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Adaptive quantum state tomography with neural networks
Yihui Quek1✉, Stanislav Fort2✉ and Hui Khoon Ng 3,4,5✉

Current algorithms for quantum state tomography (QST) are costly both on the experimental front, requiring measurement of many
copies of the state, and on the classical computational front, needing a long time to analyze the gathered data. Here, we introduce
neural adaptive quantum state tomography (NAQT), a fast, flexible machine-learning-based algorithm for QST that adapts
measurements and provides orders of magnitude faster processing while retaining state-of-the-art reconstruction accuracy. As in
other adaptive QST schemes, measurement adaptation makes use of the information gathered from previous measured copies of
the state to perform a targeted sensing of the next copy, maximizing the information gathered from that next copy. Our NAQT
approach allows for a rapid and seamless integration of measurement adaptation and statistical inference, using a neural-network
replacement of the standard Bayes’ update, to obtain the best estimate of the state. Our algorithm, which falls into the machine
learning subfield of “meta-learning” (in effect “learning to learn” about quantum states), does not require any ansatz about the form
of the state to be estimated. Despite this generality, it can be retrained within hours on a single laptop for a two-qubit situation,
which suggests a feasible time-cost when extended to larger systems and potential speed-ups if provided with additional structure,
such as a state ansatz.
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INTRODUCTION
Quantum state tomography (QST) is the task of estimating the
density matrix of an unknown quantum state, through repeated
measurements of the source, assumed to put out identical copies
of the state. This procedure can be used to characterize not only
quantum states, but also processes acting on quantum states, and
is an indispensable subroutine in quantum information processing
tasks (for example, see ref. 1 for a review). QST is, however, a
resource-heavy task, as one needs many measurements on many
copies of the quantum state, to yield sufficient data for a good
estimate of the d2− 1 real parameter needed to describe the state
of a d-dimensional quantum system. For estimating quantum
processes, the number of parameters needed is d4, a much worse
scaling. Much of the research in QST is hence about minimizing
the resource cost of getting an estimate with a target precision
(see, among many others, refs. 2–8).
A promising angle of attack is the use of adaptive measure-

ments, adjusting the measurement on the next copy of the state
based on the information gathered from the copies measured so
far, to maximize (according to some chosen measure) the
information gained from that next copy. One approach was
proposed in ref. 9 (under the name self-learning) and generalized
in ref. 10 as adaptive bayesian quantum tomography (ABQT). These
methods were later experimentally implemented in refs. 11,12.
Here, the adaptation criterion, following Bayesian principles, relies
on a merit function that requires an average over the posterior
distribution on the state space.
For numerical tractability in handling the integration over the

posterior distribution, ABQT uses a modified particle filter
algorithm: The space of quantum states is discretized via samples
known as particles, with accompanying weights that represent
their relative probabilities according to the current prior distribu-
tion. As more data are gathered, Bayes’ rule is used to update the

prior distribution on the quantum state space to the posterior by
updating the particle weights. Any integration over the prior or
posterior distribution is then implemented as the appropriately
weighted sum over the particles. The adaptive advantage of ABQT
comes, however, at a high computational price. As with other
filtering algorithms, a major issue is the eventual decay of the vast
majority of particle weights, which undercuts the efficacy of the
weight updates. In Bayesian-type tomography, this is an acute
problem since the likelihood function that enters the posterior
distribution quickly becomes very sharply peaked as the number
of measured copies grows. Consequently, the weight becomes
rapidly concentrated on a tiny subset of the particles. The
numerical fix is to resample the bank periodically, i.e., the particles
and weights must regularly be chosen anew. This turns out to be
very computationally expensive and significantly prolongs the
overall runtime of the adaptive QST algorithm.
In this paper, we demonstrate a fast, accurate, and flexible

alternative to adaptive QST using a custom-built RNN architecture.
We call our scheme neural adaptive quantum tomography
(NAQT). Our algorithm learns from simulated experimental data
to develop an efficient resampling step to refine particles, as well
as a way of incorporating new measurements to its current best
estimate of the state. It is also able to predict the suitable next
measurement that, if performed, would lead to the most
information gained given its current knowledge about the state.
The efficiency of our approach comes from using machine

