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Entangled state generation via quantum walks with multiple
coins
Meng Li 1,2 and Yun Shang 1,3✉

Generation of entangled state is of paramount importance both from quantum theoretical foundation and technology
applications. Entanglement swapping provides an efficient method to generate entanglement in quantum communication
protocols. However, perfect Bell measurements for qudits, the key to entanglement swapping, have been proven impossible to
achieve by using only linear elements and particle detectors. To avoid this bottleneck, we propose a scheme to generate
entangled state including two-qubit entangled state, two-qudit entangled state, three-qubit GHZ state and three-qudit GHZ
state between several designate parties via the model of quantum walks with multiple coins. Then we conduct experimental
realization of Bell state and three-qubit GHZ state between several designate parties on IBM quantum platform and the result
has high fidelity by performing quantum tomography. In the end, we give a practical application of our scheme in multiparty
quantum secret sharing.
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INTRODUCTION
Entanglement, a very powerful and efficient quantum resource, is
a cornerstone of many quantum communication and quantum
computation protocols. A lot of quantum schemes depend heavily
on the property of entanglement1, such as quantum key
distribution2, quantum teleportation3, quantum metrology4, and
quantum sensing5.
There is no doubt that the preparation of entangled quantum

states is of great concern in the past decades. Many schemes have
been proposed theoretically and achieved experimentally6–13. How-
ever, the preparation of high-dimensional entangled states is so
difficult that it has been implemented almost exclusively in photonic
systems14. Entanglement swapping15, also known as teleportation of
entanglement, can entangle two particles that are not related at first
by performing a joint Bell-state measurement on them, which plays
an important role in long-distance quantum communication, such as
quantum repeater16,17. However, ref. 18 has pointed out that it is
impossible to perform perfect Bell state measurement for qudits by
using only linear elements and particle detectors. It is of interest to
know if we can sidestep this thorny issue but still entangle designate
parts. And in addition to the simple case involving two-qubit
entangled quantum state, GHZ entanglement swapping by using
three pairs EPR entangled state has also been discussed19. Then,
ref. 20 demonstrated entanglement swapping between two multi-
partite entangled state, such as GHZ state and EPR state, and two
GHZ states. However, a relatively general framework for generating
entangled state via entanglement swapping is missing, let alone the
experimental platform chosen to test.
Motivated by this, we develop a scheme to generate multi-

partite entanglement in high dimensions by using quantum walks
instead of direct Bell state measurement in the framework of
entanglement swapping and thus avoid the difficulty of the
realization of Bell state measurement. Our scheme is mainly based
on the model of quantum walks with multiple coins21 which can
bring out entanglement between position space and coin space
and has been proved to be useful in quantum communication

protocols22,23. Here we mainly consider quantum walks with
multiple coins on 2-line, 2-circle, and 2-complete (d-complete)
graph, which are all the building blocks in quantum network. In
this way, we can generate two-qubit entangled state, two-qudit
entangled state, three-qubit GHZ state and even three-qudit GHZ
state between several designate parties.
In terms of experimental realization of entangled state, it is very

difficult to find an appropriate experimental preparation device
especially for the high-dimensional entangled state, let alone
universal method and experimental device. However, the physical
implementations of the quantum walk have been realized in many
different physical systems, such as trapped atom24, trapped ions25,
photonic system26, and so on. Since quantum walk is a universal
quantum computing model27–30, these schemes may provide a
universal platform for entanglement generation.
Recently, IBM Quantum Experience, as a superconducting flux

qubit based open platform, attracts the attention of many
researchers31. Many theoretical schemes in the field of quantum
computation and quantum information have been detected and
performed on this platform32–36. Here, we carry out experiments on
this platform to generate Bell state and three-qubit GHZ state
between several designate parties. Also, the accuracy of our scheme
can be verified well by performing quantum state tomography37.
Furthermore, we give its application in quantum communica-

tion. In detail, we provide an improved multiparty quantum secret
sharing protocol based on ref. 38 by using our scheme. Compared
with the original protocols, our scheme are high code capacity
and high security. And it is easy to be implemented in experiment.
The paper is organized as follows. First, we will briefly introduce

the model of quantum walks with multiple coins and give
theoretical schemes based on quantum walks that can generate
two-qubit entangled state, two-qudit entangled state, three-qubit
GHZ state, and three-qudit GHZ state. Next, we demonstrate
experiments using our schemes to generate Bell state and three-
qubit GHZ state on IBM Quantum Experience. And then, we give

1Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. 2School of Mathematical Sciences, University of Chinese
Academy of Sciences, Beijing, China. 3NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China. ✉email: shangyun@amss.ac.cn

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00401-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00401-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00401-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00401-6&domain=pdf
http://orcid.org/0000-0002-8157-0763
http://orcid.org/0000-0002-8157-0763
http://orcid.org/0000-0002-8157-0763
http://orcid.org/0000-0002-8157-0763
http://orcid.org/0000-0002-8157-0763
http://orcid.org/0000-0003-1466-5970
http://orcid.org/0000-0003-1466-5970
http://orcid.org/0000-0003-1466-5970
http://orcid.org/0000-0003-1466-5970
http://orcid.org/0000-0003-1466-5970
https://doi.org/10.1038/s41534-021-00401-6
mailto:shangyun@amss.ac.cn
www.nature.com/npjqi


an application of our schemes to multiparty quantum secret
sharing. Finally, we make a summary and outlook.

RESULTS
For the quantum walks with k coins on an arbitrary graph, the k
coins were used cyclically. The whole evolutionary Hilbert space
is H ¼ HP �HC1 � :::�HCk , where HP and HCi represent the
position space and the i-th coin space respectively. At i-th step of
quantum walks, the coin state can be flipped with the i-th coin
operator Ci and then the walker moves to another position
according to the conditional shift operator Si, which can be
described as

Ui ¼ Si � ðI � CiÞ; (1)

where Ci acts on the i-th coin space HCi and Si acts on the
combination space of position HP and i-th coin space HCi . To
make it clear that Ci and Si operate on different spaces, we
explicitly write the above unitary operator by expanding all
involved subspaces and adding the space of action of the identity
operator involved in the upper right corner of the operator, i.e.
Ui ¼ ðSi � IH

C1 ¼ � IH
Ci�1 � IH

Ciþ1 ¼ � IH
Ck Þ � ðIHp � IH

C1 ¼ � IH
Ci�1

�Ci � IH
Ciþ1 ¼ � IH

Ck Þ. After t steps, the initial state ϕð0Þj i evolves
into

ϕðtÞj i ¼ ðUk � � �U1Þt=k ϕð0Þj i: (2)

We denote the line, circle and complete graph with N vertices as
N-line, N-circle, and N-complete graph respectively. The three
corresponding conditional shift operators acting on the position
space and the coin space that is active at the step can be
written as:

SN�complete ¼
XN�1

x;j¼0

ðx þ jÞmod Nj i xh j � jj i jh j; (3)

SN�circle ¼ PN�1

x¼0
ðx þ 1Þmod Nj i xh j � 0j i 0h jð

þ ðx � 1Þmod Nj i xh j � 1j i 1h jÞ;
(4)

SN�line ¼ PN�2

x¼0
ðx þ 1Þmod Nj i xh j � 0j i 0h j

þ PN�1

x¼1
ðx � 1Þmod Nj i xh j � 1j i 1h j

þ N � 1j i N � 1h j � 1j i 0h j þ 0j i 0h j � 0j i 1h j:

(5)

In particular, when the number of vertices is 2, the conditional
shift operators are:

S2�complete ¼ ð 0j i 0h j þ 1j i 1h jÞ � 0j i 0h j þ ð 1j i 0h j þ 0j i 1h jÞ � 1j i 1h j;
(6)

S2�circle ¼ ð 1j i 0h j þ 0j i 1h jÞ � 0j i 0h j þ ð 1j i 0h j þ 0j i 1h jÞ � 1j i 1h j;
(7)

