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Quantum mechanical rotation of a photon polarization by
Earth’s gravitational field
Hansol Noh1,2, Paul M. Alsing3✉, Doyeol Ahn 1,4,5✉, Warner A. Miller 4 and Namkyoo Park 2

We describe the quantum mechanical rotation of a photon state, the Wigner rotation—a quantum effect that couples a
transformation of a reference frame to a particle’s spin, to investigate geometric phases induced by Earth’s gravitational field for
observers in various orbits. We find a potentially measurable quantum phase of the Wigner rotation angle in addition to the
rotation of standard fame, the latter of which is computed and agrees well with the geodetic rotation. When an observer is in either
a circular or a spiraling orbit containing non-zero angular momentum, the additional quantum phase contributes 10−6 degree to
10−4 degree respectively, depending on the altitude of the Earth orbit. In the former case, the additional quantum phase is
dominant over the near-zero classical geodetic rotation. Our results show that the Wigner rotation represents a non-trivial semi-
classical effect of quantum field theory on a background classical gravitational field.
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INTRODUCTION
As threats for global secure key distribution have increased with
the exponential growth of computing powers, free-space-based
quantum key distribution (QKD) systems have been actively
pursued with the recent deployment of the Quantum Experiments
at Space Scale network and Micius satellite1–20. While several
proposals for quantum communication between a LEO satellite
and an optical ground station have been suggested, such as
SPACEQEST and QEYSSAt projects, an experiment in the regime
where a quantum system evolves in curved space-time has never
been fully assessed; most of them have mainly considered
quantum optics rather than general relativistic phenomena of
quantum states at large scales6–9. The gravitational field adds a
measurable contribution to the quantum bit error rate (QBER)
along the world line of the quantum state as the altitude
changes9. The gravitational field also causes the red shift21,22 of
the photon, which should be compensated for the QKD system.
Therefore, it is important in these environments to understand the
interplay of quantum theory and gravitation as the photon state,
propagating between the ground station and the satellite, carries
the quantum information. It was found that the polarization
encoding is a reasonable option for a microsatellite-based
quantum-limited communication in an LEO-to-ground link due
to its stable propagation through the atmosphere, whereas time-
bin encoding is widely used in the fiber networks23. A big
challenge in this kind of system is polarization reference-frame
synchronization between the LEO satellite and the optical ground
station to implement the QKD protocol reliably in the gravitational
field23 which induces the Lense-Thirring (frame-dragging) and de
Sitter (geodetic precession) effects24–27. Furthermore, an experi-
ment has been proposed to measure these gravitation-induced
effects on quantum states near Earth using a ferromagnetic
gyroscope whose angular momentum is dominated by atomic
electron spins28. Nevertheless, while there have been works on the
change of polarization and linear momentum of a photon as it

propagates through a gravitational field in a general relativistic
point of view29–32, the investigation of quantum systems with the
general relativity has been mainly focused on the proper time and
time dilation effect33,34.
Describing photon states observed by a moving observer (e.g., a

satellite) in curved spacetime requires the understanding of both
quantum mechanics and general relativity, two essential branches
of modern physics. One of the conceptual barriers for the
relativistic treatment of quantum information is the difference in
the role played by the wave fields and the state vectors in
relativistic quantum theory. In non-relativistic quantum
mechanics, the wave function of Schrödinger’s equation gives
the probability amplitude that can be used to define conserved
particle densities or density matrices. However, it was discovered
that relativistic equations are only indirect representations for
probability waves of a single particle35. In 1939, Wigner proposed
the idea that the quantum states of relativistic particles can be
formulated without the use of wave equations36. He showed that
the states of a free particle are given by a unitary irreducible
representation of the Poincaré group. In Wigner’s formulation,
relativistic-particle states in different inertial frames are related by
a little group element in the irreducible representation of the
Poincaré group, called Wigner rotation35–43.
While Wigner’s original proposal was for special relativity, there

have been several attempts to extend it to the domain of general
relativity39,41–43. It has been shown that moving-particle states in
curved spacetime are transformed into each other by Wigner
rotation39,41–43 by introducing tetrads (frame fields) to define local
coordinates44 since extending Wigner’s group to curved space-
time requires the standard local laboratory at every event29. For
free-space QKD systems, the gravitational field induces a rotation
of the linear polarization of a photon observed between an earth
ground station and a satellite in the near-Earth orbit. Thus, it
would be a particularly important problem, from not only a
fundamental point of view for testing general relativistic effects on
quantum theory but also from an application point of view for
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precision quantum metrology and free-space quantum commu-
nication, to be able to measure this Wigner rotation angle (WRA).
In this paper, we demonstrate the existence of a non-trivial

