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Computing secure key rates for quantum cryptography with
untrusted devices
Ernest Y.-Z. Tan 1,5✉, René Schwonnek2,3,5✉, Koon Tong Goh3, Ignatius William Primaatmaja4 and Charles C.-W. Lim 3,4✉

Device-independent quantum key distribution (DIQKD) provides the strongest form of secure key exchange, using only the
input–output statistics of the devices to achieve information-theoretic security. Although the basic security principles of DIQKD are
now well understood, it remains a technical challenge to derive reliable and robust security bounds for advanced DIQKD protocols
that go beyond the previous results based on violations of the CHSH inequality. In this work, we present a framework based on
semidefinite programming that gives reliable lower bounds on the asymptotic secret key rate of any QKD protocol using untrusted
devices. In particular, our method can in principle be utilized to find achievable secret key rates for any DIQKD protocol, based on
the full input–output probability distribution or any choice of Bell inequality. Our method also extends to other DI
cryptographic tasks.
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INTRODUCTION
Device-independent quantum key distribution (DIQKD) considers
the problem of secure key exchange using devices which are
untrusted or uncharacterized1–3. In this setting, security is based
entirely on the observation of nonlocal correlations, which are
typically measured by a Bell inequality4,5. In particular, if the
correlations violate a Bell inequality, then we say that they are
nonlocal. This is necessary for secure key distribution, for it
certifies that the key must come from measurements on an
entangled state6–8. While the basic principle behind the security of
DIQKD is well understood from the monogamy property of
nonlocal correlations9, an explicit security analysis is rather
involved and tricky. This is mainly because the dimension of the
underlying shared quantum state is unknown and therefore the
usual security proof techniques cannot be applied.
Recently, security proof techniques based on semidefinite

programming (SDP) have been proposed for standard QKD10–14.
In this so-called device-dependent (DD) setting, the underlying
QKD devices are assumed to be suitably characterized. Our main
result extends this approach to a wider range of settings, adapting
to different levels of device characterization (see Fig. 1). Previously,
to prove the security of DIQKD, the existing approaches were to
either employ a reduction to qubit-level systems1, or to bound the
adversary’s guessing probability15–17. However, the former is
restricted to protocols based on the CHSH inequality or similar
Bell inequalities with binary inputs and outputs, while the latter
only bounds the min-entropy, which typically leads to suboptimal
bounds on the von Neumann entropy (the relevant quantity for
computing secret key rates against general attacks in the
asymptotic limit3). The direct computation of DIQKD secret key
rates is therefore an important task to address18.
Here, we approach this problem with a universal computational

toolbox that directly bounds the von Neumann entropy using the
complete measurement statistics of a device-independent (DI)
cryptographic protocol. Given this, our method not only applies to
QKD, but also to some other DI cryptographic tasks such as

randomness expansion19–23. Importantly, this computational
approach liberates the scope of DI cryptography to more complex
scenarios, which could prove useful in analyzing the security of
non-standard protocols which are known to be more robust
against noise and loss24–28, as well as multipartite protocols29.
The main mechanism of our toolbox is a technique for estimating

the entropy production of a quantum channel acting on an
unknown state under algebraic constraints. Entropy production30–33

is a fundamental concept traditionally used to study non-equilibrium
thermodynamic processes, but here we show that it has an intrinsic
connection to quantum cryptography as well. The simplest way to
understand entropy production is to view it as the amount of
entropy introduced to a system after performing some action
on it. For instance, in the case of projective measurement, the
entropy production is the entropy difference between the post-
measurement system and the initial system.
Our toolbox bounds this entropy production via a (noncommu-

tative) polynomial optimization over the measurement operators in
the protocol. This can be evaluated using the SDPs in the Navascués-
Pironio-Acín (NPA) hierarchy34. In this context, switching from DI to
1sDI or DD scenarios translates to adding more constraints on the
SDPs and thus higher values for the final secret key rates. We
present the key ideas used to derive this bound in the “Methods”
section, and more specific details in Sections I–III of the Supplement.
(After the release of this preprint, other approaches to solve the

same optimization problem were separately developed in35,36,
with the technique in the latter yielding arbitrarily tight bounds in
principle. We refer the interested reader to those works for
comparisons and further details.)