S2�line ¼ 1j i 0h j � 0j i 0h j þ 0j i 1h j � 1j i 1h j
þ 0j i 0h j � 0j i 1h j þ 1j i 1h j � 1j i 0h j: (8)

Generation of two-qubit entangled state
We start by discussing the generation of two-qubit entangled
state. And the setup is illustrated in Fig. 1a. Without loss of
generality, we can assume that the initial state of the four particles
is

ψð0Þj i ¼ a 01j i þ b 10j ið Þ1;2 a 01j i þ b 10j ið Þ3;4; (9)

where ∣a∣2+ ∣b∣2= 1. Now we try to generate entanglement
between particle 1 and 4. Here, we can view particle 1 and 2, 3, 4
as walker and three coins respectively. And thus we can consider
quantum walks with three coins on 2-line, 2-circle and 2-complete
graph.
For the case of quantum walks with three coins on 2-line, we

can perform two-step quantum walks where C1= H and C2= I.
According to conditional shift operator and initial state shown in
Eqs. (8) and (9), the evolution process is written as follows:

ψð1Þj i ¼ 1ffiffi
2

p a2 1001j i � a2 0001j i þ ab 1010j i � ab 0010j ið
þ ab 1101j i þ ab 0101j i þ b2 1110j i þ b2 0110j i�1;2;3;4;(10)

ψð2Þj i ¼ 1ffiffi
2

p �a 00j i þ a 01j i þ b 10j ið
þb 11j iÞ2;3 a 11j i þ b 00j ið Þ1;4

: (11)

Therefore, we can definitely obtain entangled state between
particle 1 and 4 by performing two local measurements on the
other two particles. In particular, the state will be Bell state, also
known as maximal entangled state, when a ¼ b ¼ 1ffiffi

2
p .

In the case of quantum walks with three coins on 2-circle, it is
impossible to get entangled between particle 1 and 4 no matter
how many steps we take. In this case, the conditional shift
operator happens to be the second-order Pauli matrix X2.
Therefore, the general form of evolved quantum state under
three-step quantum walks is ðI � C1 � C2 � C3Þða2 1101j iþ
ab 1110j i þ ab 0001j i þ b2 0010j iÞ. And it has a definite explicit
form by giving three unitary coin operators with parameters. Then,
it is not hard for us to find that there is no satisfied coin operator
by analyzing the final state with parameters.
As regards quantum walks with three coins on 2-complete

graph, we can take three-step quantum walks where C1= I, C2= H
and C3= X2. Thus the whole evolutionary process can be

Fig. 1 The schematic diagram of our scheme. The small boxes indicate particles and the dotted lines indicate entanglement. a represents the
generation of bipartite entangled state. b represents the generation of GHZ state. Due to the symmetry of the particles, any two or three
unrelated particles can be entangled by our scheme. But for the sake of narration, let us take entanglement generation of particles 1, 4 and
particles 1, 4, 5 as examples.
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described as follows:

ψð1Þj i ¼ a2 1101j i þ ab 1110j i þ ab 1001j i þ b2 1010j i� �
1;2;3;4;

(12)

ψð2Þj i ¼ 1ffiffi
2

p a2 1101j i þ a2 0111j i þ ab 1100j i � ab 0110j ið
þ ab 1001j i þ ab 0011j i þ b2 1000j i � b2 0010j i�1;2;3;4;

(13)

ψð3Þj i ¼ 1ffiffi
2

p b 00j i þ a 10j ið Þ2;3ða 10j i þ b 01j iÞ1;4
h

þ b 01j i þ a 11j ið Þ2;3 a 00j i � b 11j ið Þ1;4
i
:

(14)

So we obtain entanglement between particle 1 and 4 by
performing three-step quantum walks and two local measure-
ments. Of course, the state obtained happens to be Bell state
when a ¼ b ¼ 1ffiffi

2
p . In addition, there are other ways to select coin

operators to generate entanglement. For example, C1= I, C2= X2,
C3= H or C1= X2, C2= X2, C3= H, or C1= X2, C2= H, C3= X2 can
also be used to generate entanglement between particle 1 and 4.

