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Nearest centroid classification on a trapped ion quantum
computer
Sonika Johri1✉, Shantanu Debnath1, Avinash Mocherla2,3,4, Alexandros SINGK2,3,5, Anupam Prakash2,3, Jungsang Kim1 and
Iordanis Kerenidis2,3,6

Quantum machine learning has seen considerable theoretical and practical developments in recent years and has become a
promising area for finding real world applications of quantum computers. In pursuit of this goal, here we combine state-of-the-art
algorithms and quantum hardware to provide an experimental demonstration of a quantum machine learning application with
provable guarantees for its performance and efficiency. In particular, we design a quantum Nearest Centroid classifier, using
techniques for efficiently loading classical data into quantum states and performing distance estimations, and experimentally
demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the
MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
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INTRODUCTION
Quantum technologies promise to revolutionize the future of
information and communication, in the form of quantum
computing devices able to communicate and process massive
amounts of data both efficiently and securely using quantum
resources. Tremendous progress is continuously being made both
technologically and theoretically in the pursuit of this long-term
vision.
On the one hand, quantum hardware is making considerable

advances. Small quantum computers capable of running repre-
sentative algorithms were first made available in research
laboratories, utilizing both trapped ion1,2 and superconducting
qubits3,4. Performance comparisons among different quantum
computer hardware have been made for running a host of
quantum computing tasks5,6. A recent report on achieving
quantum supremacy, where a task was performed by a quantum
computer that cannot be simulated with any available classical
computer7, is an indication that powerful quantum computers will
likely be available to researchers in the near future.
At the same time, considerable algorithmic work is underway in

order to reduce the resources needed for implementing impactful
quantum algorithms and bring them closer to the near-term
intermediate scale quantum (NISQ) era. For example, more NISQ
variants of amplitude estimation algorithms, a fundamental
quantum procedure that is used in a large number of quantum
algorithms, appeared recently8–12.
In this work, we focus on quantum machine learning (QML).

There are a number of reasons why machine learning is a good
area to find applications of quantum computers. First, classical
machine learning has proved to be an extremely powerful tool for
a plethora of sectors, so enhancements from quantum computing
will have a major impact. Second, we already know that fault-
tolerant quantum computers with fast quantum access to classical
data can provably offer advantages for many different applica-
tions13–16. Additionally, regularization techniques that artificially
inject noise into the computation are often used to improve
generalization performance for classical neural networks17.

Thus, one might hope that noisy quantum computers are
inherently better suited for machine learning computations than
for other types of problems that need precise computations like
factoring or search problems.
However, there are significant challenges to be overcome to

make QML practical. First, most QML algorithms that offer
considerable speedups assume that there are efficient ways to
load classical data into quantum states. We address this bottle-
neck in this paper and describe ways to load a classical data point
with logarithmic depth quantum circuits and using a number of
qubits equal to the features of the data point. Another algorithmic
bottleneck is that the solution output by the algorithm is often a
quantum state from which one needs to extract some useful
classical information. Here, we efficiently estimate the distance
between two such states. Further, the efficiency of many of the
quantum subroutines used in QML, in particular linear algebra
subroutines depends on a large number of instance-specific
parameters that need to be taken into account before claiming
any speedups. In particular, most of these speedups will be
polynomial and not exponential, which is also corroborated by
quantum inspired algorithms18. We believe the way to describe
these speedups is not to merely state them as exponential or
polynomial, but to quantify the extent of speedup for each
application and to see how these theoretical speedups translate
in practice.
Another avenue for QML involves the use of parametrized

quantum circuits as analogs of neural networks for supervised
learning, in particular for classification19,20 with the aim of
increasing speed and accuracy. However, we neither have much
theoretical evidence that such quantum architectures will be
easily trained, nor can we perform large enough simulations to get
any convincing practical evidence of their performance. Further,
the time to train such quantum variational circuits can be quite
large, both because of phenomena such as barren plateaus and
also since designing the architectures, choosing cost-functions
and initializing the parameters is far more complex and subtle
than one may naively think21–23.
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Our work is a collaboration between quantum hardware and
software teams that advances the state-of-the-art of QML
implementations, bringing potential applications closer to reality.
Even though the scale of the implementation remains a proof of
concept, our work makes significant progress towards unblocking
a number of theoretical and practical bottlenecks. In particular, we
look at classification, one of the canonical problems in supervised
learning with a vast number of applications. In classification, one
uses a labeled dataset (for example, emails labeled as Spam or Not
Spam) to fit a model which is then used to predict the labels for
new data points. There are many different ways to perform
classification that one can broadly place in two categories.
The first way is similarity-based learning, where a notion of

similarity between data points is defined and points are classified
together if they are similar. Well-known similarity-based algo-
rithms are the Nearest Centroid, k-Nearest Neighbors, Support
Vector Machines, etc. The second way is based on deep learning
techniques. Here, the corpus of labeled data is used in order to
train the weights of a neural network so that once trained it can
infer the label of new data. Often, especially in cases where there
is a large amount of data, neural networks can achieve better
performance than more traditional similarity-based methods. On
the other hand, similarity-based methods can offer other
advantages, including provable performance guarantees and also
properties like interpretability and transparency.
Here, we focus on demonstrating a quantum analog of the