learning to learn an approximate replacement of the Bayesian
update rule. This eliminates the problem of weight decay, and
therefore, the need for time-costly resampling. All in all, our adaptive
algorithm matches the performance of ABQT in terms of reconstruc-
tion accuracy, while speeding it up significantly (by a factor of up to a
million, for 107 measurements, when run on the same computational
hardware), giving a practical, genuinely on-the-fly adaptive QST
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scheme. The technique used to train the neural network (NN) is
furthermore agnostic to the number of qubits involved and the type
of measurements used and can be retrained in reasonable time to
suit a particular experiment’s details.

RESULTS
Neural adaptive quantum tomography
We first describe our NAQT scheme, beginning with the basic task
of QST, and then explaining our approach using a NN algorithm.
The technical details of our algorithm are given in the “Methods”
section.

The problem: quantum state tomography. The goal of QST is to
estimate the state, i.e., the density matrix, ρ, of a quantum system.
ρ is a trace-1 and Hermitian operator on the d-dimensional Hilbert
space H of the quantum system, represented by a d × d matrix.
We assume that we have access to a source that puts out
independent and identical copies of the (unknown) state ρ. We are
allowed to make measurements on the state, and from the
gathered data, estimate ρ. Generalized measurements, also known
as positive operator-valued measures (POVMs), are permitted.
These are describable as a set of outcome operators Π≡ {Πy} onH,
satisfying Πy ≥ 0 ∀ y and ∑yΠy= 1, the d-dimensional identity
operator.
For a chosen POVM Π, the probability that one gets a click in the

detector for outcome Πy is given by Born’s rule, py ¼ TrðρΠyÞ. We
write p � TrðρΠÞ for the set of Born probabilities {py}. The
likelihood of getting data D, a sequence of detector clicks
summarized by {ny}, with ny≡ number of clicks in the detector for
Πy, is

pðDjρÞ ¼
Y
y

ðpyÞny : (1)

pðDjρÞ is a probability distribution over the data, i.e.,P
DpðDjρÞ ¼ 1. The ratios nk/N, for N≡ ∑knk, are referred to as

the relative frequencies for the measurement, and, for large N, we
expect pk≃ nk/N.
In Bayesian estimation procedures, one talks about the prior

and the posterior distributions on the quantum state space. The
prior distribution captures our initial knowledge about the identity
of the state prior to data-taking. We denote it as dρ p(ρ), for some
suitably chosen volume measure dρ on the state space. p(ρ) is the
prior density, while dρ p(ρ) is the infinitesimal probability that the
true state lies in the volume dρ, according to our prior
expectations. p(ρ) satisfies ∫dρ p(ρ)= 1. The posterior distribution,
denoted as dρ pðρjDÞ represents our updated knowledge, after
obtaining data D. The update from prior to posterior densities
follows from Bayes’ rule

pðρjDÞ ¼ pðDjρÞ pðρÞ
pðDÞ ; (2)

where pðDÞ � R
dρ pðρÞpðDjρÞ is the likelihood of data D.

Note that the ABQT algorithm relies on the posterior distribu-
tion to make decisions about the next measurement to make; in
our NAQT scheme, as we explain below, this posterior distribution
is replaced by the choices of weights on the particle samples
made by the trained neural network.

Our solution: a neural network algorithm. Neural networks, and
deep neural networks in particular, are a class of expressive
functional approximators capable of learning complicated models
across many domains, ranging from image classification13 to game
playing14, to natural language understanding15. By means of
gradient descent, neural networks are trained to successfully
approximate an unknown function using a large number of

examples and given a loss function specifying how dissatisfied
one is with a solution. In cases where an exact input–output
mapping is available but might be expensive to evaluate, neural
networks can develop approximate, faster effective descriptions
learned directly from data.
By specifying a particular neural architecture—a particular