Generation of two-qudit entangled state
High-dimensional entangled states are of paramount interest both
from a theoretical and practical perspective. Generalized Bell
states in Hilbert space Cd⊗ Cd, a basis of maximally entangled
high-dimensional bipartite states, can be described as3,39

ψk;l

�� � ¼ 1ffiffiffi
d

p
Xd�1

m¼0

exp
2πi
d

mk

� �
mj i m� lj i; (15)

where m−l means ðm� lÞmod d. The general entangled state
can be written as

Pd�1
i¼0 ai ij i ij i, where

Pd�1
i¼0 jaij2 ¼ 1. For the sake

of simplicity, we denote d-order generalized Pauli operator as
Xd ¼Pd�1

i¼0 i þ 1j i ih j, which is also known as discrete Weyl
operator. Next, we propose two schemes to generate maximal
and non-maximal entangled high-dimensional states (two-qudit
entangled state) by performing quantum walks with three coins
on d-complete graph. And its schematic diagram is shown in
Fig. 1a.
For the case of maximal entangled state, the initial state is

ψð0Þj i ¼ ψk;l

�� �
1;2

ψk;l

�� �
3;4

¼ 1
d

Pd�1
m;n¼0 expð2πid ðmþ nÞkÞ m;m� l; n;j

n� li. Now we can perform three-step quantum walks where
C1= I, C2= F (Fourier transformation) and C3= Xd. Thus, we can
obtain the final state:

ψð3Þj i ¼ 1
d

Pd�1

m;p¼0
exp 2πi

d mk
� �

m� lj i2 pj i3 1ffiffi
d

p
Pd�1

n¼0

�	

exp 2πi
d ðk þ pÞn� �

2mþ pþ n� 2l þ 1j i1 n� l þ 1j i4
�
 : (16)

Then we take two local measurements on particle 2 and 3
and assume that the result are expð2πid m0kÞ m0 � lj i2 p0j i3. So
the reduced state would be expð� 2πi

d ð2m0 þ p0 � 2l þ 1Þ
ðk þ p0ÞÞjψkþp0;2m0þp0�li1;4.
More generally, in the case of non-maximal entangled state, the

initial state can be written as ψð0Þj i ¼ Pd�1
i¼0 ai ij i ij i

� �
1;2
�Pd�1

j¼0 bj jj i jj i
� �

3;4
, where

Pd�1
i¼0 jai j2 ¼

Pd�1
j¼0 jbjj2 ¼ 1. After the

same three-step quantum walks (C1= I, C2= F and C3= Xd), the
final state will be ψð3Þj i ¼ 1ffiffi

d
p
Pd�1

i;k¼0½ai ij i2 kj i3ð
Pd�1

j¼0 bj
expð2πid jkÞ 2i þ j þ k þ 1j i1 j þ 1j i4Þ�. Similarly, particle 1 is
entangled with 4 after two local measurements.

Generation of three-qubit GHZ state
The three-qubit GHZ states maximize entanglement mono-
tones40,41 and have extremely non-classical properties. The setup
for this problem is shown in the Fig. 1b. The initial state of the five
particles can be written as

ψð0Þj i ¼ a 01j i þ b 10j ið Þ1;2
000j i þ 111j iffiffiffi

2
p

� �
3;4;5

; (17)

where ∣a∣2+ ∣b∣2= 1. In order to generate entanglement between
particle 1, 4, and 5, we can view these five particles as the walker
and four coins respectively. So we can discuss the quantum walks
with four coins on 2-line, 2-circle, and 2-complete graph.
Let us start by talking about the case of quantum walks with

four coins on 2-line. And in order to do that, we perform two-step
quantum walks where C1= H and C2= X. Thus the initial quantum
state presented in Eq. (17) will evolves over time into

ψð1Þj i ¼ 1
2

�a 00j i þ b 01j i þ a 10j i þ b 11j ið Þ1;2 000j i þ 111j ið Þ3;4;5;
(18)

and

ψð2Þj i ¼ 1
2

�a 00j i þ a 01j i þ b 10j i þ b 11j ið Þ2;3 000j i þ 111j ið Þ1;4;5:
(19)

