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Power-optimal, stabilized entangling gate between
trapped-ion qubits
Reinhold Blümel1,2✉, Nikodem Grzesiak 1✉, Neal Pisenti1, Kenneth Wright 1 and Yunseong Nam 1,3✉

To achieve scalable quantum computing, improving entangling-gate fidelity and its implementation efficiency are of utmost
importance. We present here a linear method to construct provably power-optimal entangling gates on an arbitrary pair of qubits
on a trapped-ion quantum computer. This method leverages simultaneous modulation of amplitude, frequency, and phase of the
beams that illuminate the ions and, unlike the state of the art, does not require any search in the parameter space. The linear
method is extensible, enabling stabilization against external parameter fluctuations to an arbitrary order at a cost linear in the order.
We implement and demonstrate the power-optimal, stabilized gate on a trapped-ion quantum computer.
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INTRODUCTION
Representing and processing information according to the laws of
quantum physics, a quantum computer may surpass the
computational power of a classical computer by many orders of
magnitude and is expected to transform areas such as machine
learning1,2, cryptosystems3, materials science4,5, and finance6,7, to
name only a few. Improving the reliability of quantum computa-
tion beyond the level of today’s machines8–10 is therefore critical
to promote the quantum computer from a subject of academic
interest to a powerful tool for solving problems of practical
importance and utility.
The trapped-ion quantum information processor (TIQIP) is one

of the most promising architectures for achieving a universal,
programmable quantum computer, operating according to the
gate model of quantum computing. Apart from a set of single-
qubit gates, only a single entangling, two-qubit gate is necessary
for achieving this goal. Today’s TIQIPs8,9 typically use an Ising XX
gate, following the Mølmer-Sørensen protocol11–13, as the two-
qubit native gate. Its best-reported fidelity is 99.9%14,15, which
may be compared with the best-reported fidelity 99.9999% of
single-qubit gates16. A host of pulse-shaping techniques have
been devised9,12,13,17,18 to better control the underlying trapped-
ion quantum systems for more efficient XX gate implementation,
while reducing errors.
Highlighting the importance of efficient and robust implementa-

tion of XX gates, Fig. 1 shows the resource requirements for various
quantum computations. For this figure and for near-term, pre- fault-
tolerant (FT) quantum computers, we considered variational
quantum eigensolvers that compute the ground state of the water
molecule19, a material spin-dynamics undergoing state-evolution
according to the Heisenberg Hamiltonian5, a quantum approximate
optimization algorithm addressing a maximum-cut problem relevant
for various optimization problems20, the widely-employed quantum
Fourier transform subroutine21, quantum factoring of a 1024-bit
integer22, which is meaningful for cybersecurity, and data-driven
quantum-circuit learning for certain visual patterns2. The resource-
cost metric used in the pre-FT regime considered here is the gate
count for two-qubit XX gates since these are the gates that limit
algorithm performance. For the FT regime, in addition to the FT-

regime-optimized versions of Heisenberg-Hamiltonian simulations,
the quantum Fourier transform, and integer factoring, we con-
sidered Jellium- and Hubbard-model simulations for condensed-
matter systems23, the Femoco simulation4, relevant for a certain
nitrogen-fixation process that can help make fertilizer production
more efficient, and solving difficult instances of satisfiability
problems24,25. The resource-cost metric used for the FT regime is
the number of T gates. Note that each T gate in FT quantum
computing requires, e.g., a distillation process, typically referred to as
a magic-state factory26,27. Each distillation process for the T-gate
implementation in the FT regime requires at least a few tens of two-
qubit gates, such as XX gates, at the native, hardware-
implementation-level26,27. Optimizing the XX-gate implementation
on a TIQIP is therefore critical for both pre-FT and FT quantum
computing, and the construction and experimental demonstration
of robust, power-optimal pulses for XX-gate implementation on a
TIQIP is the focus of this paper.

