVM can be
trained on the outputs of the quantum computer. An SVM trained
on a size-m training set T � X learns to predict the class of an
input data point x according to the decision function:

f ðxÞ ¼ sign
Xm

i¼1

αiyikðxi; xÞ þ b

 !
(1)

where αi and b are parameters determined during the training
stage of the SVM. Training and evaluating the SVM on T requires
an m ×m kernel matrix, after which each data point z in the
testing set V � X may be classified using an additional m
evaluations of k(xi, z) for i= 1…m. Figure 1 provides a schematic
representation of the process used to train an SVM using quantum
kernels.
We used the dataset provided in the Photometric LSST

Astronomical Time-series Classification Challenge (PLAsTiCC)19

that simulates observations of the Vera C. Rubin Observatory.
The PLAsTiCC data consist of simulated astronomical time series
for several different classes of astronomical objects. The time
series consist of measurements of flux at six wavelength bands.
Here we work on data from the training set of the challenge. To
transform the problem into a binary classification problem, we
focus on the two most represented classes, 42 and 90, which
correspond to types II and Ia supernovae20, respectively. We
perform statistical analysis on the time series data and minor
preprocessing to produce 67 features for each event but perform
no further dimensionality reduction on these features.
To compute the kernel matrix Kij ≡ k(xi, xj) over the fixed dataset,

we must run R repetitions of each circuit U†(xj)U(xi) to determine
the total counts ν0 of the all zeros bitstring, resulting in an
estimator K̂ ij ¼ ν0

R . This introduces a challenge since quantum
kernels must also be sampled from hardware with low enough
statistical uncertainty to recover a classifier with similar perfor-
mance to noiseless conditions. Since the likelihood of large
relative statistical error between K and K̂ grows with decreasing

magnitude of K̂ and decreasing R, the performance of the classifier
in the presence of sampling error will degrade when the off-
diagonal elements of the kernel matrix are all close to zero.
Conversely, it is necessary to implement feature maps that
produce inner products that can be resolved above the level of
statistical error for a successful hardware-based quantum kernel
classifier, and a key goal in circuit design is to balance the
requirement of large kernel matrix elements with a choice of
mapping that is difficult to compute classically. Another significant
design challenge is to construct a circuit that separates data
according to class without mapping data so far apart as to lose
information about class relationships—an effect sometimes
referred to as a curse of dimensionality in classical machine
learning.
While a number of QKM feature maps have been proposed1,21–23,

for this experiment we accounted for the above design challenges
and the need to accommodate high-dimensional data by mapping
data into quantum state space using the quantum circuit shown in
Fig. 2. Each local rotation in the circuit is parameterized by a single
element of preprocessed input data so that inner products in the
quantum state space correspond to a similarity measure for
features in the input space. The number of local rotations are
constrained to match the dimensionality of the input data (i.e., 67
parameterized gates for 67-dimensional data), but circuit width and
depth may be varied without significantly impacting the perfor-
mance of the classifier in a noiseless setting. This circuit structure
resembles hardware-efficient, variational circuits used in machine
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Fig. 1 Overview of quantum kernel SVM. In this experiment, we
performed limited data preprocessing that is standard for state-of-
the-art classical techniques, before using the quantum processor to
estimate the kernel matrix K̂ ij for all pairs of encoded data points
(xi, xj) in each dataset. We then passed the kernel matrix back to a
classical computer to optimize an SVM using cross-validation and
hyperparameter tuning before evaluating the SVM to produce a
final train/test score.

a.

b.

c.

Fig. 2 Circuit diagram for kernel function. a 14-qubit example of
the circuit used for experiments in this work. The dashed line
indicates the boundary between U(xi) and U†(xj), which are run
sequentially to sample ∣〈ϕ(xj)∣ϕ(xi)〉∣2. Non-virtual gates occurring at
the boundary are contracted for hardware runs. b The basic
encoding block consists of a Hadamard followed by three single-
qubit rotations, each parameterized by a different element of the
input data x (normalization and encoding constants omitted here). c
We used the
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entangling gate, a hardware-native two-qubit

gate on the Sycamore processor.
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learning applications24–26 and consistently results in large magni-
tude inner products (median K ≥ 10−1) resulting in estimates for K̂
with very little statistical error. We provide further empirical
evidence justifying our choice of circuit in the Supplementary
Notes.