Wigner rotation experienced by photons sent non-radially from
Earth ground station to a free-falling observer with non-zero
angular momentum and various altitudes. To focus on the
existence of a measurable WRA, we simplify the spacetime of
Earth, considering only the monopole of Earth. Examining two
orbits, circular and spiral, both with non-zero quantum-phase
Wigner rotation components, it is found that there is a potentially
measurable quantum phase of the WRA in addition to the rotation
of standard fame, which agrees well with the geodetic rotation,
measured by Gravity Probe B in 201124–26, and in the former case,
the additional quantum phase is dominant to the near-zero
geodetic rotation. Our results show that the Wigner rotation
involves a non-trivial semi-classical effect of quantum field theory
on a background classical gravitational field in addition to classical
geodetic precession. This finding could open up the testbed to
probe gravitational effects on various quantum phenomena in a
satellite by the interplay of two pillars of physics.

RESULTS
Irreducible representation of the Wigner rotation
Considering only the monopole of Earth, we model the spacetime
around Earth with Schwarzschild spacetime where tetrad fields
can be globally defined as orientation-preserved coordinate
bases40,45,46, and the (− + + +) metric signature is used.
Furthermore, it is also assumed45 that quantum field theories on
spacetime admit a spinor structure37,44,47 which will be employed
for the quantum state of the photon with a given polarization.
While there has been much renewed interest in the effects of

the gravitational field on quantum systems, especially in relation
to the effect of accelerated motion and horizons on quantum
entanglement48–51 inspired by the seminal work of Hawking52 and
Unruh53, less work has been performed on an experimental
assessment of the regime in which quantum systems evolve on
classical curved spacetime. Our model could provide a testbed for
probing the gravitational effects on quantum systems.
The Hilbert space vector of a photon is defined in a local inertial

frame spanned by a tetrad, eâμðxÞ, â and μ= 0, 1, 2, 3, which

satisfies gμνðxÞ ¼ ηâb̂eμ
âðxÞeν b̂ðxÞ and transforms in a way that

eâ
μðxÞ ¼ ∂xμ

∂xν eâ
νðxÞ and eâ

μðxÞ ¼ Λâ
b̂eb̂

μðxÞ under general coordi-
nate and local Lorentz transformations, respectively. Throughout
the paper, we use hatted Latin letters for local inertial coordinates
and Greek letters for general coordinates. The tetrad eâμðxÞ carries
two indices: (i) a ‘world index’ μ that transforms under general
coordinate transformations of general relativity, and (ii) a local
tangent plane index â which transforms under local, x-dependent
Lorentz transformation Λ(x). Quantities such as pâðxÞ ¼
eâμðxÞpμðxÞ are the projection of the general relativistic world
momentum vector pμðxÞ onto the axes (three spatial, one
temporal) of the observer’s local laboratory frame54 where the
metric is locally flat such that special relativity holds over distances
over which the curvature can be considered as essentially
constant. The tetrad, therefore, explicitly embodies Einstein’s
Equivalence Principle through the index â. The local Lorentz

transformation Λâ
b̂ðxÞ transforms between different instantaneous

states of motion of the observer (e.g., stationary, freely falling,
circular motion, or arbitrary motion) within the same Lorentz
tangent plane at the position x, i.e., the tetrad is constructed to
define (and describes) the observer’s instantaneous state of
motion at each point x.
A variation of a tetrad under an infinitesimal translation from x

to x +δx is described by parallel transport to compare two
vectors in the same tangent plane without a change of the

vectors such that40,46

δ eâ
μð Þ ¼ eâ

μ xþ δxð Þ � eâ
μ xð Þ ! δxλ∇λeâ

μ xð Þ: (1)

For the case that wave vector of a photon is measured in the
observer’s laboratory, local covariant components of the wave
vector, kâðxÞ ¼ eâμðxÞkμðxÞ, are changed along the photon’s
geodesic from xμ to xμ+ kμ(x)δξ such that

δkâðxÞ ¼ δ eâ
μðxÞð ÞkμðxÞ þ eâ

μðxÞδkμðxÞ; δkμðxÞ ¼ dξ∇kkμðxÞ:
(2)