Nearest Centroid algorithm, a simple similarity-based classification
technique, which is also used in clustering algorithms in
unsupervised learning. The Nearest Centroid algorithm is a good
baseline classifier that offers interpretable results, though its
performance deteriorates when the data points are far away from
belonging to convex classes with similar variances. The algorithm
takes as input a number of labeled data points, where each data
point belongs to a specific class. The model fitting part of the
algorithm is very simple and it involves computing the centroids,
i.e., the barycenters of each of the sets. Once the centroids of each
class are found, then a new data point is classified by finding the
centroid which is nearest to it in Euclidean distance and assigning
the corresponding label. We demonstrate the quantum Nearest
Centroid algorithm on up to 8 qubits of a trapped ion quantum
processor and achieve accuracies comparable to corresponding
classical classifiers on real datasets, as well as 100% accuracies on
synthetic data. To our knowledge, this is the largest and most
accurate classification demonstration on quantum computers.
We next describe some previous work on classification

experiments on quantum computers, in particular with neural
networks. There is a fast growing literature on variational methods
for classification on small quantum computers19,20,24–29 of which
we briefly describe those that also include hardware implementa-
tions. In28, the authors provide binary classification methods
based on variational quantum circuits. The classical data is
mapped into quantum states through a fixed unitary transforma-
tion and the classifier is a short variational quantum circuit that is
learned through stochastic gradient descent. A number of results
on synthetic data are presented showing the relation of the
method to Support Vector Machines classification and promising
performance for such small input sizes. In29 the authors provide a
number of different classification methods, based on encoding the
classical data in separable qubits and performing different
quantum circuits as classifiers, inspired by Tree Tensor Network
and Multi-Scale Entanglement Renormalization Ansatz circuits. A
4-qubit hardware experiment for a binary classification task
between two of the IRIS dataset classes was performed on an
IBM machine with high accuracy. In26, the authors performed 2-
qubit experiments on IBM machines with the IRIS dataset. They
reported high accuracy after training a quantum variational circuit
for more than an hour using 5400 circuits and over 3 million total

shots. A different approach using quantum annealers has also
been used for generative learning30.

RESULTS
Algorithm
We start by describing our data loaders31. Loading classical data as
quantum states that can be efficiently used for further computa-
tion is an important step for QML applications, since most
algorithms require efficient quantum access to data which is, and
will likely remain, predominantly classical.
A data loader is a procedure that, given access to a classical data

point x ¼ ðx1; x2; ¼ ; xdÞ 2 Rd , outputs a parametrized quantum
circuit that prepares quantum states of the form

1
xk k

Xd
i¼1

xi ij i: (1)

Here, ij i is some representation of the numbers 1 through d. These
states are called “amplitude encodings”. They are not the only
possible way to represent classical data as quantum states but are
by far the most interesting in terms of the quantum algorithms
that can be applied to them. For example, they are the states one
needs in order to start the quantum linear system solver
procedure. To calculate the efficiency of our algorithms, we
assume that quantum computers will have the ability to perform
gates on different qubits in parallel. This is possible to achieve in
most technologies for quantum hardware, including ion traps32.
The Methods section discusses previous proposals for access to
classical data.
The loader we will use for our experiment is a “parallel” unary

loader that loads a data point with d features, each of which can
be a real number, with exactly d qubits, d− 1 parametrized 2-
qubit gates, and depth log d. The parallel loader can be viewed as
a part of a more extensive family of loaders with Q qubits and
depth D, with QD ¼ Oðdlog dÞ. In particular, one can define an
optimized loader with 2

ffiffiffi
d

p
qubits and

ffiffiffi
d

p
log d depth with (d− 1)

two- and three-qubit gates in total31 (see also Methods). Note that
the number of qubits we use, one per feature, is the same as in
most quantum variational circuit proposals (e.g., 19,29).
We now describe the data loader construction. The first step is a

procedure that given access to a classical data point
x ¼ ðx1; x2; ¼ ; xdÞ 2 Rd , pre-processes the classical data effi-
ciently, i.e., spending only eOðdÞ total time, in order to create a set
of parameters θ ¼ ðθ1; θ2; ¼ ; θd�1Þ 2 Rd�1, that will be the
parameters of the (d− 1) two-qubit gates we will use in our
quantum circuit. In the pre-processing, we also keep track of the
norms of the vectors.
It is important here to notice that the classical memory is

accessed once (we use read-once access to x) and the parameters
θ of the quantum gates can be stored within the classical FPGA
controller of the quantum computer, which means that if we need
to perform many operations with the specific data point (which is
the case here and, for example, in training neural networks), we do
not need to access the memory of the classical computer again,
we just need to re-run the quantum computer that already has the
parameters of the quantum circuit in place in the controller.
The parameters, once computed, can be stored in the FPGA

controlling the quantum computer. The classical control + the
quantum computer are jointly referred to as the QPU or quantum
processing unit. In that sense, the memory of the classical CPU
does not need to be accessed again after the parameters have
been calculated to load the data once.
The specific method for finding the parameters θ appears in

Methods. Once we find the parameters that we need for our
parametrized quantum circuit, we can define the architecture of
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our quantum circuit. For convenience, we assume that d is a
power of 2.
We will use a gate that has appeared with small variants with

different names as partial SWAP, or fSIM, or Reconfigurable
BeamSplitter, etc. We call this two-qubit parametrized gate RBS(θ)
and we define it as

RBSðθÞ ¼

llll1 0 0 0

0 cos θ sin θ 0

0 � sin θ cos θ 0

0 0 0 1

0
BBB@

1
CCCA (2)

We can think of this gate as a simple rotation by an angle θ on
the two-dimensional subspace spanned by the vectors
f 10j i; 01j ig and an identity in the other subspace spanned by
f 00j i; 11j ig. We denote by RBS†(θ) the adjoint gate for which we
have RBS†(θ)= RBS(−θ).
We can now describe the circuit itself. We start by putting the first

qubit in state 1j i, while the remaining d− 1 qubits remain in state
0j i. Then, we use the first parameter θ1 in an RBS gate in order to
“split” this “1” between the first and the d/2-th qubit. Then, we use
the next two parameters θ2, θ3 for the next layer of two RBS gates,
where again in superposition we “split” the “1” into the four qubits
with indices (1, d/4, d/2, 3d/4) and this continues for exactly log d
layers until at the end of the circuit we have created exactly the state

xj i ¼ 1
xk k

Xd
i¼1

xi eij i (3)

where the states eij i are a unary representations of the numbers 1 to
d, using d qubits. The circuit appears in Fig. 1a.
Let us make some remarks about the data loader circuits.

