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Experimental realization of phase-controlled dynamics with
hybrid digital–analog approach
Ziyu Tao 1,2,3,4,5, Libo Zhang1,2,3,4,5, Xiaole Li1,2,3,4, Jingjing Niu1,2,3,4, Kai Luo1,2,3,4, Kangyuan Yi1,2,3,4, Yuxuan Zhou1,2,3,4, Hao Jia1,2,3,4,
Xu Zhang1,2,3,4, Song Liu 1,2,3,4✉, Tongxing Yan 1,2,3,4✉, Yuanzhen Chen1,2,3,4✉ and Dapeng Yu1,2,3,4

Quantum simulation can be implemented in pure digital or analog ways, each with their pros and cons. By taking advantage of the
universality of a digital route and the efficiency of analog simulation, hybrid digital–analog approaches can enrich the possibilities
for quantum simulation. We use a hybrid approach to experimentally perform a quantum simulation of phase-controlled dynamics
resulting from a closed-contour interaction (CCI) within certain multi-level systems in superconducting quantum circuits. Due to
symmetry constraints, such systems cannot host an inherent CCI. Nevertheless, by assembling analog modules corresponding to
their natural evolutions and specially designed digital modules constructed from standard quantum logic gates, we can bypass
such constraints and realize an effective CCI in these systems. Based on this realization, we demonstrate a variety of related and
interesting phenomena, including phase-controlled chiral dynamics, separation of chiral enantiomers, and a mechanism to
generate entangled states based on CCI.
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INTRODUCTION
Digital quantum simulation relies on decomposition of the
evolution of a targeted Hamiltonian into a sequence of discrete
quantum logic gates1–3. While in principle this can be done for an
arbitrary quantum system4, it often requires an intimidating
number of gate operations with high precision. Analog approaches
exploiting the continuous nature of quantum evolutions may often
be more efficient5–8, but usually must be designed on an adhoc
basis. Hybrid digital–analog quantum simulation has thus been
proposed to combine the universality of digital approaches with
analog efficiency9–12. The flexibility in engineering and assembling
digital and analog modules generates abundant possibilities for
quantum simulation that are hardly available otherwise. For
example, in a simulation of the quantum Rabi model13, a deep-
strong coupling that is inaccessible to pure analog or digital
approaches could be realized via a hybrid method14.
In this work, we show that by employing a hybrid method, one

can perform quantum simulations that may not be straightforward
to implement via a direct mapping of the targeted Hamiltonian to
the involved physical platform. In particular, we demonstrate phase-
controlled quantum dynamics and related phenomena via closed-
contour interaction (CCI) in superconducting quantum circuits, which
was originally forbidden by certain symmetry-imposed selection
rules. The simplest realization of CCI involves a three-level system.
Such systems with two of the three possible transitions being
coherently driven have been widely researched for both funda-
mental interest and promising applications in areas such as quantum
sensing15,16 and quantum information processing17. By opening the
third transition, the three levels form a loop with a CCI, which leads
to various quantum phenomena, including phase-dependent
coherent population trapping18, phase-controlled dynamics19, and
coherence protection20. A closed-loop configuration can also be
used in the detection and separation of enantiomers21–23, i.e., chiral

molecules with left (L) and right (R) handedness, which has long
been a challenging problem in chemistry24.
In practice, the implementation of CCI is often hindered by

selection rules for transitions imposed by symmetry constraints in
realistic systems. Common practice in overcoming this problem
includes the simultaneous use of multiple drivings of different types
(e.g., both electric and magnetic dipole transitions)20 or high-order
processes such as a two-photon transition25,26. Here, we first show
that in a three-level system subject to such selection rules, one can
engineer the system Hamiltonian by assembling two digital and
one analog module to induce a CCI with only two coherent drivings
of the same type. Phenomena related to CCI, such as phase-
controlled chiral dynamics, are observed. By making such driving
fields time-dependent, we are able to demonstrate a proposed
scheme to separate chiral molecules with high fidelity27, and we
can extend our technique to more complex systems. Specifically,
we propose and realize a scheme to generate entangled states
using a CCI across two coupled superconducting qubits.