Since a photon state in curved spacetime follows a null
geodesic in the geometric optics limit55 and under a local
infinitesimal change of a tetrad (which is antisymmetric39–41),
Eq. (2) can be rewritten as

kâðxÞ ! k0âðxÞ � kâðxÞ þ δkâðxÞ
¼ δâ

b̂ þ λâ
b̂ðxÞdξ

� �
kb̂ðxÞ ¼ Λâ

b̂ðxÞkb̂ðxÞ;
(3)

where λâ
b̂ðxÞ ¼ ∇keâνðxÞð Þeν b̂ðxÞ. In other words, the effect of an

infinitesimal translation can be considered as an infinitesimal local
Lorentz transformation given by Λâ

b̂ðxÞ ¼ δâ
b̂ þ λâ

b̂ðxÞ39–43.
A Lorentz transformation, Λ, has the one-dimensional repre-

sentations for a photon state with the helicity, σ, given by37

UðΛÞ k; σj i ¼
X
σ0

Dσ0σ WðΛ; kÞð Þ Λk; σ0j i: (4)

W(Λ, k) is the Wigner’s little group element, defined as W(Λ,k) =
L−1(Λk) ΛL(k) and D(W) is the irreducible representation of W. L(k)
is the Lorentz transformation such that L(p)k= p. Accordingly, a
displacement of a photon state leads to a residual quantum phase
called the WRA. To get an explicit expression of the irreducible
unitary representation of a Lorentz transformation, we use the
canonical group homomorphism between the proper Lorentz
group and its double cover, SL(2, C); a wave vector k of a photon
is mapped to a Hermitian matrix K via K= σâkâ , where σâ , â= 1, 2,
and 3, are the Pauli matrices, and σ0̂ is the 2 × 2 identity matrix. A
Lorentz transformation is represented by the similarity transfor-
mation such that

AKAy ¼ Λμ
νk

νσμ (5)

with an element A ¼ α β
γ δ

� �
of SL(2, C). For an infinitesimal

homogeneous Lorentz, the matrix A can be expanded in terms of

dξ such that

A ¼ α β

γ δ

� �
¼ I þ ~Adξ ¼ I þ ~α ~β

~γ �~α

 !
dξ: (6)

Substituting Eq. (6) into Eq. (5), multiplying σâ both sides, and
then taking a trace on both sides, we can get the following
equations

λâ b̂ ¼
1
2
δâĉtr σb̂σĉ

~Aþ σĉσb̂
~Ay� �

; (7)

where tr(A) is the trace of A. That is, we obtain ~α, ~β, and ~γ in terms
of λâ

b̂
such that

~α ¼ 1
2 ðλ0̂ 3̂ þ iλ1̂ 2̂Þ

~β ¼ 1
2 ½ðλ0̂ 1̂ þ λ3̂ 1̂Þ þ ið�λ0̂ 2̂ þ λ2̂ 3̂Þ�

~γ ¼ 1
2 ½ðλ0̂ 1̂ � λ3̂ 1̂Þ þ iðλ0̂ 2̂ þ λ2̂ 3̂Þ�:

(8)

The corresponding irreducible unitary representation of the
little group element for a massless particle is43,56

eiðψðΛ;kÞ=2Þ ¼ ½αð1þ n3̂Þ þ βnþ�bþ ½γð1þ n3̂Þ þ δnþ�c�

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1þ n3̂Þ

q ; (9)
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where Ψ(Λ, k) is the WRA. Detailed expressions for a, b, c, and d are
given in the Supplementary Information (SI). Thus, a local
infinitesimal Lorentz transformation ΛðxÞ leads to an infinitesimal
Wigner rotation angle (IWRA) ~ψ, and the total WRA ψ can be
formally obtained by a time-ordered integration of IWRs over the
geodesic trajectory x(ξ) of the photon such that

eiψðΛ;~nÞ ¼ T exp i
Z

~ψðΛðxðξÞÞ; nîðξÞÞdξ
	 


(10)

where nî ¼ kîðxÞ=k0̂ðxÞ, and T is the time-ordering operator. While
the Wigner little group has finite irreducible unitary representation
in the standard frame as shown in Eq. (9), a boost has no finite
irreducible representation in general37,57,58. Thus, the Wigner little
group has been introduced to make finite irreducible unitary
representations of arbitrary Lorentz transformations for a photon’s
polarization vector as a gauge-fixing of photon’s 4-vector poten-
tial37,43,57–59. For a polarization vector of photons described by
aâ xð Þ ¼ 1

2πð Þ3=2
R d3 hkð Þffiffiffiffiffiffiffi

2hk0̂
p P

σ¼1;�1
a k̂; σ
� �

εâσ k̂; σ
� �

eik�x þ ay k̂; σ
� �

εâσ k̂; σ
� ��

e�ik�x
h i

,

the helicity vectors, εμσ k̂; σ
� �

, has the relation under a Lorentz

transformation Λ such that37

D Λð Þâb̂εb̂σ k̂; σ
� �

¼
ffiffiffiffiffiffiffiffiffi
k0̂

Λ0̂
ĉ k

ĉ

vuut εâσ k̂; σ
� �

exp iσψ Λ; nî
� �� �

; kâ k0̂; k̂
� �

:

(11)

Here, a k̂; σ
� �

and ay k̂; σ
� �

are annihilation and creation
operators, respectively. Correspondingly, the polarization
vector of a photon, εâφ, is transformed in the standard frame
such that43

DðΛÞεâϕ ¼ eiϕεâσ¼1 þ e�iϕεâσ¼�1

� �
¼ ðeiðϕþψðΛ;nîÞÞεâσ¼1 þ e�iðϕþψðΛ;nîÞÞεâσ¼�1Þ
¼ RẑðψðΛ; nîÞÞεâϕ ¼ εâϕ0 ;

(12)

where φ0 ¼ φþ ψðΛ; nîÞ and Rẑ ψð Þ is the rotation about ẑ-axis by
the total WRA.

Earth-satellite system
We consider an Earth-satellite system depicted in Fig. 1.
Figure 1a shows the Earth-Satellite system and corresponding
coordinates. A photon is sent along its geodesic, represented
by the red line, and its polarization, represented by the

light-green arrows, is measured in the local frame of a satellite.
The Schwarzschild metric is used to model spacetime around
Earth and choose spacelike components of the tetrads so that
the first, second, and third axis of the local frames become unit
vectors of Schwarzschild coordinates r, θ, and φ at infinity, i.e.,
êâ

μðx1Þ � êb
μ where â = 1, 2, and 3 correspond to b= r, θ, and

φ, respectively. To compare the polarization measured at the
surface of Earth and the satellite, the standard frame is
introduced in which a wave vector of the photon is aligned to
the third axis of the observer’s local frames (Fig. 1b, c).
We consider the following four observer trajectories: a

stationary observer, a radially free-falling observer, a free-
falling observer with non-zero angular momentum in a circular,
and a spiraling orbit54 (Fig. 2a). To define non-spinning local
frames, we apply Fermi-walker transport and parallel transport
conditions for the stationary and free-falling observers respec-
tively. Detailed works are given in the Supplementary Informa-
tion. We note that the definition of polar coordinates induces a
non-physical rotation in local frames, which must be canceled
out. In other words, if the photon’s geodesic is in the equatorial
plane θ= π/2 (Fig. 2b, c), the unit vector of the coordinate r is
rotated as the coordinate φ changes. Thus, the observer is
assumed to move in the plane êr � êθ , i.e., the constant-φ plane
(Fig. 2b, c), and φ-axis is chosen as the third axis of the local
frames to cancel out the polar-coordinate-induced rotation
when a wave vector is aligned to φ-axis for polarization
comparison. It is worth mentioning that the Wigner rotation
has a zero angle in special relativity if the direction of boost
(observer) and the wave vector (photon) both lie in the x̂ � ẑ
plane or the ŷ � ẑ plane. However, if a photon moves in the
x̂ � ŷ plane and an observer in the orthogonal x̂ � ẑ plane, the
WRA is not necessarily zero43,56. Correspondingly, by the
equivalence principle, since our observers are assumed not to
move in the plane ê1̂

μðxÞ � ê3̂
μðxÞ, and the photon’s geodesic

remains in the equatorial plane θ= π/2 (Fig. 2b, c), the WRA will
again be non-zero.
Timelike components of the corresponding tetrads, êt

μ, are set
to the 4-velocity vector of a massive particle (e.g., satellite),
moving along a geodesic corresponding to each trajectory,
describing the local frame of the observer. The 4-velocity vectors
of the observers and the wave vector of the photon are obtained
in terms of conserved quantities defined from Killing vectors of
Schwarzschild spacetime (see Supplementary Eq. (5)).

Fig. 1 Schematics of the Earth-satellite system. The Earth-Satellite system and corresponding coordinates. a A photon’s geodesic and its
polarizations are represented by a red line and light-green arrows, respectively. b, c The wave vector and polarization of the photon are
measured in each local frame (b) and compared in the standard frame (c).
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For circular orbits, by applying the conditions of orthogonality
and non-spinning frame, tetrads have the form

ðe0̂ÞμðxÞ ¼ ðetÞμðxÞ ¼ ð 1ffiffiffiffiffiffiffiffi
1�3rs

2r

p ; 0 1
r

ffiffiffi
rs
2r

p
1ffiffiffiffiffiffiffiffi
1�3rs

2r

p ; 0Þ

ðe1̂ÞμðxÞ ¼ ðerÞμðxÞð �
ffiffiffi
rs
2r

p sin ~ΘðrÞffiffiffiffiffiffiffiffi
1�3rs

2r

p ffiffiffiffiffiffiffi
1�rs

r

p ;
ffiffiffiffiffiffiffiffiffiffiffi
1� rs

r

p
cos ~ΘðrÞ;