First, the circuits use the optimal number of one-parameter gates,
namely d− 1, for loading any unit d-dimensional vector.
Information-wise any circuit that can load all d-dimensional unit
vectors exactly must have d− 1 parameters. Second, we will see in
the following sections that the circuits are quite robust to noise and
amenable to efficient error mitigation techniques, since they use a
small part of the entire Hilbert space. Third, we use a single type of
two-qubit gate that is native or quasi-native to different hardware

platforms. Fourth, we note that the connectivity of the circuit is
quite local, where most of the qubits interact with very few qubits
(for example 7/8 of the qubits need at most 4 neighboring
connections) while the maximum number of interacting neighbors
for any qubit is log d. Here, we take advantage of the full
connectivity of the IonQ hardware platform, so we can apply all
gates directly. On a grid architecture, one would need to embed the
circuit on the grid which asymptotically requires no more than
doubling the number of qubits.
Next, we describe the distance estimation circuit. The power of

the data loaders comes from the operations that one can do once
the data is loaded into such “amplitude encoding” quantum
states. In this work, we show how to use the data loader circuits to
perform a fundamental operation at the core of supervised and
unsupervised similarity-based learning, which is the estimation of
the distance between data points.
Given two vectors x and y corresponding to classical data

points, the Euclidean distance, namely lxy ¼ x � yk k31 is given by

lxy ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xk k2 þ yk k2 � 2 xk k yk kcxy

q
; (4)

where cxy= 〈x∣y〉 is the inner product of the two normalized
vectors. Here we describe a circuit to estimate cxy which is
combined with the classically calculated vector norms to obtain lxy.
In fact, here we will only discuss one of the variants of the

distance estimation circuits which works for the case where the
inner product between the data points is positive, which is usually
the case for image classification where the data points have all non
negative coordinates. It is not hard to extend the circuit with one
extra qubit to deal with the case of also non-positive inner products.
The distance estimation circuit for two data points of dimension

d uses d qubits, 2(d− 1) two-qubit parametrized gates, 2 log d
depth, and allows us to measure at the end of the circuit a qubit
whose probability of giving the outcome 1j i is exactly the square
of the inner product between the two normalized data points (see
also Methods). From this, one can easily estimate the inner
product and the distance between the original data points. The
distance estimation circuit is explained in Fig. 1b.
We also notice a simplification we can make in the circuit that

will reduce the number of gates and depth, as shown in Fig. 1c.

Fig. 1 Circuit constructions. a The data loader circuit for an 8-dimensional data point. The angles of the RBS(θ) gates starting from left to right
and top to bottom correspond to (θ1, θ2,…, θ7). b The distance estimation circuit for two 8-dimensional data points. The circuit in time steps
0–3 corresponds to the parallel loader for the first data point and the circuit in time steps 4–6 corresponds to the inverse parallel loader circuit
for the second data point (excluding the last X gate). The probability the first qubit is measured in state 1j i is exactly the square of the inner
product of the two data points. c The optimized distance estimation circuit for two 8-dimensional data points. Each pair of RBS gates that are
applied to the same consecutive qubits in time steps 3 and 4 in the circuit of b are combined to one gate whose parameter θ is equal to θ1+
θ2, where θ1 is the parameter of the first gate and θ2 is the parameter of the second gate.
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This reduces the number of gates of the circuit to 3d/2− 2 and
reduces the depth by one. The final circuit used in our application
is the one in Fig. 1c.
We now have all the necessary ingredients to implement the

quantum Nearest Centroid classification circuit. As we have said,
this is but a first, simple application of the above tools which can
readily be used for other machine learning applications such as
nearest neighbor classifiers or k-means clustering for unsupervised
learning, where neural network techniques are not available. Let
us start by briefly defining the Nearest Centroid algorithm in the
classical setting. The first part of the algorithm is to use the
training data to fit the model. This is a very simple operation of
finding the average point of each class of data, meaning one adds
all points with the same label and finds the “centroid” of each
class. This part will be done classically and one can think of this
cost as a one-time offline cost.
In the quantum case, one will still find the centroids classically

and then pre-process each to find its norm and parameters for the
gates of the data loader circuits. This does not change the
asymptotic time of this step.
We now look at the second part of the Nearest Centroid

algorithm which is the “predict” phase. Here, we want to assign a
label to a number of test data points and for that we first estimate
the distance between each data point and each centroid. For each
data point we then assign the label of the centroid which is
nearest to it.
The quantum Nearest Centroid is rather straightforward, it

follows the steps of the classical algorithm apart from the fact that
whenever one needs to estimate the distance between a data
point and a centroid, we do this using the distance estimator
circuit defined above.
One of the main advantages of using the Nearest Centroid as

a basic benchmark for quantum machine learning is that we
fully understand what the quantum algorithm does and how its
runtime scales with the dimension of the data and the size of
the data set. As described above, the circuit for estimating the
distance of two d-dimensional data points has depth 2 log d.
Theoretically, for an estimation of the distance up to accuracy ϵ
one needs to run the circuit Ns= O(1/ϵ2) times. In the future,
amplitude estimation can be combined with this circuit in order
to reduce the overall time to Oðlog ðdÞ=ϵÞ. The accuracy required
depends on how well-classifiable our data set is, that is, whether
most points are close to a centroid or they are mostly distributed
equidistantly from the centroids. This number does not really
depend on the dimension of the data set and in all data sets we
considered, an approximation to the distance up to 0.1 for most
points and 0.03 for a few difficult to classify points suffices, even
for the MNIST dataset that originally has 784 dimensions. We
argue that the number of shots will increase slowly as the
problem sizes scale up. The Methods section discusses further
strategies to optimize the number of shots.
Since the cost of calculating the circuit parameters is a one-off