RESULTS
Realization of CCI
Consider a three-level system composed of three states
f gj i; ej i; fj ig. The system is coherently driven by two external
fields of the same type, such as electric-dipole allowed transitions,
that correspond to gj i $ ej i and ej i $ fj i. The effective
Hamiltonian of the system under rotating-wave approximation is
given by (see Methods section)
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where ΩA,B and ΔA,B are the amplitudes and detunings,
respectively, of the two external driving fields (see Fig. 1a).
If the system assumes a restrictive symmetry, then the third

transition gj i $ fj i of the same type is forbidden. Even in systems of
less restrictive symmetry (e.g., artificial atoms such as superconduct-
ing qubits), the amplitude of such transitions is usually vanishingly
small28. Previously, a third driving of a different type or of the same
type but of higher order was used to close the loop to form a CCI25,26.
We take a different approach by combining an analog module
corresponding to the evolution driven by H0 with two digital modules
that are unitary operators constructed from standard quantum gates
(see the flowchart on top of Fig. 2a). Now the effective Hamiltonian
resulted from the three combined modules can be obtained via
e�iHt=_ � Te�iH0t=_T y (the matrix form of T and T† is given in the
Methods section). If the amplitudes and detunings of the two
drivings in H0 are set to ΩA ¼ Ωpeiϕp þ Ωseið�ϕq�ϕsÞ

� �
=
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This Hamiltonian differs from H0 in that it naturally contains
nonzero amplitudes for all three possible transitions, and the
magnitudes and phases of all three amplitudes can be adjusted
independently (see Fig. 1a). Therefore, inherent CCI dynamics can
be expected for such a Hamiltonian. In the case of equal and
constant magnitudes, Ωp,q,s≡Ω, the population dynamics are
strongly dependent on the phases ϕp,s,q of the driving fields,
through a gauge-invariant global phase ϕ= ϕp+ ϕs− ϕq. We will
show an experimental demonstration of such CCI dynamics.
We used Xmon-type superconducting qutrits in our experi-

mental work. In this kind of artificial atom, the transitions of gj i $
ej i and ej i $ fj i are electric-dipole allowed, whereas the

transition gj i $ fj i of the same type has a vanishingly small
amplitude28. Two external microwave driving fields in the forms
described above (ΩA,B) are applied to the qutrit, with Ωp,q,s≡Ω and
three independently adjustable phases ϕp,q,s. Probability of states
is measured and normalized following a procedure widely
adapted by the community (see Methods section for details),
and is used for subsequent data analysis. More details of the
experimental setup can be found in the Supplementary Note 1.

CCI dynamics
We first study the CCI dynamics of the system by measuring its
time evolution at different values of ϕ. Figure 2a shows the
temporal sequence of operations. The system is initialized in the

Fig. 1 Realization of CCI with a hybrid digital–analog approach.
a A three-level system (a qutrit) driven by two detuned external
fields (described by a Hamiltonian of H0), when combined with
specially designed digital modules (the T block) constructed from
discrete quantum gates, can be used to realize the Hamiltonian H
hosting an inherent CCI: Te�iH0tT y � e�iHt , with a gauge-invariant
phase ϕ. For consistency with the literature, we relabel the states of
the qutrit as gj i; ej i; fj i ¼ 1; 2; 3. b In a similar way, combining the
natural evolution of two resonant qutrits driven by two external
fields (with identical amplitudes and phases, indicated by different
colors) with certain digital modules can result in a CCI in a subspace
of the system. Here 1, 2, and 3 correspond to ggj i, gej i, and egj i,
respectively. The gray sphere beside the state of three represents a
dark state that is decoupled from the evolution of the system (see
Methods section).
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Fig. 2 Phase-controlled quantum dynamics resulting from CCI in
a single qutrit. a Upper part: flowchart of the experiment, including
a block for initialization (Xg,e), a digital module of T† composed of
three gate operations, an analog module of the natural evolution
driven by H0, and another digital module T, followed by projection
measurements that yield the three populations of P1,2,3. Both ramp-
on and -off time of the continuous microwave driving in the analog
module is <1 ns. The effect of such a finite ramping time is
negligible since observing the CCI and analyzing the related physics
require a time scale much longer. Lower part: P1,2,3 as functions of
the time span of the intermediate natural evolution for three values
of the gauge-invariant parameter ϕ. b Energy spectrum of the
Hamiltonian of H in Eq. (2), obtained via discrete Fourier transform of
the measured populations. It is shown in the form of ∣Em – En∣, where
Ek are the eigenenergies of H, and m, n∈ {1, 2, 3}. Dashed white lines
represent theoretical predictions.
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first excited state of ψðt ¼ 0Þj i ¼ ej i by a standard X gate. A digital
module containing three quantum gates is applied to the qutrit,
followed by an analog evolution driven by H0 with two control
parameters: the time span and the gauge-invariant phase ϕ.
Another digital module, which is the Hermitian conjugate of the
first digital module, is applied, followed by projection measure-
ments that yield populations of all three states. As discussed
previously, the combined effect of the middle three blocks is to
subject the system to evolve under the Hamiltonian H as in Eq. (2):
e�iHt=_ � Te�iH0t=_T y (see Methods section for details).
The gauge-invariant phase ϕ assumes a role as the flux of a