� 1
r

ffiffiffiffiffiffiffi
1�rs

r

p
sin ~ΘðrÞffiffiffiffiffiffiffiffi

1�3rs
2r

p ; 0Þ

ðe2̂ÞμðxÞ ¼ ðeθÞμðxÞð
ffiffiffi
rs
2r

p cos ~ΘðrÞffiffiffiffiffiffiffiffi
1�3rs

2r

p ffiffiffiffiffiffiffi
1�rs

r

p ;
ffiffiffiffiffiffiffiffiffiffiffi
1� rs

r

p
sin ~ΘðrÞ;

ffiffiffiffiffiffiffiffiffiffiffi
1� rs

r

p
; 1r

ffiffiffiffiffiffiffi
1�rs

r

p
cos ~ΘðrÞffiffiffiffiffiffiffiffi
1�3rs

2r

p ; 0Þ
ðe3̂ÞμðxÞ ¼ ðeφÞμðxÞ ¼ ð0; 0; 0; csc θ=rÞ;

(13)

where ~ΘðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3rs

2r

q
ðθ� θ0Þ. Likewise, for spiraling orbits, the

tetrad can be written such that

ðe0̂ÞμðxÞ ¼ ðetÞμðxÞ ¼ ð 1
ð1�rs

r Þ ;�
ffiffiffi
rs
r

p
cosΘðrÞ;� 1

r

ffiffiffi
rs
r

p sinΘðrÞffiffiffiffiffiffiffi
1�rs

r

p ; 0Þ

ðe1̂ÞμðxÞ ¼ ðerÞμðxÞ ¼ ð � ffiffiffi
rs
r

p cos ~ΘðrÞ
ð1�rs

r Þ ; cosΘðrÞ cos ~ΘðrÞ
� sinΘðrÞ sin ~ΘðrÞ ffiffiffiffiffiffiffiffiffiffiffi

1� rs
r

p
; 1r

sinΘðrÞ cos ~ΘðrÞffiffiffiffiffiffiffi
1�rs

r

p þ 1
r cosΘðrÞ sin ~ΘðrÞ; 0Þ

ðe2̂ÞμðxÞ ¼ ðeθÞμðxÞ ¼ ð ffiffiffi
rs
r

p sin ~ΘðrÞ
ð1�rs

r Þ
; cosΘðrÞ sin ~ΘðrÞ

ð1�rs
r Þ

� sinΘðrÞ cos ~ΘðrÞ ffiffiffiffiffiffiffiffiffiffiffi
1� rs

r

p
; 1r cosΘðrÞ cos ~ΘðrÞ � 1

r
sinΘðrÞ sin ~ΘðrÞffiffiffiffiffiffiffi

1�rs
r

p ; 0Þ
ðe3̂ÞμðxÞ ¼ ðeφÞμðxÞ ¼ ð0; 0; 0; 1=rÞ;

(14)

where cosΘðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2obs

rrs
1� rs

r

� �� �r
, sinΘðrÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2obs
rrs

1� rs
r

� �q
.

We set conserved energy, εphoton, of a photon to its frequency
to satisfy equivalence principle, and set the energy per unit mass,
εobs, of an observer to one, in the units where ℏ= G= c= 1 since
εobs ¼ ð1� rs=rÞdt=dτ � 1. We set the angular momentum per
unit mass lobs of the observers on a spiraling trajectory as
0:4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rsrEarth

p
to put our system in the first-order approximation

limit, where rEarth ≈ 6.4 × 108 cm is the radius of Earth, and rs ≈ 1 cm
is its Schwarzschild radius. Besides, we set the (non-radial)
launching angle of the photon as 45° (Fig. 2b) by setting an
angular momentum of a photon lph as

ωrEarthffiffi
2

p so that the radial and
polar components of the wave vector have the same value on the
surface of Earth, krðrEarthÞ ¼ rkφðrEarthÞ. Here, ω is an angular
frequency of a photon. Details of derivation are provided in the
Supplementary Information.