RESULTS
Main theorem
We focus mainly on describing our results for DIQKD, with results
for other DI cryptographic tasks elaborated on in Sections I–IV of
the Supplement.
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To assess the security performance of QKD, one can start by
finding the asymptotic key rate under the assumption of
independent and identically distributed (IID) states. In this setting,
we consider protocols that are modeled as follows: in each round,
Alice and Bob share a quantum state ρAB, and Eve’s side-
information E is described by the purification ψABE of ρAB (see
Fig. 2). Qualitatively, this means Eve controls all systems that are
not in the labs of Alice and Bob. In each round, Alice (resp. Bob)
performs one measurement from a set fA0; A1; ¼ AX�1g (resp.
fB0; B1; ¼ ; BY�1g) on their local system. The raw key will be
produced from the measurements (A0, B0). This model describes
entanglement-based protocols, but can be easily converted to
security proofs for prepare-and-measure protocols13,37,38. Here, we
focus on protocols that use one-way error correction. In this case,
the asymptotic key rate r∞ is lower bounded by the Devetak-
Winter formula39:

r1 ¼ maxfHðA0jEÞ � HðA0jB0Þ; 0g; (1)

where H is the von Neumann entropy (which reduces to the
Shannon entropy for H(A0∣B0)). This can be intuitively interpreted
as the difference between Eve’s and Bob’s uncertainty about
Alice’s measurement A0.

The H(A0∣B0) term in Eq. (1) can be computed based on the
expected behavior of the devices (see 3 for more details), so
the main challenge here is to reliably bound H(A0∣E) using the
observed statistics. More specifically, suppose the protocol
estimates parameters of the form lj ¼

P
abxyc

ðjÞ
abxy PrðabjxyÞ for

some coefficients cðjÞabxy , where Pr(ab∣xy) is the probability of
obtaining outcomes (a, b) from measurements (Ax, By) (e.g., these
parameters could be Bell inequalities in a DI scenario). Without
loss of generality (see Section V of the Supplement), we assume all
measurements are projective by taking an appropriate Naimark
dilation. For simplicity, we take the systems to be finite-
dimensional; however, we do not impose any upper bound on
the dimension. Let Pa∣x denote the projector corresponding to an
outcome a of Alice’s measurement Ax, and analogously, let Pb∣y
denote Bob’s measurement projectors. Our task is to find lower
bounds on

inf HðA0jEÞ
s.th. Lj

� �
ρAB

¼ lj;
(2)

where Lj ¼
P

abxyc
ðjÞ
abxyPajx � Pbjy , and the infimum takes place over

ψABE and any uncharacterized measurements (which may be some
or all of the measurements, for 1sDI or DI scenarios). This is a non-
convex optimization (even after applying the approach from10),
and the dimensions of any uncharacterized measurements could
be arbitrarily large, hence there is no a priori guarantee that any
specific dimension suffices to find the minimum. Our central result
is a method to tackle this task despite its challenges, which we
achieve by proving the following theorem:

Theorem 1. For a DI scenario as described, the minimum value of
H(A0∣E) (in base e), subject to constraints hLjiρAB ¼ lj with
Lj ¼

P
abxyc

ðjÞ
abxyPajx � Pbjy , is lower-bounded by

sup

λ
!

X
j

λj lj � ln sup
ρAB; Pajx ; Pbjy
s.th. hLjiρAB ¼ lj

hKiρAB

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA
; (3)

where

K ¼ T
Z

R
dt βðtÞ

Y
xy

X
ab

eκabxy Pajx � Pbjy

�����

�����
2" #
; (4)

with T ½σAB� ¼
P

aðPaj0 � IBÞσABðPaj0 � IBÞ, βðtÞ ¼ ðπ=2ÞðcoshðπtÞ þ 1Þ�1,
and κabxy ¼ ð1þ itÞPjλjc

ðjÞ
abxy=2. The integrals can be evaluated in

closed form (we give the explicit expressions in Section II of the
Supplement).

Importantly, Eq. (4) is a noncommutative polynomial in the
measurement operators, and thus the task of bounding 〈K〉ρ can
now be tackled using the well-established NPA hierarchy34. We
can also study 1sDI scenarios by imposing additional algebraic
constraints corresponding to those satisfied by the characterized
measurements. We highlight that since the optimization over~λ is a
supremum, any value of ~λ yields a secure lower bound, without
needing to identify the optimal~λ.
To go beyond the asymptotic IID scenario, one could apply the

recently developed “entropy accumulation theorem”3,40. This
technique is applicable to DD, 1sDI, and DI scenarios, and shows
that the key rate against general attacks is still of a form essentially
similar to Eq. (1). It inherently accounts for finite-size and non-IID
effects, and reduces the main challenge in a security proof to an
IID problem, namely, finding lower bounds on the optimization
problem in Eq. (2) (see3,40,41 for more details). Specifically, our
technique allows us to bound the min-tradeoff function in the
statement of the entropy accumulation theorem. Hence our

Fig. 1 Levels of device assumptions. Under device-dependent (DD)
assumptions, all measurements and their underlying Hilbert spaces
are characterized. Under fully device-independent (DI) assumptions,
none of these are known, and we only assume the validity of
quantum mechanics. One-sided device-independent (1sDI) assump-
tions lie between these two cases. For the 1sDI setting, we consider
the case where one party’s measurements are fully characterized
while the others’ are unknown (e.g., see Refs. 58,59).