cost, if we want to estimate the distance between k centroids and
n data points all of dimension d, then the quantum circuits will
need d qubits and the running time would be of the form
Oðkd þ nd þ knlog ðdÞ=ϵÞ. The first term corresponds to pre-
processing the centroids, the second term to pre-processing the
new data points and the third term to estimating the distances
between each data point and each centroid and assigning a label.
The classical Nearest Centroid algorithm used in practice takes
time O(nkd), since for every of the n points one needs to compute
the distance to each of k centroids, which takes time d. In theory,
one can design quantum-inspired algorithms for Nearest Centroid
and for other quantum machine learning applications that also
use special classical data structures to approximate the dis-
tances33. These quantum-inspired algorithms depend poly-
logarithmically in the dimension d but have much worse
dependence on other parameters, including the rank of the data

matrix and the error ϵ, which make them slower in practice than
the classical ones currently used.
Given the above runtime and scalability analysis, as well as the

excellent accuracy that was achieved experimentally, we believe it
is possible one can find parameter regimes where quantum
computers, as they become bigger and faster, can provide an
advantage for similarity-based classification. In particular, we
would need the factor logd

ϵ in the running time of the quantum
algorithm to become smaller than d, or else the accuracy needed
in these calculations to be not too high and the dimension to be
large enough. In other words, we need ϵ � logd

d . As an example, in
the experiments we performed on the MNIST dataset, an ϵ= 0.05
is adequate for getting our high accuracy, which means that the
dimension should be larger than 150.

Experiment
Our experimental demonstration is performed on an 11-qubit
trapped ion processor based on 171Yb+ ion qubits. The device is
commercially available through IonQ’s cloud service. The 11-qubit
device is operated with automated loading of a linear chain of
ions (see Fig. 2), which is then optically initialized with high
fidelity. Computations are performed using a mode-locked 355nm
laser, which drives native single-qubit-gate (SQG) and two-qubit-
gate (TQG) operations. The native TQG used is a maximally
entangling Molmer Sorensen gate.
In order to maintain consistent gate performance, calibrations

of the trapped ion processor are automated. Additionally, phase
calibrations are performed for SQG and TQG sets, as required for
implementing computations in queue and to ensure consistency
of the gate perfomance.
The gates in the circuits were not performed in parallel in this

experiment because this ability is not currently available through
the cloud access to the IonQ quantum computers yet. However,
such parallel application of gates have been demonstrated with
high fidelity on trapped ion quantum computers at IonQ32 and
will be available in the near future.
We tested the algorithm with synthetic and real datasets. On an

ideal quantum computer, the state right before measurement has
non-zero amplitudes only for states within the unary basis,

Fig. 2 Quantum processor. a A micro-fabricated surface electrode
ion-trap, which is used to trap a linear chain of Ytterbium ions. b A
chain of 15 ions is imaged by collecting fluorescence using an
optical microscope, where each ion can represent a physical qubit.
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eij i ¼ 2i
�� �

, i.e. states in which only a single bit is 1. The outcome of
the experiment that is of interest to us is the probability of
obtaining the state 10::00j i. On a real quantum computer, each
circuit is run with a fixed number of shots to recreate the density
matrix probability distribution in the output as closely as possible.
Typically, there are many computational basis states other than
the ones in the ideal probability distribution that are measured.
Therefore, we have adopted two different techniques for
estimating the desired probability.

1. No error-mitigation: Measure the first qubit and compute
the probability as the ratio of the number of times the
outcome is 1 over the total number of runs of the circuit Ns.

2. Error-mitigation: Measure all qubits and discard all runs of
the circuit with results that are not of the form 2i

�� �
.

Compute the probability as the ratio of the number of times
the outcome is 10::0j i over the total number of runs of the
circuit where a state of the form 2i

�� �
was measured.

Next we present our experimental results on synthetic data and
the MNIST dataset. The Methods section also contains experi-
mental results for the IRIS dataset.
For the synthetic data, we create datasets with Nc clusters of d-

dimensional data points. This begins with generating k random
points that serve as the “centroids” of a cluster, followed by
generating n= 10 data points per centroid by adding Gaussian
noise to the “centroid” point. The distance between the centroids
was set to be a minimum of 0.3, the variance of the Gaussians was
set to be 0.05 and the points were distributed within a sphere of

radius 1. Therefore, there is appreciable probability of the points
generated from one centroid lying closer to the centroid of
another cluster. This can be seen as mimicking noise in real
life data.
In Tables 1 and 2 we present, as an example, the data points and

the labels assigned to them by the classical and quantum Nearest
Centroid for the case of four classes in the 4- and 8-dimensional
case. We see in these examples, and in fact this is the behavior
overall, that our quantum Nearest Centroid algorithm with error
mitigation provides the correct labels for 39 out of 40 4-
dimensional points and for 36 out of the 40 8-dimensional points,
or an accuracy of 97.5% and 90% respectively. The quantum
classification is affected by the noise in the operations and can shift
the assignment non-trivially based on the accuracy in the measured
distance, as can be seen in cluster 1 in Table 2. This will be
discussed in more detail later in this section.
In Fig. 3b, we first show the error of the quantum Nearest

Centroid algorithm averaged over a data set of 20 or 40 data
points. Here, Nc is the number of classes, Ns is the number of shots
and Nq= d is the dimension and number of qubits used in the
experiment. For each case, there are two values (left-blue, right-
red) that correspond to the results without and with error
mitigation. For 2 classes, we see that for the case of 4-dimensional
data, we achieve 100% percent accuracy even with as little as
100 shots per circuit and even without error-mitigation.
For the case of 8-dimensional data, we also achieve 100%

accuracy with error mitigation and 1000 shots. We also performed
experiments with four classes, and the accuracies were 97.5% for
the 4-dimensional case and 90% for the 8-dimensional case with

Table 1. Comparison of labels assigned by the different classification
schemes for synthetic data with Nq= 4, Nc= 4, and Ns= 500.