RESULTS
Dataset selection
We are motivated to minimize the size of T � X since the
complexity cost of training an SVM on m data points scales as
Oðm2Þ. However too small a training sample will result in poor
generalization of the trained model, resulting in low quality class
predictions for data in the reserved size-v test set V . We explored
this tradeoff by simulating the classifiers for varying train set sizes
in CIRQ27 to construct learning curve (Fig. 3) standard in machine
learning. We found that our simulated 17-qubit classifier applied
to 67-dimensional supernova data was competitive compared to a
classical SVM trained using the Radial Basis Function (RBF) kernel
on identical data subsets. For hardware runs, we constructed train/
test datasets for which the mean train and k-fold validation scores
achieved approximately the mean performance over randomly
downsampled data subsets, accounting for the SVM hyperpara-
meter optimization (see “Methods”). The large variance in classifier
scores for small test sets means that the performance of the
noiseless classifier on a randomly downsampled dataset will differ
significantly from the average. To ensure that the hardware
performance was not overstated, the final dataset for each choice
of qubits was constructed by producing a 1000 × 1000 simulated
kernel matrix, repeatedly performing 4-fold cross-validation on a
size-280 subset, and then selecting as the train/test set the
elements from the fold that resulted in an accuracy closest to the
mean validation score over all trials and folds.

Hardware classification and postprocessing
We computed the quantum kernels experimentally using the
Google Sycamore processor14 accessed through Google’s Quan-
tum Computing Service. At the time of experiments, the device
consisted of 23 superconducting qubits with nearest neighbor
(grid) connectivity. The processor supports single-qubit Pauli gates
with >99% randomized benchmarking28,29 fidelity and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i SWAP

p

native entangling gates with cross-entropy benchmarking fide-
lities30,31 typically >97%.
To test our classifier performance on hardware, we trained a

quantum kernel SVM using n qubit circuits for n ∈ {10, 14, 17} on
d= 67 supernova data with balanced class priors using a
m= 210, v= 70 train/test split. We performed hardware experi-
ments using a number of error mitigation techniques (described
further in Supplementary Methods). Each set of qubits was
selected using a heuristic scoring function based on device
calibration data, with 17 qubits being the largest number
satisfying line connectivity on the device (shown in Supple-
mentary Fig. 3). We found that executing layers of entangling
gates in parallel improved performance compared to other
schemes of staggered execution. We implemented readout error
correction to efficiently approximate the probability of the all-
zeros bitstring with polynomial overhead32, but we found that
readout error correction did not reliably improve classifier
performance (see Supplementary Discussion). We determined
that 5000 repetitions per circuit were sufficient to mitigate the
effects of statistical error, resulting in a total of m(m− 1)/2+
mv ≈ 1.83 × 108 experiments per number of qubits, requiring
approximately 16 h on the quantum processor. Typically the
time cost of computing the decision function (Eq. (1)) is reduced
to some fraction of mv since only a small subset of training
inputs are selected as support vectors33. However, in simulated
and hardware experiments we observed that a large fraction (87
and 95%, respectively) of data in T were selected as support
vectors, likely due to a combination of a complex decision
boundary and noise in the calculation of K̂ in the case of the
hardware classifier. Figure 4 shows the classifier accuracies for
each number of qubits and demonstrates that the performance
of the QKM is not restricted by the number of qubits used.
Significantly, the QKM classifier performs reasonably well even
when observed bitstring probabilities (and therefore K̂ ij) are
suppressed by a factor of 50–70% due to limited circuit fidelity.
This is due in part to the fact that the SVM decision function is
invariant under scaling transformations K→ rK and highlights
the noise robustness of QKMs.