choice of neurons, their connections, and the way they interact—
we describe a family of functions, with trainable parameters. Many
widely used architectures encode priors on the function they are
trying to approximate in their structure. This makes learning easier
and typically leads to faster convergence to a solution. Such
architectures are thus canonical choices for the task at hand, e.g.,
convolutional neural networks for image data. However, off-the-
shelf network architectures are inadequate for performing tasks
governed by the laws of quantum mechanics. For quantum state
tomography, in particular, the adaptive mapping from previous
measurement outcomes to those of the next measurement is
highly nonlinear. As such, it is hard to learn simply by feeding the
raw stochastic measurement outcomes into a generic, fully
connected neural network.
Here, we use our knowledge of traditional tomography

algorithms to construct a custom-built architecture for quantum
state tomography, encoding the task explicitly into the network
structure. As a crucial part of the process, it was necessary for us to
develop a differentiable implementation of quantum mechanics in
TensorFlow16 that simulates POVM measurements. During the
deployment of the NAQT algorithm, these are replaced by the
actual measurement from the experiment.
The task for our neural network is as follows: given as input, the

obtained data for a specified POVM, output a good estimate bρ of
the state ρ that gave rise to the given data. This task is encoded
into our neural network structure, which bears basic structural
similarities with a recurrent neural network (RNN) architecture. The
recurrence comes from the fact that the network takes in outputs
from previous time steps (iterations) as inputs to the unit cell at
the current step, together with any new information available at
the time.
While retaining the basic RNN structure, we have, however,

reconfigured the unit cell for our specific purpose. A pictorial
description of this is presented in Fig. 1; technical details are provided
in the “Methods” section. In our setting, the recurrent nature of this
architecture allows for an iteratively improving estimate of the
density matrix with every new batch of measurement data. In
particular, it can be stopped after any number of measurements, and
since (as we will see) on average, the distance to the true solution
decreases, it provides the best estimate up to that moment. It is also
guaranteed to output a valid density matrix as its running estimate of
the state is always a convex linear combination of the current bank of
particles, each a valid state.
Our algorithm shares structural similarities with ABQT. Both

employ a bank B of particles {ρi}—candidate quantum states—and
associated weights {wi}; we write B ¼ fðρi ;wiÞg. At any step in the
algorithm, B encapsulates the current knowledge of the state given
the data gathered so far. All averages over the state space required in
both algorithms are computed using B
hf ðρÞi �

X
i2B

wif ðρiÞ: (3)

In particular, the average state over B, bρ � hρi is the current best
estimate of the true state. There is a crucial difference, however,
between the bank for ABQT and that for NAQT: in ABQT, B is a
discrete approximation of the posterior distribution from the data
gathered so far; in NAQT, B is not constructed from the usual
Bayesian update rule, but is chosen by the neural network based on
its past training.
After every new round of measurements, both algorithms use the

new data to take a bank-update step as well as a measurement
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adaptation step. In the bank-update step, the particles and/or
weights in the bank are modified based on the new data. In ABQT,
only the weights are changed in each round, to update the bank
from representing the prior (before the new data) to the posterior
(after the new data) according to Bayes’ rule; the particles in the bank
are changed only when a resampling of the posterior due to the
weight decay problem is deemed necessary. In NAQT, however,
the weights and particles are perturbed every round, as decided by
the neural network, to (hopefully) move bρ closer to the true state.
In the measurement adaptation step, both ABQT and NAQT

employ the same information-gain quantity proposed in ref. 10

IðΠ;DÞ � HðpðΠjDÞÞ � HðpðΠjDÞÞh i: (4)

Here, D are the data gathered so far, and Π is the POVM to be
measured on the next copy of the state. pðΠjDÞ denotes the
expected set of Born probabilities for the next measurement,
given D: pðΠjDÞ � f TrðΠyρÞ