synthetic magnetic field, which controls the dynamics of the
system. At ϕ= 0, the populations evolve in time with a symmetric
pattern without a preferred direction of circulation (middle panel,
Fig. 2a). Such symmetry in the circulation pattern is not observed
for values of ϕ that are not integers of π. Two examples
corresponding to ϕ=±π/2 are shown in Fig. 2a. In each case, a
circulation of certain chirality is observed: clockwise for ϕ=−π/2
and counterclockwise for ϕ= π/2. Such differences are rooted in
the symmetry of the system upon time reversal. An examination of
the time-reversal symmetry (TRS) in a strict sense requires
reversing the flow of time, which is of course not experimentally
feasible. However, the periodicity presented in the evolutions
shown in Fig. 2a allows for a practical definition of the TRS: ψ(t)=
ψ(T0− t), where T0 is the period of a given evolution5. By
comparing the evolutions from t= 0 forward and from t= T0

backward, Fig. 2a shows that the TRS is preserved for ϕ= 0, but
broken for ϕ= ±π/2.
In addition to demonstrating the phase-controlled dynamics

under CCI, we mapped out the electronic structure of the system
as a function of ϕ. The eigenenergies of H are given by
Ek ¼ Ω cos½ϕ=3� φ0ðk þ 1Þ�, with k∈ {1, 2, 3} and φ0= 2π/3. A
Fourier transformation of the measured populations can reveal the
energy differences ∣Em− En∣ with m, n∈ {1, 2, 3} and m ≠ n, as
shown in Fig. 2b, which agree with the simulated results using H in
Eq. (2). The anti-crossings at ϕ= ± π in the spectrum can be
explained by the slight detuning of the coherent drives and
environmental fluctuations20.

Chiral separation
Beyond constant driving fields, we further consider a closed loop
driven by three time-dependent fields Ωp(t), Ωs(t), and Ωq(t), which
was proposed to detect and separate enantiomers with L and R
handedness by using the phase-sensitive interferometric nature of
the closed-loop configuration27.
For a three-level system subjected to a pumping drive Ωp(t)

( 1j i $ 2j i) and Stokes drive Ωs(t) ( 2j i $ 3j i) (see Fig. 3a;
for consistency with the literature, here we label the three
states as 1j i, 2j i, and 3j i), the three eigenenergies and

corresponding eigenstates are λ± ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2

p þ Ω2
s

q
, λ0= 0, and

χ ±j i ¼ ðsin θ 0j i± 2j i þ cos θ 3j iÞ, χ0j i ¼ cos θ 1j i � sin θ 3j i, with
tan θðtÞ ¼ ΩpðtÞ=ΩsðtÞ. In the celebrated technique of stimulated