RESULTS
Power-optimal two-qubit entangling gate
There is only so much power that optical components can
withstand. But more importantly, increased power leads to
reduced gate fidelity due to, e.g., carrier coupling28, ion–ion
crosstalk9,29, and spontaneous emission from intermediate Raman
levels30. Therefore, it is important to construct gates that, in
addition to being stabilized against control-parameter fluctua-
tions, require the least amount of power possible, i.e., they need to
be power-optimal. In this paper we present a comprehensive,
scalable approach to the construction of stabilized, power-optimal
XX gates that is based on the Mølmer-Sørensen Hamiltonian of an
ion chain interacting with laser pulses:

HMS ¼
X
i

X
p

ηipgiðtÞ½ap expð�iωptÞσix � þ h:c: (1)

Here i and p label the ions and the motional modes, respectively,
ηip is the Lamb-Dicke parameter, σi

x and gi(t) are the Pauli-x
operator and the pulse function acting on ion i, and ωp and ap are
the frequency and mode operator of motional mode p,
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respectively. A judicious choice of pulse functions generates an XX
gate that induces entanglement between two trapped-ion qubits,
defined by the unitary operator

xx θij
� � ¼ e�iθijðσixσjxÞ=2; (2)

where θij= 4χij denotes the degree of entanglement between ions
i and j. To induce the desired XX gate in practice, all motional
modes of the ion chain need to be decoupled from the
computational states of the qubits at the end of the gate
operation8,9,11, leaving only the spins entangled. For an N-qubit
system, and assuming that the same pulses are directed at ions i
and j, these constraints are of the form

αp ¼
Z τ

0
gðtÞeiωptdt ¼ 0 !

XNA

n¼1

MpnAn ¼ 0; (3)

where τ, a free parameter, is the pulse duration. The degree of
entanglement between qubits i and j is obtained as

χ ij ¼
PN
p¼1

ηipη
j
p

Z τ

0
dt2

Z t2

0
dt1gðt2Þgðt1Þ sin½ωpðt2 � t1Þ�

! χ ij ¼ A
!T

D A
!¼ A

!T
S A
!
:

(4)

To find a power-optimal pulse, we require that the norm of g is
minimized, while g still satisfies (3) and (4) exactly. This can be
achieved by expanding g in a complete basis, e.g., the Fourier-sine
basis according to gðtÞ ¼ P

n¼1An sinð2πnt=τÞ, which spans the
entire desired function space over the gate-time interval τ.
Restricted to a finite sub-space with basis-function amplitudes
An, n= 1, 2, .., NA, with sufficiently many NA basis functions, the
constraint (3) can be written in linear algebraic form as shown on
the right-hand side of (3), where Mpn is the time integral of the
product between the nth basis function and eiωpt . Therefore, to
satisfy (3), all that is required is to draw amplitudes An from the
null-space of M31, where the null space is defined as the vector
space that is mapped to zero under the action of M. Similarly, the
constraints (4) can be denoted in linear algebraic form, as stated in
the second line of (4), where the matrix D has elements Dnm,
defined as the p-sum of the double integrals in (4) of the product

between sin½ωpðt2 � t1Þ� and the nth and mth basis functions that
stem from expanding the two g functions. Thus, defining the
symmetric matrix S= (D+ DT)/2, (4) can be satisfied, including the
requirement of minimal norm of g, by finding the appropriate
linear combination of the null-space vectors of M that combine to
the eigenvector of R with maximal absolute eigenvalue, where R is
the null-space projected matrix S.
Our approach is linear and satisfies the two constraints (3) and

(4) exactly. Since (3) can be split into even and odd symmetry
components, it is possible to consider only N out of 2N real
constraints of (3) and induce, at our discretion, a pulse that is
symmetric or anti-symmetric about its center. Additionally,
because, e.g., the Fourier basis is complete in its respective
symmetry class, the resulting g(t) is provably optimal in
minimizing the norm of g(t), which corresponds to minimizing
the average power required to induce a XX gate. There is no
iteration of any kind necessary. For instance, searching for an
optimal solution in the parameter space, such as in12,13,17,18,29,32,33,
is not necessary for our approach. Since only matrix operations are
required to arrive at the optimal pulse solution, the optimal pulse
is obtained in time OðN3