Fig. 2 Basic situation. By measuring her share of the joint state ψABE
with measurement A0, Alice is (virtually) sending a raw key to Bob
who (virtually) receives it by measuring B0. Bob’s uncertainty about
Alice’s bit values is quantified by the classical entropy H(A0∣B0). We
assume that Eve has access to all classical communication and her
share of the joint quantum state, which gives her some partial
information on A0 as well. This is quantified by the classical-quantum
entropy H(A0∣E).
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approach could also be used to compute finite key lengths against
general attacks, by applying the entropy accumulation theorem.

Computed key rates
We apply our method to two commonly studied DI scenarios, in
which Alice and Bob each perform parameter estimation on two
binary-outcome measurements. (For QKD purposes, Bob will need
to perform a third measurement for key generation, correspond-
ing to B0 in Eq. (1), but we do not use this when bounding H(A0∣E).)
Our results are shown in Fig. 3. The results in some other
scenarios, including distributions optimized for tilted CHSH
inequalities42, are presented in Section IV of the Supplement.
The first scenario is parametrized by a depolarizing-noise
value q ∈ [0, 1/2], and corresponds to performing the ideal
CHSH measurements (i.e., A0= Z, A1= X, B0 ¼ ðZ þ XÞ= ffiffiffi

2
p

)
and B1 ¼ ðZ � XÞ= ffiffiffi

2
p �

on the Werner state
ð1� 2qÞ Φþ�� �

Φþ� ��þ ðq=2ÞI, where Φþ�� �
is the Bell state ð 00j i þ

11j iÞ= ffiffiffi
2

p
and Z and X are Pauli operators. The second scenario is a

limited-detection-efficiency model parametrized by η∈ [0, 1],
where for every measurement the outcome 1 is flipped to 0 with
probability 1− η. This is a simplistic model for a photonic setup
where all non-detection events are mapped to the outcome 043.
For this scenario, we use different states and measurements for
each value of η, as follows: to compute the H(A0∣E) bound, we first
optimize the state and parameter-estimation measurements to
maximize the CHSH value the same way as in43; then to compute
the r∞ curves, we optimized the key-generating measurement B0
on its own without changing the state or other measurements.

In principle, this yields parameter choices that may be suboptimal
for maximizing H(A0∣E) or r∞, since maximizing either of these
quantities is not necessarily equivalent to maximizing CHSH value
(this was later confirmed in35,36, which aimed to optimize the rates
directly). However, our method is too computationally intensive to
attempt to maximize H(A0∣E) or r∞ directly, so we use the CHSH
value as an indirect proxy (since it can be optimized indepen-
dently of our bounds).
The previous best bound on H(A0∣E) in these scenarios (see

Section IV of the Supplement for the known results in other cases)
was that derived in Ref. 1, which uses only the CHSH value instead
of the full probability distribution. To make use of the latter, the
only preceding approach was to first bound the guessing
probability Pg(A0∣E) and then apply the inequality
HðA0jEÞ � �ln PgðA0jEÞ15–17 (all entropies are in base e unless
otherwise specified). We note that if the marginal distribution of
A0 is uniform and binary-valued, then in fact the tighter
inequality44HðA0jEÞ � ð2ln 2Þð1� PgðA0jEÞÞ holds, and we plot
this bound in Fig. 3. (See Section IV of the Supplement for details
on how it applies in the limited-detection-efficiency model.)
However, approaches based on guessing probability do not
outperform the bound in1 for the two scenarios considered here.
Our method uses the full input–output distribution to bound

H(A0∣E) directly. As shown in Fig. 3, it gives results that are close to
or slightly outperform the bound from Ref. 1. Roughly speaking,
our approach tends to perform well for moderate noise values,
which is useful since many Bell-test implementations are currently
in such noise regimes45–49. Our results prove that for the