Sampling
of points

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3

Classical NC 0 0 2 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 3 1 2 2 2 2 2 2 3 2 2 2
3 3 3 3 3 3 3 3 3 3

QNC (no
mitigation)

0 0 2 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 3 1 2 2 2 2 2 2 3 2 2 1
3 3 3 3 3 3 3 3 3 3

QNC (with
mitigation)

0 0 2 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 3 1 2 2 2 2 2 2 3 2 2 1
3 3 3 3 3 3 3 3 3 3

The first line shows how the points were sampled, namely the first quarter
of points were sampled starting from the centroid labeled 0, the second
quarter were sampled from the centroid labeled 1, etc. The second row
shows the labels assigned by the classical Nearest Centroid algorithm.
These are the labels that we will benchmark against. The third and fourth
line presents the results of the quantum Nearest Centroid algorithm
without and with error mitigation. The labels in bold show where the
quantum classification differs from the classical one.

Table 2. Comparison of labels assigned by the different classification
schemes for synthetic data with Nq= 8, Nc= 4, and Ns= 1000.

Sampling
of points

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3

Classical NC 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3

QNC (no
mitigation)

0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 3 0 0 0 2 2 2 2 2 2 2 2 2 2
3 3 3 2 3 3 3 3 2 3

QNC (with
mitigation)

0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 2 2 2 2 2 2 2 2 2 2
3 3 3 2 3 3 3 3 2 3

The labels in bold show where the quantum classification differs from the
classical one.
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Fig. 3 Synthetic data. a Ratio of distance calculated from the
quantum computer vs the simulator, and b classification of
synthetic data for different number of clusters (Nc), qubits (Nq)
and shots (Ns) before (blue, left) and after error mitigation (red,
right). The number of data points was 10 per cluster. The
classification error is calculated by comparing the quantum to
the classical labels for each dataset. For the synthetic data, our goal
was to see whether the quantum Nearest Centroid algorithm can
assign the same labels as the classical one, even though the points
are quite close to each other. Thus our classical benchmark for the
synthetic data is 0% classification error. The baseline which
corresponds to the accuracy of just randomly guessing the labels
is 1/Nc. The error bars in a correspond to the standard error in the
ratio of distances for each dataset.
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error-mitigation. The number of shots used is more for the higher
dimensional case as suggested by the analysis later in this Section.
Figure 3a shows the average ratio between the distance

estimation from experiment and simulation. We see that the
experimentally estimated distance may actually be off by a
significant factor from the theoretical distance. However, since the
error bars in the distance estimation are quite small, and what
matters for classification is that the ratio of the distances remains
accurate, it is reasonable that we have high classification accuracy.
In the Methods section, we discuss a way to reduce the error in
the distance itself based on knowledge of the noise model of the
quantum system.
Next, we discuss our results for the MNIST dataset. The MNIST

database contains 60,000 training images and 10,000 test images
of handwritten digits and it is widely used as a benchmark for
classification. Each image is a 28 × 28 image i.e., a 784-dimensional
point. To work with this data set we preprocessed the images with
PCA to project them into 8 dimensions. This reduces the accuracy
of the algorithms, both the classical and the quantum, but it
allows us to objectively benchmark the quantum algorithms and
hardware on different types of data.
For our experiments with the 8-dimensional MNIST database,

we created four different data sets. The first one has 40 samples
of 0 and 1 digits only. The second one has 40 samples of
the 2 and 7 digits. The third one has 80 samples of four
different digits 0–3. The fourth one has 200 samples of all
possible digits 0–9.
In Fig. 4 we see that for the first data set the quantum

algorithm with error mitigation gets accuracy 100%, matching
well the classical accuracy of 97.5%. For the case of 2 vs. 7, we
achieve accuracy of around 87.5% similar to the classical
algorithm. For the four-class classification, we also get similar
accuracy to the classical algorithm of around 83.75%. Most
impressively, for the last dataset with all 10 different digits, we
practically match the classical accuracy of around 77.5% with

error mitigation and 1000 shots. We also provide the ratio of
the experimental vs simulated distance estimation for these
experiments which shows high accuracy for the distance
estimation as well.
In Fig. 5 we provide the confusion graph for the classical and

quantum nearest centroid algorithm, showing how our quantum
algorithm matches the accuracy of the classical one.
In this section, we discuss the different sources of error and

their scaling. One part of the effective error in the circuit is
coherent and changes the state within the unary encoding
subspace during two-qubit operations. This can be represented
for each two qubit operation as RBS(θ)→ RBS(θ(1+ Γr)), where Γ is
the magnitude of the noise and r is a normally distributed random
number. For simplicity of the calculations we can simply say that
each RBS(θ) gate performs a linear mapping for a vector (a1, a2) in
the basis {e1, e2} of the form:

ða1; a2Þ7!ðcos θΓ � a1 þ sin θΓ � a2;� sin θΓ � a1 þ cos θΓ � a2Þ (5)

such that cos θ� cos θΓ � Γr and sin θ� sin θΓ � �Γr.
It is not hard to calculate now that each layer of the circuit only

adds an error of at most
ffiffiffi
2

p
Γ, even though one layer can consist of

up to n/2RBS gates. To see this, consider any layer of the distance
estimation circuit, for example, the layer on time step 3 in Fig. 1.
Let the state before this layer be denoted by a unit vector a= (a1,
a2,…, an) in the basis {e1, e2,…, en}. Then, if we look at the
difference of the output of the layer when applying the correct
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Fig. 4 MNIST data set. (a) Ratio of distance calculated from
experiment vs simulator, and (b) classification of different down-
scaled MNIST data sets. From left to right, the data sets were (i) 0
and 1 (40 samples), (ii) 2 and 7 (40 samples), (iii) 0–3 (80 samples)
and (iv) 0–9 (200 samples). The diamonds show the accuracy of
classical Nearest Centroid. The error bars in (a) correspond to the
standard error in the ratio of distances for each dataset.
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Fig. 5 Confusion matrices. Confusion matrices for MNIST classifica-
tion a from classical, and b quantum computer with 10 classes and
200 points after error mitigation.
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RBS gates and the ones with Γ error, we get an error vector of the
form

eΓ ¼ ðΓr1a1 þ Γr1a2;�Γr1a1 þ Γr1a2; ¼ Þ (6)

If we look at the ℓ2 norm of this vector we have

eΓk k2 � 2Γ2 ak k2 ¼ 2Γ2 (7)

Since the number of layers is logarithmic in the number of
qubits, this implies that the overall accuracy to leading order at
the end is (1−Γ)O(log(n)). This is one of the most interesting
characteristics of our quantum circuits, whose architecture and
shallow depth enables accurate calculations even with noisy
gates. This implies that, for example, for 1024-dimensional data
and a desired error in the distance estimation of 10−2 we need the
fidelity of the TQG gates to be of the order of 10−3 and not 10−5,
as would be the case if the error grew with the number of gates.
Next, we also expect some level of depolarizing error in the

experiment. Measurements in the computational basis can be
modeled by a general output density matrix of the form

ρd ¼ p
Xn
i¼0

jaiΓj2 eij i eih j þ ð1� pÞ
2n

I2n ; (8)

where aiΓ are the amplitudes of the quantum state after the error
described previously is incorporated. The depolarizing error can
be mitigated by discarding the histogram states that result in
states that are not eij i. After this post-selection, the resulting
density matrix is

ρ ¼ 1
N

Xn
i¼1

pjaiΓj2 þ ð1� pÞ
2n

� �
eij i eih j (9)

Here p= fm, where f is the fidelity of two-qubit gates and m is the
number of two-qubit gates. For our circuits, m= 4.5n− 6. The

normalization factor, N ¼ Pn
i¼1 pjaiΓj2 þ ð1�pÞ

2n

� �
. Therefore, the

vector overlap measured from the post-selected density matrix is

c ¼ pja1Γj2þð1�pÞ
2nPn

i¼1
pjaiΓj2þð1�pÞ

2nð Þ
¼ ja1Γj2þð1�pÞ

2npPn

i¼1
jaiΓj2þð1�pÞ

2np

	 

¼ ja1Γj2þð1�pÞ

2np

1þð1�pÞn
2np

(10)

For effective error mitigation, we need 2np≫ 1⇒ 2nf4.5n−6≫ 1.
When n≫ 1, this gives 2f 4:5 � 1 ) f � 1

21=4:5
¼ 85:8%. Thus, we

find a threshold for the fidelity over which c→ ∣a1Γ∣2 as n
increases. Since the depolarizing error is much lower than this
value, this implies post selection will become more effective at
removing depolarizing error as the problem size increases. We
validate this error model by comparing against experimental data
in the “Methods”.
The number of samples needed to get sufficient samples from

the ideal density matrix after performing the post-selection to
remove depolarizing error increases exponentially with the
number of qubits n. However, with the coming generation of
ion trap quantum computers, this error will be low and thus the
coefficient of the exponential increase will be extremely small34.
The main source of remaining error will be the first one that
perturbs the state within the encoding subspace but this grows
only logarithmically with n.

DISCUSSION
We presented an implementation of an end-to-end quantum
application in machine learning. We performed classification of
synthetic and real data using QCWare’s quantum Nearest
Centroid algorithm and IonQ’s 11-qubit quantum hardware.

The results are extremely promising with accuracies that reach
100% for many cases with synthetic data and match classical
accuracies for the real data sets. In particular, we note that we
managed to perform a classification between all 10 different
digits of an MNIST data set down-scaled to 8-dimensions with
accuracy matching the classical nearest centroid one for the same
data set. To our knowledge such results have not been previously
achieved on any quantum hardware and using any quantum
classification algorithm.
We also argue for the scalability of our approach and its

applicability for NISQ machines, based on the fact that the
algorithm uses shallow quantum circuits that are provably tolerant
to certain levels of noise. Further, the particular application of
classification is amenable to computations with limited accuracy
since it only needs a comparison of distances between different
centroids but not finding all distances to high accuracy.
For our experiments, we used unary encoding for the data

points. While this increases the number of qubits needed to the
same as in quantum variational methods, it allows for removal of
depolarizing error, and coherent error that grows only logarith-
mically in the number of qubits. This allows us to be optimistic
for applying similar data loading techniques to the next
generation of quantum computers as an input to much more
classically complicated procedures including training neural
networks or performing Principal Component or Linear Discrimi-
nant Analysis. With 99.9% fidelity of IonQ’s newest 32 qubit
system, we expect to continue to match or outperform classical
accuracy in machine learning on higher-dimensional datasets
without error correction.
The question of whether quantum machine learning can

provide real world applications is still wide open but we believe
our work brings the prospect closer to reality by showing how
joint development of algorithms and hardware can push the state-
of-the-art of what is possible on quantum computers.