AÞ34.
Figure 2a,b shows the amplitudes An for a sample pulse function

of the form gðtÞ ¼ PNA
n An sinð2πnt=τÞ for NA= 10000 and τ=

300 μs. As expected, the ∣An∣ are large for 2πn/τ ≈ωp, showing that,
to induce the desired XX interaction between two qubits via
motional modes, the frequency components of the pulse function
g(t) need to be reasonably close to the motional-mode
frequencies. We confirmed that a NA= 1000 basis-function
solution essentially results in the same An spectrum, visually
indistinguishable from that with NA= 10, 000, when overplotted.
This demonstrates the robustness of our method with respect to
the basis size.
The pulse function g(t) corresponding to the amplitudes An

shown in Fig. 2a,b is shown as the green line in Fig. 3a. Since g(t) is
a fast-oscillating function, it is instructive to write it in the form

gðtÞ ¼ ΩðtÞ sin½ψðtÞ�; (5)

where Ω(t) is the envelope function of the pulse (orange line in
Fig. 3a and ψðtÞ ¼ R t

0 μðt0Þdt0 is the phase function, where μ(t) is
the detuning function8,9. We see that the amplitude of the pulse
function is relatively flat, which implies that the average power
minimization obtained by the g-norm minimization is essentially
as good as minimizing the peak power of the pulse. Figure 3b
shows the detuning function μ(t). Consistent with the large Fourier
amplitudes near the motional-mode frequencies in Fig. 2a, the
demodulated frequency hovers around the motional-mode
frequencies.
Because the minimal-power pulse function can be determined

efficiently, it is straightforward to investigate the power require-
ment of the optimal pulse as a function of system size. Figure 2c
shows the maximal power of the optimal pulse max

t
gðtÞ,

obtained with NA= 1000, for system sizes ranging from 5 to
100 ions. The power is consistent with our analytical bounds (see
Supplementary Note 5). Additionally, since according to the
analytical results the power requirement is inversely proportional
to the gate duration, the power optimum implies gate-time
optimum for a given power budget. Thus, for a given amount of
maximally available power, the power-optimal pulse is the fastest
possible for XX gate execution. The ion displacement in position-
momentum phase space for each mode ωp entering into the
computation of our sample pulse function g(t) shown in Fig. 2a,b,
is shown in Fig. 2d.

Control-pulse stabilization
Because the pulse function is constructed using a completely
linear method, any additional linear constraints may be added,
which still results in a power-optimal pulse when generated

Fig. 1 Resource requirement of various quantum circuits as a
function of system size. For the pre-FT regime, the resource cost is
measured in terms of required number of XX gates. For the FT
regime, the resource cost is measured in T gates, where each FT T
gate requires tens of hardware-implementation-level XX gates26,27.
Shown are the water-molecule ground-state computation (Water)19,
Heisenberg-Hamiltonian simulation (Heisenberg)5, maximum-cut
optimization (QAOA)20, the quantum Fourier transform (QFT)21,
integer factoring (Shor)22, generative-model quantum machine
learning (QML)2, Jellium- and Hubbard-model simulations (Jellium,
Hubbard)23, and the Femoco simulation (Femoco)4. Grover’s algo-
rithm24 implementation (not shown) that solves known difficult
satisfiability problems25 requires ≳ 2000 qubits and ≳ 2 × 1027T
gates. See Supplementary Note 1 for details.
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according to the steps discussed in the previous section. As an
example, we show here how to stabilize the pulse against errors in
external parameters, such as mode-frequency fluctuations.
To stabilize against fluctuations of ωp, we start by expanding the

number of constraints (3). Explicitly, we add

∂k

∂ωk
p

Z τ

0
gðtÞeiωptdt ¼ 0 !

XNA

n¼1

MðkÞ
pn An ¼ 0; (6)

where k denotes the order of stabilization. Since the additional
constraints in (6) are linear, all we need to do to stabilize the pulse
up to Kth order is to include the additional linear equations (6) in
the coefficients matrix M. The decoupling between the computa-
tional states of the qubits and the motional modes is thus
achieved exactly, and the pulse is stabilized by using up N(K+ 1)
degrees of freedom.