The Wigner rotation under the influence of the gravitational
fields
Upon observation of Eqs. (9) and (10), it is noted that if every
parameter is real, then the result of this equation is always real. In
other words, WRA ψðΛ; nîÞ must be 2mπ, where m is an integer.
Accordingly, the first and second observer trajectories considered
(stationary, radially free-falling) have zero WRAs43 since all the
parameters are real. In the opposite case where every parameter is
not real, the non-zero IWRA for a photon helicity state can be
obtained such that

~ψinf ¼ 2Imð~αÞ þ 2n1̂

1þn3̂
Imð~βÞ þ 2n2̂

1þn3̂
Reð~βÞ

h i
� ~ψclassical

inf þ ~ψquantum
inf ;

(15)

which corresponds to the last two cases considered, namely free-
falling observers with angular momentum in a circular, or in a
spiraling trajectory. Here, ~α and ~β are defined as Supplementary
Eq. (34). We note that IWRA consists of a classical geodetic
precession around the third axis, ~ψclassical

inf ¼ 2Imð~αÞ, and a residual
quantum phase (or ‘residual gauge transformation60’) induced
with the gauge-fixing for a finite irreducible unitary representa-

tion, ~ψquantum
inf ¼ 2n1̂

1þn3̂
Imð~βÞ þ 2n2̂

1þn3̂
Reð~βÞ; the WRA for massless

particles arises from a consideration of the unitary representation
of the transformation of quantum single-particle states under
classical Lorentz transformations, and hence manifests itself as a
phase factor36,37,43,56 depending only on the direction of the
photon’s momentum but not its frequency. Others in the literature
have ascribed the WRA to a residual gauge transformation, and
the classical and quantum nature of this non-trivial phase factor
remains an open question60.
The classical geodetic contribution corresponds to the rotation

around the wave vector in the standard frame, where polarization
vectors are measured and compared. For the circular-orbit case,
parallel transport compensates the rotation induced by spherical
coordinates such that spacelike components of the tetrads are
rotated by θ when an observer moves by −rθ, leading to a small
(almost zero, see Table 1), total classical geodetic WRA. The
classical geodetic effects calculated with tetrads are compared
with experimental data reported by Everitt et al.26. For the case of
a spiraling-orbit, parallel-transport rotates the tetrads around the
local third-axis by the angle 2Θtetrads(r), which is defined as

sinΘtetradsðrÞ � � lobsffiffiffiffiffi
rrs

p
ffiffiffiffiffiffiffiffiffiffiffiffi
1� rs

r

r
(16)

where lobs represents angular momentum per unit mass of an
observer. In Fig. 3, we show a conceptual picture to interpret the
classical geodetic contribution to IWRA for the case of a spiraling
orbit. Since the leading term of classical geodetic precession depends

Fig. 2 Schematics of the trajectory of the observer (satellite) and
photon. The geodesics of a photon traveling lies in the equatorial
plane, θ = π/2 and the observer’s geodesics is lying in the constant
φ-plane (the point NP on the sphere represents the North Pole). a A,
B, and C represent the geodesics of massive free-falling observers
radially, in a circular orbit, and spiraling orbit, respectively. b, c The
non-radial launching angle of a photon from the surface of the Earth
to the satellite in a Fig. 2c circular (gray) and spiraling (purple) orbit
in the constant-φ plane.
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on only the radial component of wave vector (see Supplementary
Information), the system can be simplified by neglecting the angular
momentum of a photon – the tetrads are rotated around êϕ by the
gravitational field and become asymptotically identical to the
Schwarzschild coordinate as the photon is observed far away from
Earth. Accordingly, the infinitesimal and total classical WRA are
described by ~ψclassical

inf ¼ 2Θtetradsðxþ δxÞ � 2ΘtetradsðxÞ and
ψclassical
total ¼ 2ΘtetradsðxsatelliteÞ � 2ΘtetradsðxearthÞ, respectively, obtained

directly from Eq. (16).
In Table 1, we compare the finite (i) total WRA ψtotal, (ii) classical

geodetic contribution of the WRA ψclassical
total , and (iii) the residual

quantum phase of the WRA ψquantum
total , for (1) circular and (2)

spiraling orbits, obtained by integrating the IWRA ~ψinf ,
~ψclassical
inf ¼ 2Imð~αÞ, and ~ψquantum

inf ¼ 2n1̂

1þn3̂
Imð~βÞ þ 2n2̂

1þn3̂
Reð~βÞ, respec-

tively, along the photon orbit, from the surface of Earth to the
altitudes of various Earth orbits. Details of the approximation and
interpolation methods employed to compute the total WRA from
the IWRA, and to verify their validity are described in detail in the
Supplementary Information.
Table 1 shows the total ψtotal WRA as well as its classical

geodetic ψclassical
total and residual quantum ψquantum

total phases for (top) a
circular and (bottom) a spiraling (massive) observer orbit (here
envisioned as a satellite. Further details of the photon’s and the
observer’s orbits can be found in the Supplementary Information).
For the circular orbit (with the photon launched non-radially from
the Earth, Fig. 2c), Table 1 (top) reveals that the classical (general
relativistic) geodetic contribution to the total WRA is effectively
zero while the quantum phase yields the dominant contribution in
the range of [2.42 × 10−5, −6.25 × 10−4] degrees for radial
distances ranging from near-Earth orbit (NEO, 300 km) to infinity.
Figure 4a shows the classical geodetic and residual quantum

Table 1. Comparison of total integrated Wigner rotation angle (WRA)
ψtotal, classical geodetic contribution to the WRAψclassical

total , and residual
quantum-phase contribution to the WRA~ψquantum

total (in deg), for a
satellite at various altitudes for two types of Earth orbits: (top) circular,
(bottom) spiraling.