Fig. 3 Chiral separation via CCI. a Coupling schemes of chiral molecules with L and R handedness. Identical drivings result in a difference of
π in the overall phase of the loop, indicated here as different couplings (±Ωq) between the states of 1 and 3. b Pulse sequence for the driving
fields Ωp(t), Ωs(t), and ±Ωq(t). c Measured population P3 versus time and pulse area Aπ for L (left panel) and R (right panel) handedness, where
the initial state ψ0j i ¼ 1j i. The maximum population contrast is obtained when A ≈ 1.23 (indicated by the white dashed lines). t= 0
corresponds to the moment when the ±Ωq pulse reaches its maximum magnitude. d The population P3 as a function of time for A= 1.23,
showing that the transfer to the state of three is nearly perfect for L handedness, but completely suppressed for R handedness. The spheres
illustrate the trajectories of state evolution in the Majorana representation by mapping the qutrit states to two points on the spheres42 (see
Supplementary Note 4).
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Raman adiabatic passage29,30, the two pulses are arranged in a
counterintuitive order with the Stokes pulse coming first, and the
eigenstate χ0j i evolves adiabatically from 1j i to − 3j i as θ varies
from 0 to π/2, thus accomplishing a nearly perfect state transfer
coherently.
It has been shown that by adding a counterdiabatic driving

Ωq(t) ( 1j i $ 3j i) to close the loop, the resultant dynamics
of the population become dependent on the handedness
of the system31,32. In particular, with the same driving
fields, the Hamiltonian of the system is HL;R ¼
Ωp 2j i 1h j þ Ωs 3j i 2h j±Ωqeiϕ 3j i 1h j� �þ H:c: (Fig. 3a), where the
+(−) sign is for L(R) handedness, and H.c is the Hermitian
conjugate. Such a sign difference will result in the same
counterdiabatic driving doubling or canceling the nonadiabatic
coupling presented in the system, depending on its handedness.
If ϕ is set to−π/2, then the populations of the final state, P3, of
the enantiomers with L and R handedness are different. For
example, with carefully chosen values of the pulse areas, the
handedness can be efficiently determined by measuring P3
alone, where P3= 1(P3= 0) for L(R) handedness27. We note that
such a counterdiabatic driving was originally proposed to
accelerate various adiabatic processes, but here its major effect
is to differentiate the L and R handedness.
We use pump and Stokes pulses of a Gaussian form in our

experiment: ΩpðtÞ ¼ Ω0e�ðt�τ=2Þ2=τ2 , ΩsðtÞ ¼ Ω0e�ðtþτ=2Þ2=τ2 . Both
pulses have a width of τ and are delayed by the same amount. A
third pulse in the form of ΩqðtÞ ¼ ±2 _θðtÞ is applied, where the
+(−) sign corresponds to L(R) handedness. We prepare the system
in an initial state of χ0j i. As discussed above, for L handedness, the
nonadiabatic transition is canceled by Ωq(t) and the system
remains in the state χ0j i, inducing a perfect population transfer
from 1j i to 3j i with P1→3= 1 as θ(t) evolves from 0 to π/2.
Conversely, for R handedness, the nonadiabatic transition doubles,
which enables χ0j i ! χ ±j i and P1→3 < 1. Figure 3c shows the time
evolution of P3 with different pulse areas Aπ, which is defined asR
Ωp;sdt ¼ Ω0τ

ffiffiffi
π

p � Aπ. At A ≈ 1.23, the driving fields Ωp,s,q in the
form of Fig. 3b result in a maximum distinguishability between a
population transfer 1j i ! 3j i for L handedness with P1→3= 0.986
and the same transfer for R handedness with P1→3= 0.003

(Fig. 3d). This result is expected following the original theoretical
proposal27.

Entanglement generation with CCI
Next, we extend the generation of CCI via pure microwave
drivings to a more complex system of two coupled qubits, and
further demonstrate a mechanism of entangling two qubits based
on CCI, different from existing schemes that are widely used in
quantum information processing with superconducting quantum
circuits.
Consider the four-level system formed by two Xmon super-

conducting qubits with a coupling strength of J (see Fig. 1b). We
apply two transverse resonant driving fields to the two qubits,
with an identical amplitude of J=

ffiffiffi
2

p
and a phase difference

of ϕa− ϕb= ϕ. Similar to the single-qubit case discussed above,
we combine the natural evolution of such a driven system (an
analog module) and a unitary operation T 0 (two digital modules
implemented via standard gate operations) to realize an effective
Hamiltonian for a three-state system f egj i; gej i; ggj ig that can
host CCI (see Fig. 1b and Methods section). Furthermore, we can
generate entangled states of the two qubits by removing the
unitary operation T 0, since it transforms the entangled state ggj i þ
eiϕ eej i to the ground state ggj i.
Specifically, the two-qubit system can be directly transferred

from the non-entangled state egj i or ∣ge∣ to the maximum
entangled states of ggj i± i eej ið Þ= ffiffiffi