Figure 2d shows the phase-space trajectories for the stabilized
pulse with K= 3. Compared to the K= 0 case, the general
structure of the pulse with K= 3 remains the same—the
frequency components are centered around the motional-mode
frequencies and the phase-space closure is guaranteed. In Fig. 4a,
the infidelity of stabilized pulses K= 0, 1, .., 8 is shown as a
function of the extent of the ωp fluctuations. Considered are
pulses with duration τ= 300 μs over the five-ion chain considered
in the previous section. The widths of the infidelity curves,
extracted at infidelity of 0.001, increase from ~0.1kHz to ~13kHz as
K is increased from 0 to 8 (see Fig. 4b). The power requirement of
the stabilized pulses for each K is shown in Fig. 4c; the
requirement scales linearly in K. Figure 4d shows the width-
scaling for each K as a function of different choices of gate
duration τ. The effect of the stabilization increases inversely
proportional to the gate duration.

Fig. 2 Power-optimal pulse function g and spin-dependent force applied to an ion qubit. See Supplementary Note 4 for the relevant
parameters of the sample case of five qubits considered here. a Fourier-sine coefficients ∣An∣ of the pulse function gðtÞ ¼ P

nAn sinð2πnt=τÞ,
τ= 300μs. The tails of ∣An∣ decay according to ~1/n. The arrows indicate the locations of the mode frequencies. The signs of An are color-coded,
i.e., negative An are depicted with orange and positive An are depicted with gray. The top scale shows the basis frequencies n/τ, which are in
resonance with the mode frequencies at the locations of the arrows. b Same as a but for a basis of 10,000 states. The main features occur at
the same positions in n and in frequency, which shows convergence and basis independence. c Scaling of the maximal power, maxt gðtÞas a
function of the number of qubits N. Gate time τ= 500μs. Orange circles: numerical results, heuristic bound. Gray curve: analytic bound derived
in Supplementary Note 5. d The time-dependent displacement in the phase space of ion number 1, where K= 0 (pink) and K= 3 (blue) are
shown. The trajectories start and end at the origin.
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The most straightforward way of experimentally implementing
our amplitude- and frequency-modulate (AMFM) pulses is via an
arbitrary waveform generator (AWG)35,36. However, if an AWG is
not available, implementation via the decomposition (5) (demo-
dulation) is also possible (see Supplementary Note 9 for more
detail).
In various contexts our protocol has already been implemented,

tested, and verified experimentally. In8 it was used in its simpler
amplitude-modulated version to benchmark one of the IonQ
quantum computers. In36 it was used as the basis for demonstrat-
ing a fidelity trade-off scheme called extended null-space (ENS)36.
By sacrificing negligible amounts of fidelity, via ENS, an "add-on”
to our basic AMFM scheme, additional power savings of up to an
order of magnitude can be realized. This demnstrates that our
protocol is extensible and adaptable.
In both applications our power-optimal protocol has proved its

experimental utility.
While our protocol has already found experimental applications,

its stabilizing effect in its exact [see (3)] version, employing
simultaneous amplitude and frequency modulation, has not yet
been demonstrated. This is done in the following section.

Experimental demonstration
We implement the power-optimal, stabilized entangling gate on a
trapped-ion quantum computer that has been described else-
where in detail8. A chain of seven ions is sideband cooled
according to the protocol detailed in37. The two end ions are used
to obtain equal spacing between the middle five individually
addressed ions, which comprise the qubit register, and single- and
two-qubit gate operations are driven by a two-photon Raman
transition at 355 nm. As described in8 the coherence of our
quantum computer has been completely characterized. In
particular, the fidelity of two-qubit gates was determined to be
≈ 96%, measured via parity contrast and partial tomography as
described in8,14,15.
The propagator of (1) can be written in the form12