Fig. 3 2-input 2-output DI protocols, H(A0∣E) and r∞ (in base 2). Lower bounds on entropy H(A0∣E) and key rate r∞, as a function of
depolarizing noise (for the scenario studied in 1) or detection efficiency (for the scenario studied in43, which optimizes the state and
measurements to achieve maximal CHSH value). For the latter, r∞ was computed by optimizing the key-generating measurement B0 alone to
minimize the value H(A0∣B0), without changing the state and other measurements from those in43. Also, to yield higher key rates, the key-
generating measurement B0 was preserved as a 3-outcome measurement (following60) rather than postprocessing it to 2 outcomes. It can be
seen from the graph that our bounds are either close to or slightly better than the best previous result1 for these scenarios, which was based
on the CHSH value alone. For comparison, we also show the indirect bounds obtained by using the inequality H(A0∣E) ≥ 2(1− Pg(A0∣E)) (in
base 2).
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limited-detection-efficiency scenario, better bounds on H(A0∣E) can
be obtained by considering the full distribution rather than just
the CHSH value (since the CHSH-based bound1 is tight). This
suggests it may not be optimal to simply choose experimental
parameters that maximize the CHSH value—maximizing a
different Bell value may allow our method to yield a further
improvement over the results in Fig. 3.
With minor modifications (see Section I of the Supplement) our

method can also bound the “two-party entropy” H(A0B0∣E), which
is relevant for DI randomness expansion19–23. The previous
approaches for this were similar to those for H(A0∣E): firstly, simply
noting that H(A0B0∣E) ≥ H(A0∣E) and then applying the bound
from1; secondly, bounding it via HðA0B0jEÞ � �ln PgðA0B0jEÞ.
These approaches are suboptimal for similar reasons as before,
though here the former is further limited by the fact that it ignores
the register B0. As shown in Fig. 4, our method clearly outperforms
both of these approaches, which could improve the key rates for
DI randomness expansion.
We also analyze a 1sDI version of the six-state protocol50, where

Bob’s measurement device is uncharacterized. As mentioned
earlier, the characterization of Alice’s device translates to algebraic
relations between the operators Pa∣x, which we impose as
additional constraints on top of the NPA hierarchy. We see that
in Fig. 5, the resulting bound coincides with the bound for the
BB84 protocol. This supports a conjecture51 that when Bob’s
measurements are uncharacterized, performing three measure-
ments does not offer any advantage over performing only two
measurements.

DISCUSSION
Here, we have developed a universal toolbox to obtain reliable
secret key rates for QKD with untrusted devices. The main
advantage of our method is that it can be applied not only to
those based on specialized Bell inequalities, but also to any DIQKD
protocol. The only previous known approach that could be
applied to DIQKD with such generality is that based on bounding
the guessing probability15–17, which is generally not optimal. Our
method outperforms all earlier results in some cases, as shown in
Figs. 3 and 4. Importantly, it seems to give good bounds in
regimes with substantial noise, which are likely to be experimen-
tally relevant.
Currently, our method scales rapidly in computational difficulty

as the number of inputs or outputs for the protocol increases—the
polynomial in Eq. (4) is generally of high order, hence a high NPA
hierarchy level34 is needed to bound 〈K〉ρ. Because of this, we
currently do not have good bounds for DI scenarios with large
numbers of inputs or outputs (though we find suboptimal bounds

for some such cases; see Section IV of the Supplement). An
important goal now would be to find ways to improve the
tractability of our approach, perhaps by following reductions
along the lines of those described in Ref. 52. This would enable the
computation of key rates for DIQKD protocols (or other DI
protocols) with more measurement settings and/or outcomes.
With our toolbox in hand, one can now explore DI protocols

based on maximizing a variety of Bell expressions (or maximizing
the key rate directly) instead of being restricted to CHSH. While
the scaling issues currently impose some limitations, we observe
that there remains substantial unexplored territory even within
2-input 2-output DI protocols. For instance, the tilted CHSH
inequalities42 can certify higher two-party entropies than CHSH in
the absence of noise, but the previous bounds were based on
min-entropy and not very noise robust. Using our approach to
improve these bounds (see Section IV of the Supplement) would
be relevant for experimental implementations of DI protocols such
as randomness expansion22,23.

METHODS
Bounding the von Neumann entropy
The advantage of quantum over classical cryptography stems from the fact
that for the former, it is possible to bound Eve’s knowledge using only Alice’s

Fig. 4 2-input 2-output DI protocols, H(A0B0∣E) (in base 2). Lower bounds on H(A0B0∣E) as a function of depolarizing noise (for the scenario
studied in1) or detection efficiency (for the scenario studied in43). Our approach outperforms both previous approaches, namely indirect
bounds via the one-party entropy H(A0∣E) (using the bound in1) or the guessing probability. We also show a curve obtained when applying our
method with only the CHSH value as the constraint, instead of the full output distribution.