Altitude Wigner rotation
angle (WRA)
(classical
geodetic +
residual
quantum-
phase) ψtotal

Classical
geodetic part
of the WRA
ψclassical
total

Residual
quantum-
phase part of
the WRA
ψquantum
total

Observer in a circular
orbit

300 km (NEO) 2.42 × 10−5 −6.46 × 10−14 2.42 × 10−5

2000 km (LEO) 9.64 × 10−5 −3.03 × 10−13 9.64 × 10−5

20,000 km (MEO) −8.78 × 10−7 −7.02 × 10−13 −8.78 × 10−7

36,000 km (GEO) −9.93 × 10−5 −7.61 × 10−13 −9.93 × 10−5

1:6 ´ 1011km ðr ¼ 1Þ −6.25 × 10−4 −8.02 × 10−13 −6.25 × 10−4

Observer in a spiraling orbit

300 km (NEO) 1.14 1.14 5.32 × 10−6

2000 km (LEO) 6.31 6.31 2.41 × 10−6

20,000 km (MEO) 24.48 24.48 −1.80 × 10−6

36,000 km (GEO) 29.31 29.31 −2.39 × 10−4

1:6 ´ 1011km ðr ¼ 1Þ 47.15 47.15 3.54 × 10−4

NEO, LEO, MEO and GEO near-, low-, medium- and geosynchronous
Earth orbit.

Fig. 3 The conceptual picture of classical geodetic rotation of tetrads.We show the conceptual picture to interpret the tetrads for a free-falling
observer with non-zero angular momentum. Since the leading term of classical geodetic IWRA depends on only the radial component of the wave
vector, infinitesimal and total classical geodetic Wigner rotations can be seen as 2Θ(x + δx) − 2Θ(x) and 2Θ(xsatellite) − 2Θ(xearth), respectively.
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phase of the total WRA for the circular case. The classical geodetic
precession (general relativistic rotation), and the residual quantum
phase are represented by the solid orange and solid blue line,
respectively. The total WRA is shown in Fig. 4b.
For the case of the spiraling trajectory, Table 1 (bottom),

the opposite is true, namely that the dominant part of the
total WRA arises from its classical geodetic contribution. It is
confirmed numerically that the total classical WRA ψclassical

total
obtained from two different methods, i.e., by integrating
~ψclassical
inf ¼ 2Imð~αÞ along the photon’s orbit and directly by using

ψclassical
total ¼ 2Θtetrads xsatelliteð Þ � 2Θtetrads xearthð Þ, yield identical

numerical values. In addition, there exists a non-zero quantum
phase (column four) on the same order of magnitude as in the
previous circular case, in the range of [5.32 × 10−6, −3.54 × 10−4]
degrees for radial distances ranging again from NEO to infinity.
The classical geodetic and residual quantum-phase contributions
to the total WRA are shown in Fig. 4c and d shows the total WRA.
It is also found that the residual quantum phases have path

dependence unlike the classical geodetic cases: for radially
emitted photon, while the classical geodetic part of WRA does
not change compared to photons with angular momentum, the
residual quantum-phase WRA has different values along radial
distances ranging again from NEO to infinity in the range of
[−3.44 × 10−5, −1.51 × 10−3] and [−2.04 × 10−5, −8.55 × 10−4]
degrees for circular orbits and spiraling orbits, respectively (See
Supplementary Table 2).
For standard BB84 protocol, when a horizontal ê1̂

� �
polarization

is expected to be detected in a receiver’s standard frame, and
QBER induced by other factors but WRA are compensated, the
total WRA corresponds to an additional QBER of 1.21% in the case
of the LEO and 17.2% in the case of MEO defined by
QBERclassicalþquantum ¼ sin2 ψclassical

total þ ψquantum
total

� �
61. For the circular

trajectory, ψclassical
total � 0 and therefore QBERclassicalþquantum �

ψquantum
total

� �2� O 10�11; 10�7½ �ð Þ from NEO to infinite radii.