U ¼ Vxx θij
� �

; (7)

where

V ¼ exp �i
X
ip

ηipðαpayp þ α�papÞσi
x

( )
(8)

and XX(θij) is defined in (2). For αp= 0, which is guaranteed exactly
according to our protocol, an AMFM gate solution, computed from
the measured motional-mode spectrum, implements the unitary
in (2) over two qubits with ≈ 96% fidelity. Since αp= 0 corresponds
to zero mode-frequency drift, the ≈ 4% loss in fidelity is not due to
mode-frequency drift but is due to other processes, such as beam-
steering errors, laser-power fluctuations, fluctuating ambient
electric and magnetic fields, etc.
Starting in the intial state 00j i, the ideal gate operator (2) strictly

preserves the even-parity population Peven= P00+ P11, where Pmn

is the population in mnj i after the gate pulse is over. When
motional-mode frequencies start to drift, αp becomes nonzero and
the propagator V in (7) is "switched on”. This causes population
transfer into the odd-parity states 01j i and 10j i, which, in turn,
causes a reduction of Peven. Thus, Peven is a sensitive probe of
stabilization of an AMFM gate against mode-frequency drift. We
strongly emphasize that mode frequency drift causes a reduction
of fidelity that is completely independent of the other sources of
infidelity mentioned above. Thus, if the mode frequency drift is
compensated, i.e., V is "switched off” by constructing a steering
pulse g(t) that assures αp ≈ 0 to high order, as accomplished by our
protocol, the gate fidelity is unchanged from its value at zero
mode-frequency offset. This was verified experimentally in36 in the
way of spot-checks using contrast measurements for selected
values of mode frequency drift.
Figure 5 shows the even-parity population Peven as a function of

mode-frequency offset, measured after applying an XX(π/2) gate
designed for zero mode-frequency offset, to the initially prepared
two-qubit state 00j i. Three different pulses were used to
implement XX(π/2), with moment stabilization orders K= 1, 4, 7.
The gray line in each frame of Fig. 5 shows the analytical infidelity
ð4=5ÞPp ðηipÞ2 þ ðηjpÞ2

h i
jαpj230, with a constant 4% offset to

account for the other errors that are independent of the gate-
frequency offset. The shaded region indicates the range of mode-
frequency offsets for each moment stabilization where the
theoretical fidelity F > 0.99. The width of the shaded region can
be seen to increase for increasing moment. In fact, for K=
1 stabilization (top frame of Fig. 5) acceptable fidelity is achieved
only over a range of less than 1 kHz, outside of which Peven drops
precipitously to around 65%. K= 4 stabilization (middle frame of
Fig. 5) achieves stability over a mode-frequency range of about ±
2 kHz, a factor-2 improvement of allowed mode-frequency
fluctuations accompanied by a restoration of the gate fidelity
back up to ≈ 96%. In the interval between 1 kHz and 2 kHz we see
an improvement of Peven of about 30%. This is not a small effect.
This is a sizable stabilization effect adding to the proven utility of
our protocol. K= 7 stabilization (bottom frame of Fig. 5) shows a

Fig. 3 Optimal τ= 300 μs pulse function for a maximally
entangling XX gate between ions i= 1 and j= 3, for five ions
with NA= 1000 basis states. The expansion coefficients An of this
pulse are shown in Fig. 2a. a The optimal pulse function ĝðtÞ (thin
green line) with its amplitude function (thick orange line), obtained
by demodulating ĝðtÞ as detailed in Supplementary Note 9. b
Detuning function μ(t) obtained by frequency demodulating the
pulse function, using the method described in Supplementary Note
9. The frequencies of the motional modes are shown as the five
horizontal lines. The sample motional-mode frequencies used to
generate this pulse are listed in Supplementary Table 1 and the set
of η parameters used are listed in Supplementary Table 2 in
Supplementary Note 4.
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similar ≈30% improvement of Peven over an even larger frequency
interval ≈ ±3 kHz), a factor-3 improvement of the stable frequency
range. More details concerning our experiment can be found in
Supplementary Note 11.