Then we just have to make local measurements of particle 2
and particle 3, and no matter what the measurements are, the
remaining three particles always collapse to be GHZ state.
For quantum walks with four coins on 2-circle, particle 1, 4, and 5

will never get entangled no matter how many steps we take. Given
an initial state in Eq. (17), after four steps the state evolves to
1ffiffi
2

p ðI � C1 � C2 � C3 � C4Þða 01000j i þ a 01111j i þ b 10000j i þ b 10111j iÞ
, where these four operators can be any unitary operator of the
second order. By calculating the undetermined coefficients of
these four coin operators, we find that particle 1, 4, and 5 are never
completely entangled.
In regard to the quantum walks with four coins on 2-complete

graph, we can generate entanglement between particle 1, 4 and 5
by performing four-step quantum walks where C1= C2= I and
C3= C4= H. After the first two steps of quantum walks, the
quantum state evolves into

ψð2Þj i ¼ 1ffiffiffi
2

p a 11000j i þ a 01111j i þ b 10000j i þ b 00111j ið Þ1;2;3;4;5:
(20)

The resulting state will be

ψð3Þj i ¼ 1
2 a 11000j i þ a 01010j i þ a 01101j i � a 11111j ið
þ b 10000j i þ b 00010j i þ b 00101j i � b 10111j iÞ1;2;3;4;5

(21)

after one step with coin operator C3= H. And then the final
quantum state can be described as follows:��ψð4Þ� ¼ 1

2
ffiffi
2

p
ðbj00i þ aj10iÞ2;3ðj100i þ j001i þ j010i þ j111iÞ1;4;5

þðbj01i þ aj11iÞ2;3ðj000i � j101i � j110i þ j011iÞ1;4;5
�
(22)

So we can get the GHZ-like state42 of particle 1, 4, and 5, which
is the entangled quantum state and belongs to the class of GHZ
state, by taking two local measurements of particle 2 and 3.

M. Li and Y. Shang
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Generation of three-qudit GHZ state

Three-qudit GHZ state can be written as 1ffiffi
d

p
Pd�1

n¼0 nj i�3

. And its

generation process is presented in Fig. 1b. For the initial state

ψð0Þj i ¼ ψk;l

�� �
1;2

1ffiffi
d

p
Pd�1

n¼0
nj i�3

� �
3;4;5

¼ 1
d

Pd�1

m;n¼0
exp 2πi

d mk
� �

m;m� l; n; n; nj i1;2;3;4;5;
(23)

we can perform four-step quantum walks with four coins on
d-complete graph by choosing C1= C2= I and C3= C4= F to
establish the entanglement between particle 1, 4 and 5 that are
unrelated at first. The evolutionary process can be described as
follows:

ψð2Þj i ¼ 1
d

Xd�1

m;n¼0

exp
2πi
d

mk

� �
2m� l þ n;m� l; n; n; nj i1;2;3;4;5;

(24)

ψð4Þj i ¼ 1
d2

Pd�1

m;n;p;q¼0
exp 2πi

d ðmk þ npþ nqÞ� �
2m� l þ nþ pþ q;m� l; n; p; qj i1;2;3;4;5

¼ 1
d

Pd�1

m;n¼0
exp 2πi

d mk
� �

m� lj i2 nj i3


1
d

Pd�1

p;q¼0
exp 2πi

d ðnpþ nqÞ� �
2m� l þ nþ pþ q; p; qj i1;4;5

 !#
:

(25)

Then we can obtain an entangled state of particle 1, 4 and 5 by
performing two local measurements on particle 2 and 3. Note that
any state like

Pd�1
p;q¼0 x0 þ pþ q; p; qj i is completely entangled,

where x0∈ {0, 1, 2,… , d− 1}. It can be seen as the high-
dimensional case of GHZ-like state.