� �gy [recall Eq. (3)]. H({py})≡− ∑ypy
log py is the Shannon entropy for a set of probabilities {py}.
IðΠ;DÞ is hence the entropy (the first term in I ) of the outcomes
from measuring Π on the next copy, predicted using the
information accumulated from D, less the inherent entropy (the
second term, which is averaged over the current bank of states)
for that measurement given our current state of knowledge. The
measurement adaptation is done by choosing the Π, from some
pre-determined set P of POVMs (e.g., those experimentally
accessible), that maximizes IðΠ;DÞ. The intuition of maximizing
the entropy stems from the desire to measure the next copy in a
“direction” of maximal uncertainty—or minimal information—
given the data observed so far.
The ability of NAQT to give a reliable estimate of the true state

through updating the particle bank round by round comes from
the training of its neural network. In the training phase, the neural
network learns the best bank-update rules from the data
simulated from training examples. Details of this training phase
are given in the “Methods” section. We note here that, in contrast

to ABQT where the update of the particles in the bank is a
resampling step done only when needed to fix the practical
problem of weight decay over multiple rounds, in NAQT, the
particle update is a crucial inferential step that, together with the
weight update, moves the candidate particles toward the true
state. This is reminiscent of the narrowing of the Bayesian
posterior, as in ABQT toward the true state as more data are
collected.

Application: two-qubit tomography
To illustrate the strength of our NAQT scheme, we apply it to two-
qubit state tomography, the case investigated in ref. 12. We
benchmark the performance of NAQT against ABQT. We
implemented all tests in the Python 3 programming language,
for proper runtime comparisons with NAQT written in TensorFlow
and Python, and verified our implementation of ABQT against the
results in ref. 12. For each tomography scheme, the accuracy of the
state reconstruction is evaluated using the squared Bures distance
between the true state ρ and the estimate bρ
d2Bðρ;bρÞ � 2 1� Fðρ;bρÞ½ �: (5)

Here, Fðρ; σÞ � Tr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ1=2σρ1=2

p� �
is the fidelity between two

states ρ and σ. Following ref. 12, we consider only product POVMs,
Π � Πð1Þ � Πð2Þ � fΠð1Þ

y1
� Πð2Þ

y2
g, where each Π(i) is a one-qubit

POVM for qubit i, and yi labels the individual outcomes. Product
POVMs form the class of multiqubit measurements most easily
accessible in experiments.
We compare the performance of NAQT to ABQT for the

projective product POVMs carried out in ref. 12, i.e., we measure a
(two-outcome) basis for each qubit; we refer to such POVMs as
basis POVMs. The degrees of freedom to be optimized in the
adaptive procedure correspond to the choice of bases to be
measured, one for each qubit. Figure 2 shows this comparison. In
our simulations, NAQT uses a particle bank with 100 particles; we
run ABQT with different particle bank sizes to study the

Fig. 1 Our custom-built recurrent neural network (RNN) architecture. After every round of measurement, generating a new set of data, the
RNN cell takes a previously generated bank of weighted candidate states—“particles”—and the best guess for the (unknown) true state as
inputs and outputs a refined bank of particles together with a new estimate of the true state and an associated confidence value. In addition,
the refined bank is used to select the next measurement to be performed. This process is iterated, gradually converging to the correct density
matrix. During training, there are two stages of analysis for each measurement round: the first stage updates the weights in the bank; the
second stage updates the particles.
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dependence of runtime and reconstruction accuracy on the
particle number. Generally, ABQT performs better as more
particles are used, since better estimates can be made when the
posterior distribution—crucial to the ABQT heuristic—is more
finely sampled. In our experiments, the performance of NAQT
improves with more particles as well, but for computational
reasons (limited memory on a laptop), we could not efficiently
explore more than 100 particles for NAQT. ABQT’s performance
anyway seems empirically to the plateau beyond 30 particles, so
the comparison with 100 particles suffices to illustrate our points
here.
With 100 particles, the performance of NAQT is comparable in

reconstruction accuracy to ABQT. However, observe the signifi-
cantly shorter runtime needed for NAQT to achieve that accuracy:
2 s for NAQT for a total of 100,000 copies measured, compared
with 24,000 s (≃6.7 h) for ABQT. This runtime improvement is
further illustrated in Fig. 3. There, we plot the scaling of
computational runtimes for the two QST schemes with the
number of copies measured. ABQT takes prohibitively long
runtimes that appear to be polynomial (approximately linear,
according to our experiments) in the number of copies measured.
In contrast, the runtime of NAQT seems to be logarithmic in the
number of copies. For 107 copies measured, our NAQT converges
to a solution in approximately 5 s on a laptop, while ABQT would
probably take more than a week to complete.
For a broader comparison, we also plot the runtimes for NAQT