DISCUSSION
Application of our protocol is not limited to the case of the
trapped ion-chain quantum computer architecture8,9. It can be
applied to all quantum computing architectures that rely on
phase-space closure, such as the QCCD architecture38. It is even
applicable to the superconducting quantum computer architec-
ture that also relies on pulse shaping39.
Our work is most closely related to28,40, who use a multi-tone

approach to construct stabilized two-qubit gates. However, there
are substantial differences. For instance: (i) The authors of28,40

formulate and demonstrate their protocol for the special case of
trapped two-ion crystals, and since it relies on an analytical
solution for the gate pulses, it is not scalable to N-ion, many-mode
systems. (ii) The multi-tone approach in28,40 requires the different
tones (which can be interpreted as Fourier components) of g(t) to
be equi-spaced. While this is very closely related to our expansion
of g(t) in a Fourier-sine series, equi-spacing in the frequency of
basis functions is not necessary in our approach. Any basis can be
used to express g(t). For instance, we found that short pulses are
better represented in a polynomial basis, whose Fourier compo-
nents are not equi-spaced. Thus, any kind of chirped pulse can be

used in our method. (iii) While, indeed, stability against several
types of errors was demonstrated in28,40, these conditions, to
much higher order than demonstrated in28,40, are more easily
implemented according to our protocol, which requires only
added linear equations for each stability condition or constraint.
(iv) As discussed in Supplementary Notes 15, 16, and 17, our
protocol can be extended to include stability against drifts in the
degree of entanglement. (v) Power optimization was not
considered in28,40. Thus our protocol, presenting a unified, scalable
approach to arbitrarily stabilized N-ion gate construction, goes far
beyond the methods presented in28,40 and is thus a substantial
advance over existing methods.
The ability to symmetrize the pulse solution gives rise to

potential additional room for robustness with respect to errors.
Since, e.g., the inner products between a symmetric pulse function
g(t) and the antisymmetric part of the constraint eiωpt in (3) are
zero (see Supplementary Note 3 for details), akin to echos, as long
as the pulse function is modified symmetrically due, e.g., to
implementation defects, half of the null-space conditions in (3) is
still exactly satisfied, while leaving the error entirely in the part of
the constraint with the opposite symmetry. The knowledge that
the error lies in the oppositely symmetric part leaves room for a
secondary echo, wherein the sign of the errors may be flipped. In
case the errors cannot be manipulated to be echoed out in this
particular symmetry, other symmetries may be considered at the
pulse-construction level, rendering our approach an integrated

Fig. 4 Stabilization of the control pulses. a The infidelity (see Supplementary Note 8 for detail) as a function of the motional-mode
frequency drift Δf. All mode frequencies were drifted according to ωp↦ωp+ 2πΔf. b The width of the infidelity curves in a for various error
tolerances ϵ= 10−3, 10−5, and 10−7, as a function of the highest moment K of stabilization. c The maximal power requirement maxt jgK ðtÞj of
the control pulses, as a function of the order or moment of stabilization K. The power requirement suggests a linear scaling in the moment of
stabilization. d The width of the infidelity curves for various different orders of stabilization K= 0, 2, 4, and 6, as a function of the gate duration
τ for a fixed error tolerance level ϵ= 10−3. The data suggests ~1/τ scaling of the width.
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protocol that can be designed to be robust against different
symmetry classes of errors.
The methodology and paradigm used to construct our power-

optimal pulses is general and can readily accept incomplete bases
to result in pulses that are subjected to additional constraints.
Beyond the AM, FM, PM pulses that can be obtained by
appropriately demodulating the pulse function according to (5),
a step-pulse approach that has been used in the literature12,13,29

can also be derived. In fact, as shown in Supplementary Note 12,
by carefully tuning the gate duration time, even the beneficial
symmetric pulse structure can be preserved.
Adding to the generality is the application to the Efficient