Experimental protocol
We provide the experimental realization of our scheme using IBM
quantum computer ibmq_5_yorktown− ibmqx2 (it is called ibmqx2
for short) and ibmq_qasm_simulator (simulator) with 8192 number
shots (see Supplementary Note 1 for the introduction). Here, we
mainly discuss the generation of standard Bell state and three-
qubit GHZ state based on quantum walks. To verify the effect of
our scheme, we focus on the fidelity between the theoretical and
experimental (simulation) results by performing quantum state
tomography37. Here the theoretical results can be calculated in
our schemes directly. The experimental results are obtained on a
real quantum machine, i.e. on ibmqx2. And the simulation results
are provided on a quantum simulator, which is a classical
computer that simulates the quantum operation under realistic
device noisy models.
Based on the theoretical scheme, we provide the corresponding

IBM quantum circuit that can be seen in Fig. 2 to generate Bell
state by performing three-step quantum walks on 2-complete
graph. And the results, measured in Z-basis, are shown in Fig. 3.
According to the Fig. 3a, the simulation seems very close to the
theoretical result (there are eight outcomes appeared in Fig. 3a
and the probability of each is 12.5%). And the results on
ibmqx2 shown in Fig. 3b are not as good as the simulation
results. In fact, there are some noises on the quantum platform,

Fig. 2 Quantum circuit for generating Bell state between two parties that are not related at first. The measurements on q[0] and q[3] are in
X-basis. The measurements on q[1] and q[2] are in Z-basis.

Fig. 3 The probability results of quantum circuit after four measurements in Z-basis. a is on simulator and b is on ibmqx2.
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such as decoherence, depolarizing, general noises and so on,
which result in the discrepancy between theoretical values
and the run results. According to the quantum state tomogra-
phy37 and the detailed experimental data, we find that the
fidelity between theoretical and simulation density matrix
FðρTij ; ρE simulator

ij Þ where i, j∈ {0, 1} are approximately equal to 1
(see Supplementary Note 2). And the fidelity between theoretical
and experimental density matrix FðρTij ; ρE ibmqx2

ij Þ are 0.8535,
0.8793, 0.7909, 0.8549 (see Supplementary Note 2).
As for the generation of three-qubit GHZ state, we provide the

corresponding IBM quantum circuit diagram that can be seen in
Fig. 4a, which is realized by performing two-step quantum walks
on 2-line. The whole design idea is similar to the experimental
realization of Bell state. The only thing that needs to be noticed is
the design of shift operator on 2-line. Here we give the simulation
results and probability results on ibmqx2 in Fig. 4b, c, respectively.
The analysis of the experimental results can be similarly obtained,
so we will not repeat it.

Application
In fact, our proposed schemes not only generate entangled states,
but also really work in the quantum domain. To illustrate this
point, here we present an application of our scheme in the field of
quantum cryptography. In order to share secret among some
agents and reconstruct it only when they collaborate together, the
scheme of quantum secret sharing (QSS) was proposed in 199943.

Zhang proposed a multiparty quantum secret sharing (MQSS)
protocol by using entanglement swapping38. Then Lin and Zhang
revised and improved the protocol, respectively44,45.
Here, we improve and extend the performance of MQSS

protocol proposed by Zhang38 by using our scheme. According to
our scheme, for the initial state

jϕð0Þi ¼ jψx;yi1;2jψk;li3;4
¼ 1

d

Pd�1

m;n¼0
exp 2πi

d mx þ nk
� �jm;m� y; n; n� li1;2;3;4;

(26)

after three-step quantum walks (the coin operators are I, F, Xd in
sequence), we could obtain the final state

ϕð3Þj i ¼ 1
d
ffiffi
d

p
Pd�1

m;n;p¼0
exp 2πi

d mx þ nk þ np
� �

2mþ pþ n� y � l þ 1;m� y; p; n� l þ 1j i1;2;3;4
¼ 1

d

Pd�1

m;p¼0
exp 2πi

d mx � 2mþ p� y � l þ 1ð Þðk þ pÞð Þ� �
m� yj i2 pj i3 ψkþp;2mþp�y

�� E
1;4
:

(27)

Fig. 4 The experimental demonstration of generating GHZ state. a Quantum circuit for generating three-qubit GHZ state between three
parties that are not related at first. b The simulation results of quantum circuit after five measurements in Z-basis. c The probability results of
quantum circuit on ibmqx2.
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Assume that d is odd, we can set up a bijection between the
pairs (m− y, p) and (k+ p, 2m+ p− y), where y and k are known
fixed numbers.
Let Ui ¼ Xi

d ¼Pd�1
j¼0 j þ ij i jh j be d local unitary transformations

(i= 0, 1,… , d− 1) that correspond to dlog de classical bits
respectively. To be specific, U0 corresponds to ”0… 000”, U1

corresponds to ”0… 001”, U2 corresponds to ”0… 010” and so on.
Based on the property Ui holds,

ðI � UiÞ ψk;l

�� � ¼ ψk;l�i

�� �
; (28)

we can establish correspondence between the unitary operators
{Ui: i= 0, 1,… , d− 1} and generalized Bell states f ψk;l

�� �
: l ¼

0; 1; � � � ; d � 1g for an arbitrary fixed k. Next, we will show the
improved MQSS based on38 in which d is an odd number. And the
schematic flow chart of the whole process is shown in Fig. 5.

1. Alice prepares three identical generalized Bell state pairs
jψk;li1;2, jψk;li3;4 and jψk;li5;6. She sends qudit 2 and 3 to Bob,
4 and 5 to Charlie via their quantum channels respectively.
Then, Alice enters step 2 with probability q, or enters step 3
with probability 1− q.

2. Alice chooses randomly from two mutually unbiased
measurement basis, M1 ¼ f ij i : i ¼ 0; 1; ¼ ; d � 1g and
M2 ¼ fj~ii : i ¼ 0; 1; ¼ ; d � 1g, where j~ii ¼ 1ffiffi

d
p
Pd�1

j¼0

expð2πid ijÞjji. Alice tells Bob the basis she has chosen. They
measure qudit 1 and 2 by chosen measurement basis
respectively. Then Bob tells Alice his outcome of qudit 2.
Alice compares these two outcomes to judge the security of
Alice-Bob quantum channel (For example, if the generalized
Bell state pairs that Alice prepares is ψ0;0

�� �
, these two

measurement outcomes must be identical when the
channel is safe). The security of Alice-Charlie quantum
channel can also be checked in the same way. If the two
channel are both secure, returns to step 3. Otherwise, this
process will be terminated.

3. Alice applies a local unitary operator chosen randomly from
{Ui: i= 0, 1,… , d− 1} on one of her qudits 1 and 6 (say, on
qudit 6). Firstly, they perform three-step quantum walks on
qudit 5, 6, 1 and 2. Alice performs two local measurements
on qudit 6 and 1 and announces her outcome. Next, they
perform three-step quantum walks on qudit 5, 2, 3, and 4.
Bob performs two local measurements on qudit 2 and 3 and
writes down the outcomes. At this times, Charlie records his

own state. Bob and Charlie can deduce the unitary
transformation Alice performs and the classical bits Alice
wants to share.

Now let us explain how we derived Ui in step 3 based on the
three measurement results they announced and evolutionary
properties. Without loss of generality, we can denote the outcome
Alice announces as a; bj i6;1. Suppose the quantum state of qudit 5
and 2 is jψk;li after the first quantum walks. According to Eq. (27),
we can denote the outcome Bob writes down and the state
Charlie possesses as jm� l; pi2;3 and jψkþp;2mþp�li5;4 respectively.