2
p

(Fig. 4a, b), within a time of
tb ¼ 2π=ð3 ffiffiffi

3
p

JÞ, under the condition of maximum TRS breaking at
ϕ= ± π/2. The density matrices ρ± of the entangled states ψ±j i
characterized by quantum state tomography are given in Fig. 4c–f,
with fidelities of F+= 0.963 ± 0.026 and F−= 0.923 ± 0.029. The
analytical form of the nontrivial two-qubit unitary operator e�iHtb is
given in the Supplementary Note 3.
This mechanism of generating entanglement based on chiral

CCI dynamics is different from the previous constructions of
iSWAP33,34 and controlled-Z gates35–37, formed by the subspace
f gej i; egj ig or f eej i; fgj ig in superconducting qubits. Using a
geometric classification of two-qubit gates developed by Zhang
et al.38, we have found that the specific implementation of this
mechanism as reported here results in a class of perfect entangler
that can generate maximally entangled two-qubit states. We have

gg
ge

eg
ee

gg

ge
eg

ee
gg

ge
eg

ee

gg

ge
eg

ee

gg
ge

eg
ee

gg

ge
eg

ee
gg

ge
eg

ee

gg

ge
eg

ee 1

0

-1

0.5

-0.5

eg

ge

eg

ge

gg

ee

gg

ee

Peg Pgg+Pee Pge(a)

(b)

(c) (d)

(e) (f)
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also verified that this class is locally inequivalent to other
commonly known methods (e.g., CNOT, iSWAP, iPhase,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
iSWAP

p
)

for generating entanglement between two qubits in the sense
that they cannot be linked via local operations acting on single
qubits. Moreover, the technique used here utilizes two continuous
microwave drivings that are independently adjustable. Such extra
flexibility makes it possible to use the current technique, with
proper adjustments of parameter settings, to realize other classes
of two-qubit entangler, such as a B gate that is known to be one of
the most efficient entanglers39.

DISCUSSION
We have proposed and experimentally demonstrated an effective
realization of CCI in genuine three-level systems that do not host
CCI inherently due to certain symmetry constraints. By assembling
an analog module of the natural evolution governed by their
original Hamiltonians with carefully designed digital modules, we
can effectively bypass such constraints and establish a CCI without
auxiliary driving signals that are technically challenging to
implement. Based on such a CCI, we can demonstrate a variety
of interesting related phenomena such as a phase-controlled
chiral dynamics, chiral separation, and a mechanism to generate
entangled states.
The hybrid digital–analog approach used here is essential to our

work, since on the one hand the above symmetry constraints
forbid an inherent CCI that would manifest in the analog
evolutions of the systems, and on the other hand, a pure digital
approach is practically infeasible, as too many quantum gate
operations would be required, especially to simulate the natural
evolutions of the systems. This work serves as a preliminary
demonstration of the enriched possibilities for quantum simula-
tion by the hybrid digital–analog approach. One can reasonably
expect, by assembling more sophisticated and ingeniously
engineered analog and digital modules, the realm of quantum
simulation that is accessible by pure analog or digital approaches
can be largely expanded, a welcome development before we
realize a universal and fault-tolerant digital quantum computer.

METHODS
Experimental setup
We used the Xmon-type of superconducting qutrit with a tunable
frequency via a bias current on a Z-control line. Microwave pulses are
applied to the qutrit via an XY-control line. All quantum gates in the digital
modules have a time span of 20 ns. The state of the qutrit can be deduced
by measuring the transmission coefficient S21 of the transmission line
using a standard dispersive measurement40. For each data set in the main
text, the displayed probability of states is obtained by processing the raw
data using the following procedure of normalization. Prior to each
measurement, the qutrit is successively prepared into the g, e, f states, and
in each case pg, pe, pf are measured. All nine acquired probabilities are then
arranged into a readout matrix R, which is used for normalizing all
subsequent measurements. For example, a raw data set of p!¼
ðpg; pe; pf ÞT is multiplied with the inverse of R to obtain the normalized
probability of states R�1 � p!. For the part of experiment involving two
qubits, they are coupled via an ancillary qubit that can fine tune the
effective coupling strength41. Further details of the samples and
measurement setup can be found in the Supplementary Note 1.