DISCUSSION
Whether and how quantum computing will contribute to machine
learning for real-world classical datasets remains to be seen. In this
work, we have demonstrated that quantum machine learning at
an intermediate scale (10–17 qubits) can work on natural datasets
using Google’s superconducting quantum computer. In particular,
we presented a circuit ansatz capable of processing high-
dimensional data from a real-world scientific experiment without
dimensionality reduction or significant preprocessing on input
data and without the requirement that the number of qubits
matches the data dimensionality. We demonstrated classification
results that were competitive with noiseless simulation despite
hardware noise and lack of QEC. While the circuits we
implemented are not candidates for demonstrating quantum
advantage, these findings suggest QKMs may be capable of
achieving high classification accuracy on near-term devices.
Careful attention must be paid to the impact of shot statistics

and kernel element magnitudes when evaluating the performance
of QKMs. In the Supplementary Discussion, we present empirical
findings for the effects of each of these factors, but this work
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Fig. 3 Learning curve and sample variance. Learning curve for an
SVM trained using noiseless circuit encoding on 17 qubits vs. RBF
kernel kðxi ; xjÞ ¼ expð�γjjxi � xj jj2Þ with γ= 0.012 optimized via
adaptive grid search over [10−5, 10−1]. Points reflect train/test
accuracy for a classifier trained on a stratified 10-fold split resulting
in a size-x balanced subset of preprocessed supernova data points.
Error bars indicate standard deviation over 10 trials of down-
sampling, and the dashed line indicates the size m= 210 of the
training set chosen for this experiment.
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highlights the need for further theoretical investigation under
these constraints and motivates further studies on the properties
of noisy kernels.
The main open problem is to identify a natural dataset that could

lead to beyond classical performance for quantum machine
learning. We believe that this can be achieved on datasets that
demonstrate correlations that are inherently difficult to represent or
store on a classical computer, hence inherently difficult or
inefficient to learn/infer on a classical computer. This could include
quantum data from simulations of quantum many-body systems
near a critical point or solving linear and nonlinear systems of

equations on a quantum computer34,35. The quantum data could
be also generated from quantum sensing and quantum commu-
nication applications. The software library TensorFlow Quantum
(TFQ)36 was recently developed to facilitate the exploration of
various combinations of data, models, and algorithms for quantum
machine learning. Very recently, a quantum advantage has been
proposed for some engineered dataset and numerically validated
on up to 30 qubits in TFQ using similar QKMs as described in this
experimental demonstration6. These developments in quantum
machine learning alongside the experimental results of this work
suggest the exciting possibility for realizing quantum advantage
with quantum machine learning on near term processors.

METHODS
Data preprocessing
The PLAsTiCC data initially consist of time series that are unsuitable for
direct analysis on a quantum processor. Each time series can have a
different number of flux measurements in each of the six wavelength
bands. In order to classify different time series using an algorithm with a
fixed number of inputs, we transform each time series into the same set of
derived quantities. These include: the number of measurements; the
minimum, maximum, mean, median, standard deviation, and skew of both
flux and flux error; the sum and skew of the ratio between flux and flux
error, and of the flux times squared flux ratio; the mean and maximum
time between measurements; spectroscopic and photometric redshifts for
the host galaxy; the position of each object in the sky; and the first two
Fourier coefficients for each band, as well as kurtosis and skewness. In
total, this transformation yields a 67-dimensional vector for each object. To
prepare data for the quantum circuit, we convert lognormal-distributed
spectral inputs to log scale, and normalize all inputs to � π

2 ;
π
2

� �
.

We perform no dimensionality reduction.

Classifier hyperparameter tuning
Training the SVM classifier in postprocessing required choosing a single
hyperparameter C that applies a penalty for misclassification, which can
significantly affect the noise robustness of the final classifier (see
Supplementary Notes). To determine C without overfitting the model,
we performed leave-one-out cross validation (LOOCV)37,38 on T to
determine Copt corresponding to the maximum mean LOOCV score (see
Supplementary Discussion). We then fixed C= Copt to evaluate the test
accuracy 1

v

Pv
j¼1 Prðf ðxjÞ≠ yjÞ on reserved data points taken from V .

DATA AVAILABILITY
The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC)19
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experimental results are available from the corresponding author on reasonable
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The code to preprocess the dataset and analyze the experimental results is available
from the corresponding author on reasonable request.
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