Arbitrary Simultaneously Entangling (EASE) gates29, where any
combination of quadratically many pairs of qubits can be
entangled to any degree of entanglement. As detailed in
Supplementary Note 13, because our approach is linear and the
EASE-gate approach is amenable to any linear approach, it is
straightforward to adapt the pulse-construction method pre-
sented here to the EASE protocol. Together with the power- or
time-optimality guaranteed in our pulse construction by design,
then, the EASE gate equipped with our method enables one of the
fastest ways to implement as many entangling gates as possible in
a TIQIP.
The moment-stabilization adds robustness against those errors

induced by not properly decoupling the computational states
from the motional modes. However, unitary errors in the
computational space may still linger, since the entanglement
degree is sensitive to, e.g., ωp fluctuations (see Supplementary
Note 14). In practice, this may be fended off by calibrations, i.e., by
monitoring how the degree of entanglement changes over time
and adjusting the amplitude of the illuminating beams to
compensate for this change. Note that the shape of the pulse
does not change; amplitude scaling suffices. If frequent calibra-
tions are impractical, active stabilization in the entanglement

degree χij may be implemented, which involves finding pulses
that, apart from satisfying (3), (4), and (6), also satisfy

∂kχ ij
∂ωk

p
¼ 0; k ¼ 1; 2; ¼ ; Kχ ; (9)

where Kχ is the maximal order of desired χ stabilization. In
Supplementary Notes 15, 16, and 17, we offer three methods
which either achieve (9) approximately (see Supplementary Note
15) or completely (see Supplementary Notes 16, and 17). While the
projection method presented in Supplementary Note 15 achieves
(9) only approximately, and only for Kχ= 1, it does reduce the
errors originating from fluctuating mode frequencies substantially.
A qualitative improvement over the projection method are the
two-pulse moments method presented in Supplementary Note 16
and the hybrid method, presented in Supplementary Note 17.
These two methods fulfill (9) exactly, and consequently actively
stabilize the degree of entanglement over a large interval of
frequency drift [see Supplementary Fig. 6a and Supplementary
Fig. 7]. However, constructing the two pulses characterizing these
methods is computationally more expensive and the pulses
require more power. Therefore, whether to use the simple
projection method described in Supplementary Note 15 or the
two-pulse methods described in Supplementary Notes 16 and 17,
depends on experimental conditions and available computational
resources.
Stabilization against other parameters, such as the Lamb-Dicke

parameters ηip or the amplitude of the laser beam, encoded in the
norm of g(t), is also possible. Notice that ηip 7!ηipð1þ Δηip

Þ or g(t)↦
g(t)(1+ Δg), where Δηip

and Δg are small constants, does not affect
the decoupling condition (3). The effect of the errors is confined to
the degree of entanglement (4), i.e., χij↦ χij+ Δχij, where Δχij is the
error in χij that arises from Δηip

and Δg. As discussed in
Supplementary Note 18, this can be adequately compensated
by, e.g., a broadband compensation sequence applicable for the
two-qubit case.
We note that, while technically challenging, in principle, it is

possible to directly implement our Fourier-basis pulse solution g(t)
using a multi-tone laser. As shown in Supplementary Note 19, by
implanting NA different colors with different amplitudes to the
beams that address ions, then locking the phases of them, we can
induce the desired evolution of the XX on a TIQIP. The technique
here is similar to the discrete multi-tone, widely used in
communication lines. The development of the technology in the
optical regime remains a promising avenue for future research.
Formally speaking, there are infinitely many smooth solutions

that qualify as adequate pulse functions. Out of these infinitely
many possible solutions, our protocol extracts the power-optimal
solution without any iterations or parameter scans. Including
symmetry and stabilization, the solution is also robust against
errors, helping to significantly increase the uptime of TIQIPs41.
With an AWG, as already demonstrated36, our AMFM pulses can be
implemented directly experimentally to produce an optimal XX
gate. If AWG technology is not available, as in our experiments
reported in this paper, implementation via demodulation (see
Supplementary Note 9) is also an option. Demodulation of our
AMFM pulses also shows that their amplitude function is nearly
flat, i.e., average power minimization is an excellent approximation
of maximal power minimization. Indeed, an exact analytical bound
on power and its comparison to the demodulation results shows
that the optimal solution is close to the bound. With the XX gate
implemented using the pulse constructed according to our
protocol, just about any quantum algorithms can now be
implemented with minimal power requirement, or in the shortest
possible time for a given power budget, at the two-qubit gate,
physical implementation level. This provides decisive advantages
in improving both noisy, near-term TIQIPs and fault-tolerant TIQIPs
to come in the future.