METHODS
Previous proposals for loading classical data into quantum
states
There have been several proposals for acquiring fast quantum access to
classical data that loosely go under the name of Quantum Random Access
Memory (QRAM). A QRAM, as described in35,36, in some sense would be a
specific hardware device that could “natively” access classical data in
superposition, thus having the ability to create quantum states like the one
defined above in logarithmic time. Given the fact that such specialized
hardware devices do not yet exist, nor do they seem to be easy to
implement, there have been proposals for using quantum circuits to
perform similar operations. For example, a circuit to perform the bucket
brigade architecture was defined in37, where a circuit with O(d) qubits and
O(d) depth was described and also proven to be robust up to a level of
noise. A more “brute force” way of loading a d-dimensional classical data
point is through a multiplexer-type circuit, where one can use only O(logd)
qubits but for each data point one needs to sequentially apply d log
d-qubit-controlled gates, which makes it quite impractical. Another
direction is loading classical data using a unary encoding. This was used
in38 to describe finance applications, where the circuit used O(d) qubits
and had O(d) depth. A parallel circuit for specifically creating the W state
also appeared in39.

Method for finding the gate parameters
We describe here the procedure that given access to a classical data point
x ¼ ðx1; x2; ¼ ; xdÞ 2 Rd , pre-processes the classical data efficiently, i.e.,
spending only eOðdÞ total time, in order to create a set of parameters
θ ¼ ðθ1; θ2; ¼ ; θd�1Þ 2 Rd�1, that will be the parameters of the (d− 1)
two-qubit gates we will use in our quantum circuit.
The data structure for storing θ is similar to the one used in14, but note

that14 assumed quantum access to these parameters (in the sense of being
able to query these parameters in superposition). Here, we will compute
and store these parameters in the classical FPGA controller of the quantum
circuit to be used as the parameters of the gates in the quantum circuit.
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At a high level, we think of the coordinates xi as the leaves of a binary
tree of depth log d. The parameters θ correspond to the values of the
internal tree nodes, starting form the root and going towards the leaves.
We first consider the parameter series (r1, r2,…, rd−1). For the last d/2

values (rd/2,…, rd−1), we define an index j that takes values in the interval
[1, d/2] and define the values as

rd=2þj�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x22j þ x22j�1

q
(11)

For the first d/2− 1 values, namely the values of (r1, r2,…, rd/2−1), and for
j in [1, d/2], we define

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r22jþ1 þ r22j

q
(12)

We can now define the set of angles θ= (θ1, θ2,…, θd−1) in the following
way. We start by defining the last d/2 values (θd/2,…, θd−1). To do so, we
define an index j that takes values in the interval [1, d/2] and define the
values as

θd=2þj�1 ¼ arccos x2j�1

rd=2þj�1

� �
; if x2j is positive

θd=2þj�1 ¼ 2π � arccos x2j�1

rd=2þj�1

� �
; if x2j is negative:

For the first d/2− 1 values, namely the values for j ∈ [1, d/2], we define

θj ¼ arccos
r2j
rj

� �
(13)

Note that we can easily perform these calculations in a read-once way,
where for every xi we update the values that are on the path from the i-th
leaf to the root. This also implies that when one coordinate of the data is
updated, then the time to update the θ parameters is only logarithmic,
since only log d values of r and of θ need to be updated.

Method for an optimized data loader
An interesting extension of the parallel data loader we defined above is
that we can trade off qubits with depth and keep the number of overall
gates d− 1 (in this case, both RBS and controlled-RBS gates).
For example, we can use 2

ffiffiffi
d

p
qubits and Oð ffiffiffi

d
p

logdÞ depth31. The circuit
is quite simple, if one thinks of the d dimensional vector as a

ffiffiffi
d

p
´

ffiffiffi
d

p
matrix. Then, we can index the coordinates of the vector using two
registers (one each for the row and column) and create the state

xj i ¼ 1
xk k

Xffiffi
d

p

i;j¼1

xij eij i ej
�� �

(14)

For this circuit, we find, in the same way as for the parallel loader, the
values θ and then create the following circuit in Fig. 6. We start with a
parallel loader for a

ffiffiffi
d

p
-dimensional vector using the first

ffiffiffi
d

p
angles θ

(which corresponds to a vector of the norms of the rows of the matrix) and
then, controlled on each of the

ffiffiffi
d

p
qubits we perform a controlled parallel

loader corresponding to each row of the matrix.
Notice that naively the depth of the circuit is O(dlogd), but it is easy to

see that one can interleave the gates of the controlled-parallel loaders to
an overall depth of Oð ffiffiffi

d
p

logdÞ. We will not use this circuit here but such
circuits can be useful both for loading vectors and in particular matrices for
linear algebraic computations.

Method for estimating the distance using the distance
estimation circuit
The distance estimation circuit is explained in Fig. 1. Here we see how from
this circuit we can estimate the square of the inner product between the
two vectors.
After the first part of the circuit, namely the loader for the vector x (time

steps 0–3), the state of the circuit is xj i, as in Eq. (3). One can rewrite this
state in the basis f yj i; y?j ig as

x; yh i yj i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j x; yh ij2

q
y?
�� �

(15)

Once the state goes through the inverse loader circuit for y the first part of
the superposition gets transformed into the state e1j i (which would go to
the state 0j i after an X gate on the first qubit), and the second part of the

Fig. 6 An optimized loader for a 16-dimensional data point, seen
as a 4 × 4 matrix. The blue boxes correspond to the parallel loader
from Fig. 1 and its controlled versions.

Fig. 7 Code. An example of a jupyter notebook that runs the Quantum Nearest Centroid algorithm, as well as the scikit-learn Nearest Centroid
algorithm, and prints and plots the results.
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superposition goes to a superposition of states ej
�� �

orthogonal to e1j i

x; yh i e1j i þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j x; yh ij2

q
e?1
�� �

(16)

It is now clear that after measuring the circuit (either all qubits or just the
first qubit), the probability of getting 1j i in the first qubit is exactly the
square of the inner product of the two data points.