Fig. 5 1sDI six-state protocol. Lower bounds on H(A0∣E) for a 1sDI
version of the six-state protocol50. Interestingly, the bound we
obtain from our method coincides with that for the BB84 protocol.
For reference, we also show the bound that could be obtained from
a tomographically complete characterization of the state, such as via
the measurements in the standard (device-dependent) six-state
protocol.
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and Bob’s systems (essentially, using the monogamy property of entangle-
ment). To make this precise for H(A0∣E), one can regard the key-generating
measurement as a quantum-to-classical channel that maps Alice’s (quantum)
system A to a memory register A0 which stores the (classical) measurement
outcomes. By Stinepring’s theorem53, this channel can be described via an
isometry V to an extended system A0A0 . This isometry maps the pure initial
state ΨABE to a pure final state ΨA0BEA0 (see Fig. 6).
Since the entropies of the marginal states of a pure bipartite state are

equal, this gives

HðA0jEÞ ¼ HðA0EÞ � HðEÞ
¼ HðA0BÞ � HðABÞ
¼ HðT ½ρAB�Þ � HðρABÞ ¼: ΔH;

(5)

where T ½ρAB� ¼ trA0 ððV � IBÞρABðV � IBÞyÞ. (We remark that this approach
was used in Ref. 54.) The last line can be interpreted as entropy production,
ΔH, resulting from the transformation AB ! A0B. Since it only depends on
the reduced states of Alice and Bob, they can be used to bound Eve’s
knowledge using only their own systems. For projective measurements, V
can be chosen54 such that T is the pinching channel

T ½ρAB� ¼
X
a

ðPaj0 � IBÞρABðPaj0 � IBÞ: (6)

Besides its application to QKD, the amount of entropy that is produced
or consumed by a quantum operation T is one of the central quantities of a
physical system. However, computing this entropy quantity is technically
challenging, since the entropy of a quantum state is not directly accessible.
Instead, the quantities that are directly accessible are typically the
expectation values of certain observables, i.e., expressions of the form
hLjiρ ¼ trðρLjÞ for operators Lj (which in QKD scenarios have the form
described earlier). Following this perspective, we have to study the
following problem: find bounds on ΔH that hold for all states consistent
with the observed constraints hLjiρ ¼ lj . For QKD, these bounds have to be
lower bounds, since we consider the “worst-case scenario” for the honest
parties.
To solve this problem, we propose the following ansatz: for coefficients

λj 2 R, we define L= ∑jλjLj and aim to find an operator K such that

H T ½ρ�ð Þ � HðρÞ � hLiρ � ln hKiρ; (7)

holds for all states. To find such a K, we note that Jensen’s operator
inequality and the Gibbs variational principle imply (see Section III of the
Supplement for details)

H T ½ρ�ð Þ � HðρÞ � � ln T�T ½ρ�h iρ � HðρÞ
� hLiρ � ln tr eln ðT

�T ½ρ�ÞþL
� �

;
(8)

where T* is the adjoint channel of T. Applying a recently discovered
generalization of the Golden–Thompson inequality55, it follows that for any
self-adjoint ~Lk such that L ¼ P

k
~Lk , we can choose

K ¼ T�T
Z
R
dt βðtÞ

Y
k

e
1þit
2
~Lk

�����

�����
2" #
; (9)

where βðtÞ ¼ ðπ=2ÞðcoshðπtÞ þ 1Þ�1. Thus, this yields a family of lower
bounds on H T ½ρ�ð Þ � HðρÞ, characterized by λj and ~Lk .

Our task is now reduced to finding upper bounds on 〈K〉ρ. If the explicit
matrix representation of K is known, such as in a DD scenario, this is an SDP
in a standard form and can be solved directly (see, e.g.,10). However, 1sDI
and DI scenarios appear much more challenging, because one does not
have an explicit form for K. This reveals the key breakthrough allowed by
our approach: a careful choice of ~Lxy lets us bound 〈K〉ρ without an explicit
matrix representation. Specifically, by setting

~Lxy ¼
X
abj

λjc
ðjÞ
abxyPajx � Pbjy ; (10)

we obtain (see Section III of the Supplement) Theorem 1 as stated above.
For the DI scenario, the channel T is self-adjoint and idempotent, so T*T=
T. With this choice of ~Lxy , we achieved the critical goal of reducing 〈K〉ρ to a
form that can be bounded using the NPA hierarchy.
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