Effective Hamiltonian of the three-level system
The effective Hamiltonian of the microwave-driven qutrit in a rotating frame
is described by Eq. (1) in the main text. Here going into the rotating frame is
realized via a transform of U ¼ gj i gh j þ ej i eh jeiωAt þ fj i fh jeiðωAtþωBtÞ , where
ωA≡ωge− ΔA, ωB≡ωef− ΔB (see Fig. 1 for definitions of terms). Under the
rotating-wave approximation, H0 in Eq. (1) is resulted. The unitary operator

T that serves as a digital module is

T ¼
1=

ffiffiffi
2

p
0 �eiϕq=

ffiffiffi
2

p

0 1 0

e�iϕq=
ffiffiffi
2

p
0 1=

ffiffiffi
2

p

0
B@

1
CA; (3)

which can be constructed from three single-qutrit gates Re,f(π, 0) ⋅ Rg,e(π/2,−
ϕq) ⋅ Re,f(π, π), where Rm,n(θ,ϕ) represents a rotation in the subspace of
f mj i; nj ig:

Rm;nðθ;ϕÞ ¼ cosðθ=2Þ �e�iϕ sinðθ=2Þ
eiϕ sinðθ=2Þ cosðθ=2Þ

� �
: (4)

The combination of the natural evolution of the original Hamiltonian
and the unitary operations gives the effective Hamiltonian H in
Eq. (2): e�iHt=_ � Te�iH0t=_T y , which describes a three-level system
with CCI.

Effective Hamiltonian of the four-level system
Consider the four-level system formed by two coupled superconducting
qubits with a coupling strength of J. We apply two transverse resonant
driving fields, one to each qubit, with identical frequency ωa=ωb=ωge

and amplitude jΩAj ¼ jΩBj ¼ J=
ffiffiffi
2

p
, and a phase difference of ϕa− ϕb= ϕ.

In a rotating frame realized via a transform of U ¼ gj i gh j þ ej i eh jeiωatð Þ �
gj i gh j þ ej i eh jeiωbtð Þ and under the rotating-wave approximation, the

Hamiltonian is given by

H=_ ¼ Jðcosϕσax þ sinϕσay þ σbx Þ=
ffiffiffi
2

p þ Jðσax � σbx þ σay � σby Þ=2

¼ Jffiffi
2

p

0 1 e�iϕ 0

1 0
ffiffiffi
2

p
e�iϕ

eiϕ
ffiffiffi
2

p
0 1

0 eiϕ 1 0

0
BBB@

1
CCCA:

(5)

Combining the natural evolution governed by this Hamiltonian and a
unitary operation defined as

T 0 ¼ 1ffiffiffi
2

p

1 0 0 e�iϕ

0
ffiffiffi
2

p
0 0

0 0
ffiffiffi
2

p
0

�eiϕ 0 0 1

0
BBB@

1
CCCA (6)

gives an effective Hamiltonian H0 via e�iH0t=_ � T 0e�iHt=_T 0y :

H0 ¼ J egj i geh j þ gej i ggh j þ eiϕ egj i ggh j þ H:c:
� �

: (7)

This Hamiltonian describes a three-level system with CCI. If the two unitary
operations, T 0 and T 0y are dropped, then Eq. (7) becomes

H
0 ¼ J 1j i 2h j þ 2j i 3h j þ eiϕ 1j i 3h j þ H:c:

� �
: (8)

Here, f 1j i; 2j i; 3j ig form an invariant triplet subspace of the overall Hilbert
space of f 1j i; 2j i; 3j i; Dj ig � egj i; gej i; ggj i þ eiϕ eej i� �

=
ffiffiffi
2

p
; ggj i�ð	

eiϕ eej iÞ= ffiffiffi
2

p g, and the state of Dj i is a dark state that is decoupled from
the system evolution.

DATA AVAILABILITY
The data supporting the findings of this study are available by the corresponding
author upon request.

CODE AVAILABILITY
All codes used in the paper are available from the corresponding authors upon
reasonable request.