Fig. 5 Experimental demonstration of K-moment stabilized two-
qubit gates. A single XX(π/2) gate is applied to the fiducial state
00j i, and the even-parity population is plotted as a function of the
gate frequency offset. For increasing moment stabilization (shown
are K= 1, 4, 7), the region of high even-parity population increases,
as indicated by the detuning-robust region shaded in blue. The gray
line shows the analytical expression [Supplementary Eq. (60)], valid
in the low-error limit, with a 4% offset to account for other sources
of infidelity that are independent of the gate frequency. Notice that
our experiment reproduces the oscillating fine structure of the
fidelity expression, Supplementary Eq. (60). Error bars on the
experimental data are 1σ confidence intervals, sampled from a
binomial distribution, and each point represents 300 realizations of
the experiment.
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METHODS
Theory
The strength of our method lies in the fact that pulse construction is linear
and requires only a few lines of code on a classical computer. The method
is particularly straightforward if the pulse is implemented directly via an
AWG, which avoids the demodulation step.
The two core elements of our pulse construction algorithm are

described in detail in the Results section: (a) Finding the null-space of
the matrix M, defined in (3) and (6), and (b) diagonalizing the matrix R, i.e.,
the null-space projected matrix S, defined in (4). Accomplishing (a) and (b)
involves only elementary linear algebra tasks, which can be performed
using standard singular-value-decomposition and diagonalization codes,
respectively (see, e.g.,34). The following serves as a brief guide through the
Supplementary Information, where more details of our methods can be
found in the respective sections.
Following Supplementary Note 1, a presentation of our methods used to

obtain the resource requirements illustrated in Fig. 1, explicit step-by-step
linear algebra formulas reflecting our method of pulse construction,
including stabilization against motional-mode frequency drift and pulse-
timing errors, and our method of symmetry classes, are presented in
Supplementary Notes 2–4, 8, and 10. Sensitivity of the degree of
entanglement is illustrated in Supplementary Note 14, and several
methods for active stabilization of the degree of entanglement are
presented in Supplementary Notes 15–18.
Our method of pulse construction includes many pulse-construction

schemes previously described in the literature. As an example, Supple-
mentary Note 12 shows explicitly how our AMFM method includes the
previous method of fixed-detuning step pulses.
Our analytical methods for computing an exact lower bound for the

minimal power requirement of a 2-qubit XX gate are presented in
Supplementary Note 5, and our methods for evaluating power and
execution-time scaling are presented in Supplementary Note 6. In
Supplementary Note 7 we use the method of Lagrangian multipliers to
show that—not considering χ stabilization—power optimality requires that
the same pulse (up to a phase) is applied to the two ions in a 2-qubit
XX gate.
In Supplementary Note 9 we present our method of pulse demodula-

tion, which can be used either for the analysis of AMFM-constructed
pulses, or for implementing AMFM pulses experimentally if an AWG is not
available. In Supplementary Note 19, we suggest a method for the direct
implementation of our Fourier pulses, using multi-tone lasers.
Parallel execution of quantum gates is an important strength of TIQIPs.

How to apply our AMFM methods to the EASE protocol29 of parallel-gate
construction is briefly discussed in Supplementary Note 13.

Experiment
The setup of our experiment and our experimental methods are described
in detail in8. More details, in particular the implemented pulse shape (see
Fig. S2) and the motional-mode frequencies (see Tables S4 and S5) used to
construct the pulses implemented in our experiment, can be found in
Supplementary Note 11.

DATA AVAILABILITY
All data needed to reproduce the results are available in the main text and
supplementary information. Reasonable requests for additional data may be
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