with a product tetrahedron POVM, instead of the basis POVM. The
tetrahedron POVM is the symmetric informationally complete
POVM for a single qubit, so named because the POVM outcomes
form a regular tetrahedron in the Bloch ball17. Here, the
measurement adaptation involves choosing the orientation of
the tetrahedron relative to a reference direction. Our numerical
experiments with the product tetrahedron POVM show a nearly
identical runtime behavior as for the basis POVM, suggesting the
robustness of our NAQT runtime speedup for different POVM
choices.
Why is this runtime speedup so dramatic? In ABQT, the

resampling step is triggered whenever the posterior—determined
by the Bayes’ update rule given the data—becomes too sharply
peaked about too few particles in the bank (“peakedness” can be
measured, for example, by the effective sample size criterionP

sw
2
s

� ��1
of ref. 12). In NAQT, the neural network updates allow us

to avoid the weight decay problem encountered in ABQT. For us,
when resampling occurs is not dictated by how the posterior
distribution evolves according to Bayes’ rule. Instead, we have free
rein to choose our own schedule for resampling the particles. The
neural network, in the training phase, learns the best weight-
update rule given the specified resampling schedule. In our
examples, we chose the resampling to take place at intervals of
exponentially increasing size, that is t1, 2t1, 4t1, etc., for some initial
t1 value. The number of resampling events thus scales only
logarithmically with the total number of copies measured. Since
the resampling events are the rate-determining step, the runtime
inherits this logarithmic scaling, as observed in Fig. 3.

DISCUSSION
Our NAQT scheme performs comparably to ABQT in reconstruc-
tion accuracy but shows an orders-of-magnitude reduction in
computational time. The “secret sauce” here is the incredible
expressive power of neural networks as functional approximators;
our resampling step uses them to learn an effective heuristic for
state perturbations directly from data, sidestepping ABQT’s
computationally expensive resampling step.
It is worthwhile to note the ease in accommodating a large

variety of measurement choices within our NAQT algorithm. The
neural network has to be re-trained every time, of course, but the
only change in the code needed is the specification of the chosen
POVM, so that the neural network understands the relationship
between the measurement data and the state, effectively learning
Born’s rule. Gone is the need, encountered in many tomography
schemes, for the invention of novel estimators or ad hoc fixes
because of different expressions of the positivity constraints for
different POVMs. The neural network generates only physically
valid particles, and the estimator is immediately generated from
the neural network-updated particle bank. There is also no need
for an initial ansatz for the quantum state, as needed in some
alternate approaches (see, for example, ref. 18).
Our work thus shows that neural networks can adaptively

estimate an arbitrary density matrix, in a fast, accurate, and flexible
manner. In contrast to related approaches that directly learn the
description of the quantum state from given measurement data,

Fig. 3 Scaling of reconstruction runtime with the number of
copies measured, using the basis POVM, as well as the product
tetrahedron POVM (for NAQT; see main text), all with 100
particles. The runtime curves are fitted to the following lines: for
NAQT, t=− 3.5s+ (1.3s) log10(m+ 300); for ABQT, t= (0.4s)m. Com-
parisons were run on the same computational hardware. For >105

copies, we had to extrapolate the ABQT runtimes, as each
reconstruction was taking tens of hours by then. The NAQT runtime
t is observed to scale logarithmically with m, the number of copies
measured, while ABQT appears to scale linearly. For 107 measure-
ments, our algorithm completes a reconstruction in ≈5 s, while the
ABQT would take more than a week (extrapolated).