Received: 13 November 2020; Accepted: 19 March 2021;

REFERENCES
1. Georgescu, I. M., Ashhab, S. & Nori, F. Quantum simulation. Rev. Mod. Phys. 86,

153–185 (2014).
2. Barends, R. et al. Digital quantum simulation of fermionic models with a super-

conducting circuit. Nat. Commun. 6, 7654 (2015).

Z. Tao et al.

5

Published in partnership with The University of New South Wales npj Quantum Information (2021)    73 



3. Barends, R. et al. Digitized adiabatic quantum computing with a superconducting
circuit. Nature 534, 222–226 (2016).

4. Lloyd, S. Universal quantum simulators. Science 273, 1073–1078 (1996).
5. Roushan, P. et al. Chiral ground-state currents of interacting photons in a syn-

thetic magnetic field. Nat. Phys. 13, 146–151 (2016).
6. Wang, D. W. et al. Synthesis of antisymmetric spin exchange interaction and

chiral spin clusters in superconducting circuits. Nat. Phys. 15, 382–386 (2019).
7. Cai, W. et al. Observation of topological magnon insulator states in a super-

conducting circuit. Phys. Rev. Lett. 123, 080501 (2019).
8. Liu, W., Feng, W., Ren, W., Wang, D.-W. & Wang, H. Synthesizing three-body

interaction of spin chirality with superconducting qubits. Appl. Phys. Lett. 116,
114001 (2020).

9. Mezzacapo, A. et al. Digital quantum rabi and dicke models in superconducting
circuits. Sci. Rep. 4, 7482 (2015).

10. Lamata, L. Digital-analog quantum simulation of generalized dicke models with
superconducting circuits. Sci. Rep. 7, 43768 (2017).

11. Lamata, L., Parra-Rodriguez, A., Sanz, M. & Solano, E. Digital-analog quantum
simulations with superconducting circuits. Adv. Phys. X 3, 1457981 (2018).

12. Parra-Rodriguez, A., Lougovski, P., Lamata, L., Solano, E. & Sanz, M. Digital-analog
quantum computation. Phys. Rev. A 101, 022305 (2020).

13. Rabi, I. I. On the process of space quantization. Phys. Rev. 49, 324–328 (1936).
14. Langford, N. K. et al. Experimentally simulating the dynamics of quantum light

and matter at deep-strong coupling. Nat. Commun. 8, 1715 (2017).
15. Phillips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of

light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).
16. Vanier, J. Atomic clocks based on coherent population trapping: a review. Appl.

Phys. B 81, 421–442 (2005).
17. Cirac, J. I., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and

entanglement distribution among distant nodes in a quantum network. Phys.
Rev. Lett. 78, 3221–3224 (1997).

18. Kosachiov, D. V., Matisov, B. G. & Rozhdestvensky, Y. V. Coherent phenomena in
multilevel systems with closed interaction contour. J. Phys. B At. Mol. Opt. Phys.
25, 2473–2488 (1992).

19. Buckle, S. J. et al. Atomic interferometers: phase-dependence in multilevel atomic
transitions. Opt. Acta 33, 1129–1140 (1986).

20. Barfuss, A. et al. Phase-controlled coherent dynamics of a single spin under
closed-contour interaction. Nat. Phys. 14, 1087–1091 (2018).

21. Král, P. & Shapiro, M. Cyclic population transfer in quantum systems with broken
symmetry. Phys. Rev. Lett. 87, 183002 (2001).

22. Král, P., Thanopulos, I., Shapiro, M. & Cohen, D. Two-step enantio-selective optical
switch. Phys. Rev. Lett. 90, 033001 (2003).

23. Ye, C., Zhang, Q. & Li, Y. Real single-loop cyclic three-level configuration of chiral
molecules. Phys. Rev. A 98, 063401 (2018).

24. Knowles, W. S. Asymmetric hydrogenations. Angew. Chem. Int. Ed. Engl. 41, 1998
(2002).

25. Vepsäläinen, A., Danilin, S. & Sorin Paraoanu, G. Superadiabatic population
transfer in a three-level superconducting circuit. Sci. Adv. 5, 5999 (2019).

26. Vepsäläinen, A. & Paraoanu, G. S. Simulating spin chains using a superconducting
circuit: gauge invariance, superadiabatic transport, and broken time-reversal
symmetry. Adv. Quant. Technol. 2020, 1900121 (2020).