On the other hand, for the spiraling trajectory
QBERclassicalþquantum ¼ sin2 ψtotalð Þ � QBERclassical 1þ εð Þ, which con-
tains both the dominant classical contribution QBERclassical ¼
sin2 ψclassical

total

� �
and a fractional change ε due to the quantum

contribution to the WRA given to lowest order by ε �
2ψquantum

total

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� QBERclassical

� �2
=QBERclassical

q
(see Supplementary

Note 10). Inspection of Table 2 shows that ε ≈ 0.05–0.08% for
almost all radii, including NEO. While for practical applications, this
amounts to a small, though the finite contribution to the total
QBER, it does serve to illustrate the fundamental limitations to
quantum communication arising from the gravitational field,
which cannot be avoided in free-falling frames. This result is also
consistent with recent analysis, showing that a near-Earth-to-
space QKD system that relies on entanglement distribution of
photon states could have an additional contribution to its QBER as
high as 0.7% because of spacetime curvature, and these effects
are observable with current technologies9.

DISCUSSION
In this paper, we study the Wigner rotation of a photon state in
Schwarzschild spacetime to study a rotation of its polarization,
considering only the monopole of Earth. While the quadrupole of
Earth could induce non-negligible effect on WRA62 and iono-
sphere and Van Allen belt could rotate the polarization vector of
a photon, we focus on showing that there is an additional and
measurable WRA in addition to the geodetic precession. We
calculate the wave vector of the photon to obtain infinitesimal
local Lorentz transformations for the four cases of a stationary
observer, a free-falling observer with zero angular momentum,
and free-falling observers with angular momentum in a circular
and spiraling orbit. For the first two cases, the calculated WRA
are zero. We calculate the non-zero WRA for the last two cases in

Fig. 4 WRA along distances from Earth. It is shown that the classical geodetic part in the solid orange line, the residual quantum-phase part
in the solid blue line, and total WRA in green line for the circular orbit (a, b) and the spiraling orbit (c, d).
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two different ways: (i) by using physically meaningful approx-
imations and (ii) by an interpolation method (see SI) for
verification of our results since the differential equation for the
photon’s trajectory is challenging to solve analytically, and the
tetrads for spiraling orbits have a complex a form that inhibits
easy physical interpretations. It is found that two different
approaches give the same results up to seven significant figures.
The circular orbit results in a WRA whose classical geodetic
contribution is effectively zero for all practical measurements, yet
whose contribution is 2.42 × 10−5 degrees at NEO, and −6.25 ×
10−4 degrees at infinity. Their effect (sine squared value) on the
QBER is effectively zero. For the spiraling trajectory, the total
WRA is dominated by its large classical geodetic contribution,
while the smaller residual quantum phase (or ‘residual gauge
transformation’) is 5.32 × 10−6 degrees at NEO and −3.54 × 10−4

degrees at infinity. These results are significantly larger than
previous classical geodetic estimations. Furthermore, for the
spiraling orbit, the total WRAs (arising predominantly from the
classical, geodetic contribution) have angles of 1.13504 degrees
at NEO and 47.1469 degrees at infinity and are expected to
contribute 1.21% and 17.2% to the QBER in the case of LEO and
MEO, respectively. In addition, the residual quantum-phase
contributions to the QBER for the spiraling orbit constitute a
fractional change on the order of 0.05–0.08% for almost all radii,
from NEO to infinity.
It is also interesting to compare these results with the works by

Connors et al.63, who estimated the polarization rotation angle of
82° at infinity from the X-rays near a black hole in Cygnus X-1 by
using the general relativistic calculations. Our approach can also
be applied to the astronomical measurement of the rotation of the
photon polarization from the black holes such as recently
observed M8764,65. In addition, if one is able to measure the
polarization rotation of a photon passing both far from
(predominantly classical geodetic contribution to the WRA) and
close by (classical geodetic+ residual quantum phase) a massive
gravitating object, and then take the difference between the two
rotation angles, one would have a measure of the residual
quantum-phase contribution to the WRA.

METHODS
Numerical calculation
Using a Mathematica notebook (Wolfram Research Europe Ltd, Long
Hanborough, UK), all of the numerical results in the main text are obtained.

Interpolation method
We verify the approximations used above by introducing the interpolation
method and calculating WRA rotation with the exact tetrad satisfying
Supplementary Eq. (64). The Supplementary Eqs. (14) and (64) can be

rewritten as dξ
dr ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 � l2photon

r2 þ l2photon
r2

rs
r

q
. The affine parameter and ~ΘðrÞ

can be written in terms of the distance r. By integrating Supplementary
Eqs. (64) and (75) from the radius of Earth to the altitudes of orbits with
100 km intervals and applying interpolation methods, r(ξ) and ~ΘðrÞ are

obtained. It is shown that approximation and interpolation methods give
the same result up to seven significant figures for the spiraling case.
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