Fig. 2 Performance comparison for basis POVMs. Our neural
network algorithm NAQT with 100 particles is compared against
ABQT runs with 5, 30, and 100 particles; the data for ABQT with 1000
particles are extracted from ref. 12. The plot gives the reconstruction
accuracy against a number of copies measured. The light-blue
shading gives the 1σ error bars for NAQT. Our NAQT algorithm
performs comparably, in terms of reconstruction accuracy, to ABQT;
the runtimes are, however, significantly—by a factor of a few
thousand—more favorable for NAQT than ABQT.
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our algorithm has an additional layer of complexity: it learns the
optimal measurements to learn the state.
One key feature of neural networks is their versatility, and we

can think of any further applications of our algorithm with little
added effort. For example, one can easily adapt our neural
network framework to estimate, not general states, but states
coming from a specific class, e.g., pure or low-rank states19,20, the
Choi matrix for a particular category of quantum channels, etc.
One only needs to restrict the training examples and the particle
update to only states within that class. It is equally straightforward
to retrain our algorithm to return not the full density-matrix
description of the state, but functions of the state, such as
entanglement entropy, fidelity to a target state (see ref. 21 for the
standard nonneural-network procedure for this), etc. One could
even imagine extending our algorithm to deal with noisy
measurements: Simply simulate the noise in the training phase.
In building our RNN framework, we benefitted from the

existence of a streamlined computational framework for machine
learning, which enabled us to train resampling and adaptive
components of our algorithm jointly using the same loss function,
such that the output of one was calibrated optimally for the other.
Interestingly, Kim et al.22, in a work similar in spirit to ours but in a
different subject domain, report similar benefits from the end-to-
end concatenation of their neural network-based encoder and
decoder for the design of sequential codes for channel
communication.
A hurdle to QST of high-dimensional states is the fact that

computational complexity grows exponentially in the number of
qubits to be estimated. This is unavoidable in any tomography
algorithm since the dimension of the required output itself grows
exponentially. However, neural networks, and machine learning
more broadly, could be the key to achieving a favorable pre-
factor for this exponential complexity, which would push the
current tractable dimension boundary even higher. Our work
shows a very significant runtime speedup for the simplest two-
qubit example, but the same principles that led to the speedup—
that of replacing Bayes’ rule updating by trained neural network
updates on a planned resampling schedule—are not specific to
two qubits. We thus expect the advantage to hold even in higher
dimensions.

METHODS

A SINGLE TRAINING EXAMPLE
Here, we describe the main component underlying our work—the
training of the neural network (NN) for NAQT. We organize our
description as pseudocode that closely follows the actual
computer code for a single training example, i.e., one choice of
the true quantum state ρtrue. The training can be done in the
adaptive or random (i.e., no measurement adaptation) mode.

Algorithm 1. Training example
Require: True state ρtrue; randomly generated bank

B � fðρi;wiÞgNbank
i¼1 ; number of copies measured in each time step

fMtgTt¼1; set of times at which we resample Sr ; set of times at
which we adapt the POVM Sa .▹ Note A.
Ensure: Sequence of reconstructions fbρtgTt¼1 and associated

losses. Total reconstruction loss for training use.
T rounds of measurements
for time step t from 1 to T do
if t= 1 or in random mode then
Generate a random POVM Π.
else ▹ in adaptive mode
Use POVM Π from previous time step.
end if
Data from ρtrue ▹ NN has no direct access to ρtrue.

Simulate data Dt � fnyg for measuring Π on Mt copies of ρtrue
using Born’s rule. Set bp ¼ fny=Mtgy as the empirical Born
probabilities for ρtrue.
Update the weights
formember ρi of particle bank B do
Calculate Born probabilities pi ¼ TrðΠρiÞ;
Calculate L1 and L2 distances between pi and bp.
NN(distances)→ combined distance ▹ note (B)
NN(distances)→ εi ▹ perturbation size
NN(distances)→wi ▹ new weights
end for
∑iρiwi→ ρguess ▹ Best guess from this step
NN(combined distance, weights)→ guess the score
if t in Sr then
Update the particles
Draw Nbank particles fρ0ig from B at random according to

weights {wi}.
ρ0i inherits the ε value ð� ε0iÞ for the particle it corresponds to in

the original bank B.
for step s from 1 to Nsteps do ▹ note (C)
formember of new particle bank ρ0i do
Purify ρ0i ! v!i . ▹ note (D)
Generate Nresample random vectors u!	 


.
for random vector u!do
Keep the part o! of u! orthogonal to v!i .
Normalize o!=j o!j ! o!.