27. Vitanov, N. V. & Drewsen, M. Highly efficient detection and separation of chiral
molecules through shortcuts to adiabaticity. Phys. Rev. Lett. 122, 173202 (2019).

28. Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box.
Phys. Rev. A 76, 1–19 (2007).

29. Vitanov, N. V., Rangelov, A. A., Shore, B. W. & Bergmann, K. Stimulated raman
adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006
(2017).

30. Bergmann, K. et al. Roadmap on STIRAP applications. J. Phys. B At. Mol. Opt. Phys.
52, 202001 (2019).

31. Chen, X., Lizuain, I., Ruschhaupt, A., Guéry-Odelin, D. & Muga, J. G. Shortcut to
adiabatic passage in two- and three-level atoms. Phys. Rev. Lett. 105, 123003 (2010).

32. Guéry-Odelin, D. et al. Shortcuts to adiabaticity: Concepts, methods, and appli-
cations. Rev. Mod. Phys. 91, 045001 (2019).

33. Schuch, N. & Siewert, J. Natural two-qubit gate for quantum computation using
the XY interaction. Phys. Rev. A 67, 032301 (2003).

34. Bialczak, R. C. et al. Quantum process tomography of a universal entangling gate
implemented with josephson phase qubits. Nat. Phys. 6, 409–413 (2010).

35. Strauch, F. W. et al. Quantum logic gates for coupled superconducting phase
qubits. Phys. Rev. Lett. 91, 167005 (2003).

36. Yamamoto, T. et al. Quantum process tomography of two-qubit controlled-z and
controlled-not gates using superconducting phase qubits. Phys. Rev. B 82, 184515
(2010).

37. Ghosh, J. et al. High-fidelity controlled-σZ gate for resonator-based super-
conducting quantum computers. Phys. Rev. A 87, 022309 (2013).

38. Zhang, J., Vala, J., Sastry, S. & Whaley, K. B. Geometric theory of nonlocal two-
qubit operations. Phys. Rev. A 67, 042313 (2003).

39. Zhang, J., Vala, J., Sastry, S. & Whaley, K. B. Minimum construction of two-qubit
quantum operations. Phys. Rev. Lett. 93, 020502 (2004).

40. Wallraff, A. et al. Approaching unit visibility for control of a superconducting
qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005).

41. Yan, F. et al. Tunable coupling scheme for implementing high-fidelity two-qubit
gates. Phys. Rev. Appl 10, 054062 (2018).

42. Dogra, S., Vepsäläinen, A. & Paraoanu, G. S. Majorana representation of adiabatic and
superadiabatic processes in three-level systems. Phys. Rev. Res. 2, 043079 (2020).

ACKNOWLEDGEMENTS
This work was supported by the Key-Area Research and Development Program of
Guangdong Province (Grant No. 2018B030326001), the National Natural Science
Foundation of China (Grant No. U1801661, 12004162), Guangdong Provincial Key
Laboratory (Grant No. 2019B121203002), the Science, Technology and Innovation
Commission of Shenzhen Municipality (Grant No. KYTDPT20181011104202253),
Grant No. 2016ZT06D348, the Natural Science Foundation of Guangdong Province
(Grant No. 2017B030308003).

AUTHOR CONTRIBUTIONS
Z.T. and L.Z. contributed equally to this work. T.Y. and Z.T. conceived the experiment;
Z.T. designed the theoretical protocol and performed the experiment with T.Y. under
the supervision of Y.C.; L.Z. designed the superconducting devices used in the
experiment, and fabricated them together with Y.Z. and H.J.; T.Y., Z.T., and Y.C. wrote
the manuscript together, with inputs from all authors.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-021-00406-1.

Correspondence and requests for materials should be addressed to S.L., T.Y. or Y.C.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Z. Tao et al.

6

npj Quantum Information (2021)    73 Published in partnership with The University of New South Wales

https://doi.org/10.1038/s41534-021-00406-1
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Experimental realization of phase-controlled dynamics with hybrid digital&#x02013;nobreakanalog approach
	Introduction
	Results
	Realization of CCI
	CCI dynamics
	Chiral separation
	Entanglement generation with CCI

	Discussion
	Methods
	Experimental setup
	Effective Hamiltonian of the three-level system
	Effective Hamiltonian of the four-level system

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