Software
The development of the quantum software followed one of the most
popular classical ML libraries, called scikit-learn (https://scikit-learn.org/),
where a classical version of the Nearest Centroid algorithm is available. In
the code snippet in Fig. 7 we can see how one can call the quantum and
classical Nearest Centroid algorithm with synthetic data (one could also
use user-defined data) through QCWare’s platform Forge, in a jupyter
notebook.
The function “fit-and-predict” first classically fits the model. For the

prediction it calls a function “distance-estimation” for each centroid and
each data point. The “distance-estimation” function runs the procedure
we described above, using the function “loader” for each input and
returns an estimate of the Euclidean distance between each centroid and
each data point. The label of each data point is assigned as the label of
the nearest centroid.
Note that one could imagine more quantum ways to perform the

classification, where, for example, instead of estimating the distance for
each centroid separately, this operation could happen in superposition.
This would make the quantum algorithm faster but also increase the
number of qubits needed. We remark also that the distance or inner
product estimation procedure can find many more applications such as
matrix-vector multiplications during clustering or training neural
networks.

Implementation of the circuits on the IonQ processor
The circuits we described above are built with the RBS(θ) gates (Eq. (2)). To
map these gates optimally onto the hardware we will instead use the
modified gate

iRBSðθÞ ¼

llll1 0 0 0

0 cos θ �i sin θ 0

0 �i sin θ cos θ 0

0 0 0 1

0
BBB@

1
CCCA (17)

It is easy to see that the distance estimation circuit stays unchanged. Using
the fact that iRBSðθÞ ¼ expðiθðσx � σx þ σy � σyÞÞ, we can decompose the
gate into the circuit shown in Fig. 840. Each CNOT gate can be
implemented with a maximally entangling Molmer Sorensen gate and
single qubit rotations native to IonQ hardware.
We run 4 and 8 qubit versions of the algorithm. The 4 qubit circuits have

12 TQG and the 8 qubit circuits have 30 TQG.

Validating the noise model
To test the noise model, we notice that the experimentally measured value
of the overlap, cexp should be proportional to ∣a1Γ∣2∝ csim. We plot cexp vs
csim in Fig. 9 for the synthetic dataset with Nq= 8, Nc= 4 and Ns= 1000
and find that the data fits well to straight lines. Using Eq. (9), we know that
the slope of the line before error mitigation should be fm. From this, we can
estimate the value for f as 95.85% which is remarkably close to the
expected two qubit gate fidelity of 96%.
The fact that the data can be fit to a straight line can be

straightforwardly used to obtain a better estimate of the distance. In this
work, we have focused on classification accuracy which is robust to errors
in the distance as long as they occur in the distances measured to all
centroids. Nevertheless, there may be applications in which the distance
(or the inner product) needs to be measured accurately, for example when

we want to perform matrix vector multiplications. Note that classification is
based on which centroid is nearest to the data point and thus if all
distances are corrected in the same way, this will not change the
classification label.

Reducing statistical error
In future experiments with much higher fidelity gates, the approxima-
tion to the distance will become better with the number of runs and
scale as 1=

ffiffiffiffiffi
NS

p
. Increasing the number of measurements is important for

those points that are almost equidistant between one or more clusters.
One could imagine an adaptive schedule of runs where initially a smaller
number of runs is performed with the same data point and each
centroid and then depending on whether the nearest centroid can be
clearly inferred or not, more runs are performed with respect to the
centroids that were near the point. We haven’t performed such
optimizations here since the number of runs remains very small. As
we have said, with the advent of the next generation of quantum
hardware, one can apply amplitude estimation procedures to reduce the
number of samples needed.

The IRIS dataset
Here we discuss an additional experiment that was performed on the
quantum computer. The IRIS data set consists of three classes of
flowers (Iris setosa, Iris virginica and Iris versicolor) and 50 samples
from each of three classes. Each data point has four dimensions that
correspond to the length and the width of the sepals and petals, in
centimeters. This data set has been used extensively for benchmarking
classification techniques in machine learning, in particular because
classifying the set is non trivial. In fact, the data points can be clustered
easily in two clusters, one of the clusters contains Iris setosa, while the
other cluster contains both Iris virginica and Iris versicolor. Thus
classification techniques like Nearest Centroid do not work exception-
ally well without preprocessing (for example linear discriminant
analysis) and hence it is a good data set to benchmark our quantum
Nearest Centroid algorithm as it is not tailor-made for the method to
work well.
Figure 10 shows the classification error for the IRIS data set of 150 4-

dimensional data points. The classical Nearest Centroid classifies around
92.7% of the points while our experiments with 500 shots and error
mitigation reaches 84% accuracy. Increasing the number of shots
beyond 500 does not increase the accuracy because at this point the
experiment is dominated by systematic noise which changes each time
the system is calibrated. In the particular run, going from 500 to
1000 shots, the number of wrong classifications slightly increases, which
just reflects the variability in the calibration of the system. We also
provide the ratio of the experimental vs simulated distance estimation
for these experiments.
Figure 10c, d compares the classification visually before and after error

mitigation. Before error mitigation, many of the points that lie close to
midway between centroids are mis-classified, whereas applying the
mitigation moves them to the right class.

Fig. 8 Gate decomposition. Circuit to implement iRBS(θ) gate.
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Fig. 9 The experimentally estimated value of c vs its value from
simulation. This data correspond to the synthetic dataset with Nq=
4, Nd= 8, and Ns= 1000.
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Fig. 10 Iris data set. a Ratio of distance calculated from the quantum computer vs the simulator, and b classification of Iris data. There were
150 data points in total. The dashed line shows the accuracy of classical nearest centroid algorithm. The error bars in a correspond to the
standard error in the ratio of distances for each dataset. Iris data classification pictured after using principal component analysis to reduce the
dimension from 4 to 2. The color of the boundary of the circles indicates the three human-assigned labels. The color of the interior indicates
the class assigned by the quantum computer. c shows the classification before error mitigation using 500 shots, and d shows the
classification after.
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