Let ð v!iÞperturb � ð1� ε0iÞ v!i þ ε0i o
!! ðρ0iÞperturb.

Calculate ðp0
iÞperturb � TrðΠðρ0iÞperturbÞ.

Calculate distance between ðp0
iÞperturb & bp.

end for
ðρ0iÞperturb with smallest distance→ new ρi.
end for
New bank of particles→ B
end for
end if
Current best estimate and the loss
From step t we have ρguess, guess score, and B.
Using guesses from steps < t, calculate

guessweights ¼ softmaxðguessscoresÞ.▹ note (E)
bρt ¼

P
t0�tguessweightt0 ρguess;t0 ▹ output guess

Losst ¼ Distanceðbρt; ρtrueÞ
Adaptation of POVM
if in adaptive mode and t in Sa then
Generate a set Θ ¼ fðXi; Yi; ZiÞgNsample

i¼1 of random rotation angles
about the X, Y, Z axis.
for i in Nsample do
Consider POVM parametrized by θi→ Π(θi).
Calculate Born probabilities pmean of measuring the POVM Π(θi)

on the output guess bρt
For all members of the particle bank i obtain outcome

probabilities pi of measuring the POVM on the particle ρi.
Calculate a mixed entropy heuristic I ¼ SðpmeanÞ �

P
iwiSðpiÞ,

where S(p) is the entropy of distribution p.
end for
Choose Π(θ) with the largest I value→ Π.
end if
end for
Loss ¼ PT

t¼1 Losst ▹ note (F)

A few notes referenced in the pseudocode:

(A) Sr , a subset of the times t= 1, 2,…, T, specifies the
resampling schedule; Sa is a subset of times when the
POVM is adapted. In our examples, Sr and Sa are the same
as the set of times {t}, i.e., every time a resampling happens,
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a POVM adaptation is also done, and an interim estimate of
the state is put out. T= 50 in our examples. The number of
measurements at each time step is exponentially increasing,
i.e., they occur in batches of size b= 100 × 1.206t, for t= 0,
1,…, 49, making for a total of 50 batches of increasing sizes
120, 145,…106. One could, in general, adjust these choices
to see if even better performance can be obtained.

(B) The L1ð�
P

ijpi � bpi jÞ and L2ð�
P

iðpi � bpiÞ2Þ distances
between pi and bp are computed and then given to the
NN. The NN is allowed to decide how it wants to combine
the two distances into a single distance measure ("com-
bined distance" in the pseudocode) by adjusting the relative
weights of the L1 and L2 distances. This gives flexibility in
how the deviation of pi from bp is quantified; if one distance
works better than the other, the neural network discovers
this in the process of the training. More distance measures
can be given to the NN, to gain even greater flexibility, if
desired.

(C) This for-loop does a Metropolis–Hastings Monte-Carlo-like
update (following ref. 12) of the set of particles, moving the
particles by Nsteps small steps, each time in some best
direction chosen from among a set of possibilities f u!g.

(D) Following12 (see Appendix C of that paper), we represent an
n-qubit density matrix ρ as a pure state, denoted as v!, in
the extended Hilbert space of dimension 22n.

(E) The guess scores quantify the algorithm’s confidence in its
guess for the unknown state at time t. The softmax function
is a standard way in machine learning to normalize the
guess scores so that they sum to 1.

(F) The loss output in this step is the loss on a single training
example, which comprises a single run that measures all the
copies (i.e., iterates through t) of a single state. Throughout
such a run, even though the algorithm is adaptively
choosing the POVM orientation, the parameters of the
intermediate neural networks used (in, for example, the
weight-update step) may not be optimal. The loss is thus fed
into an outer training loop that adjusts these parameters on
the next training example.

The above is used in the training phase of NAQT. In the actual
use of the trained NN, the procedure is exactly as described above
for a single training example, except that, rather than bp computed
from the simulated data from the true state, it is given by the
actual experimental data obtained from measuring the POVM on
the state source.

DATA AVAILABILITY
The data generated for the two-qubit tomography example are available from the
authors on reasonable request.

CODE AVAILABILITY
The code for the RNN architecture for the two-qubit tomography example is available
from the authors on reasonable request.
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