Since k is known, p, m and l are also known. Next we can infer that
k ¼ k þ b and the state of qudit 5 and 6 after the local unitary
transformation performed by Alice is jψk;l�b�2ai5;6 based on the

first quantum walks. Thus, the unitary transformation Alice
performed is Ul�ðl�b�2aÞ. Note that the above-mentioned addition
and subtraction methods are all of modulo d. So it is not hard to
infer the classical bits Alice wants to share.
In addition, our protocol can also be generalized to a multiparty

case. Without loss of generality, we suppose that there are N
parties in total. First, the sender prepares N identical generalized
Bell state pairs and distributes two qudits to the agents one by
one and does not tell their the ordering of the two qudits. So the
i-th agent and the i+ 1-th agent share a generalized Bell state
pair. And the N-th agent will share a generalized Bell state pair
with the sender. Then, they check the security of quantum
channel (step 2) with probability q or transmit message (step 3)
with probability 1− q. The order of quantum walk and measure-
ments, which is crucial for the whole process, is the same as the
order of entanglement swapping in the previous protocol44,45. The
security (even in a noisy channel) can be guaranteed on step 2 by
the similar discussions in ref. 38,44,45. For example, the commu-
nication protocol here is secure against the intercept and resend
attack (i.e., Eve intercepts the qudit during the transmission
between Alice and Bob, and sends a fake qudit to Bob) and direct
measurement attack (Eve intercepts the qudit, makes the
measurement and resends the measured qudit to Bob), which
can be guaranteed by step 2. When it enters into the step 3, the
whole process becomes evolution of quantum walk which takes
place in an isolated system and does not involve a transmission
channel. So it is safe.
Now, let us make some comparisons between our scheme and

the other schemes38,46. Compared with ref. 38, the advantage of

Fig. 5 The schematic diagram of the improved multiparty quantum secret sharing. The small boxes indicate particles and the dotted lines
indicate entanglement. The particles in yellow belong to Alice. The particles in green and red are in Bob’s and Charlie’s possession. The purple
particle has been performed by a unitary operator.
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our scheme is that the capacity of classical messages it can
distribute is much larger. Specifically, it is a task to distribute N ¼
dlog de classical bits instead of just two bits. In addition, ref. 38

needs 3N
2ð1�qÞ Bell states in step 3. Our scheme just needs 3

1�q

generalized Bell states. Although the preparation of generalized
Bell state is difficult with the current technological level, our
scheme may show some advantage in theory. It could be better
when the generalized Bell state is possibly generated in the lab.
Thus, from the view point of the resource, our scheme is much
better theoretically and has the merit of potential application.
In ref. 46, Zhang et.al designed a MQSS protocol by swapping

qutrit-state entanglement and then generalized to the qudit case, in
which the so-called two-qutrit (two-qudit) entangled-state mea-
surement is crucial but hard to implement in experiment. Our
scheme avoids the difficulty in the experimental realization of Bell
state measurement, especially for the measurement of high
dimensional Bell state18. So our protocol is more feasible than the
one in ref. 46. Here we give a theoretical scheme to do QSS by
quantum walk and provide the potential implementation merit by
IBM quantum machine. Because quantum walk is a universal
quantum computing platform, it may inspire some different idea for
the implementation of QSS in a truly distributed quantum system.

DISCUSSION
The generation of entanglement, especially in the high-
dimensional case, between several designated parties is vital
and essential in scalable quantum network. Inspired by entangle-
ment swapping, we have developed a scheme to generate
entangled state by using quantum walks with multiple coins,
including two-qubit entangled state, two-qudit entangled state,
three-qubit GHZ state, and three-qudit GHZ state. In comparison
with original entanglement swapping, the benefit of using our
scheme is expected to avoid performing joint Bell state
measurement that is still an unsolved problem to date, and
provide a relatively general framework for generating entangled
state via entanglement swapping.
Also, we provide the experimental realization of our scheme to

generate Bell state and three-qubit GHZ state on IBM platform.
And our scheme exhibits high fidelity by performing quantum
state tomography. Moreover, we present an improved multiparty
quantum secret sharing by using our our scheme. After our
improvement, it can convey more classical information and
require less quantum resources.
It remains an interesting open question to design further the

GHZ state and W state for a system of n qubit, where n is an
arbitrary integer. It is also highly desired to extend our method to
more practical applications.

DATA AVAILABILITY
The experimental data that supports our finding are available from the correspond-
ing author on reasonable request.
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