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Experimental test of the Greenberger–Horne–Zeilinger-type
paradoxes in and beyond graph states
Zheng-Hao Liu 1,2,7, Jie Zhou3,7, Hui-Xian Meng4,5, Mu Yang1,2, Qiang Li1,2, Yu Meng1,2, Hong-Yi Su6, Jing-Ling Chen 3✉, Kai Sun1,2,
Jin-Shi Xu 1,2✉, Chuan-Feng Li 1,2✉ and Guang-Can Guo1,2

The Greenberger–Horne–Zeilinger (GHZ) paradox is an exquisite no-go theorem that shows the sharp contradiction between
classical theory and quantum mechanics by ruling out any local realistic description of quantum theory. The investigation of GHZ-
type paradoxes has been carried out in a variety of systems and led to fruitful discoveries. However, its range of applicability still
remains unknown and a unified construction is yet to be discovered. In this work, we present a unified construction of GHZ-type
paradoxes for graph states, and show that the existence of GHZ-type paradox is not limited to graph states. The results have
important applications in quantum state verification for graph states, entanglement detection, and construction of GHZ-type
steering paradox for mixed states. We perform a photonic experiment to test the GHZ-type paradoxes via measuring the success
probability of their corresponding perfect Hardy-type paradoxes, and demonstrate the proposed applications. Our work deepens
the comprehension of quantum paradoxes in quantum foundations, and may have applications in a broad spectrum of quantum
information tasks.
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INTRODUCTION
One of the most prominent features about quantum mechanics
(QM) is its intrinsic nonlocality1, namely, QM cannot be
reconciled with local realism2, thus no local-hidden-variable
(LHV) models can completely reproduce the predictions of
quantum theory. Since its discovery, quantum nonlocality has
found many significant applications in quantum computation3–5,
device-independent quantum key distribution6–8, and genuine
random number generation9,10. It is also a kind of resource
playing a vital role in the field of quantum information11,12. The
Bell-type inequalities, which bound the correlations produced by
any LHV models but can be statistically violated by QM, are
arguably the most common tools for revealing the nonlocality.
Some renowned examples include the two-qubit Clauser-Horne-
Shimony-Holt inequality13 and the multi-qubit Mermin-Ardehali-
Belinskiĭ-Klyshko inequality14–16.
Strikingly, in some measurement scenarios, QM and LHV models

give contradictory predictions on whether a specific set of
outcomes is even possible. Proofs of nonlocality stemmed from
these scenarios are termed possibilistic nonlocality17. They occupy
a strictly higher hierarchy than the statistical proof in the sheaf-
theoretic approach, and can reveal the nonlocality of QM using
very few measurements and copies of states prepared. The first
proof of possibilistic nonlocality, due to Greenberger, Horne and
Zeilinger (GHZ)18, uses three qubits to formulate a paradox “+1C=
−1Q” in every round of experiment. Here, the terminology +1C=
−1Q denotes the contradictory predictions given by the quantum
and classical theory for the measurement outcome of an
observable. Two-qubit systems can also manifest possibilistic
nonlocality, but with a success probability of less than 1, and this
way of observing nonlocality is later entitled Hardy’s paradox19.

Furthermore, Hardy’s paradox has been generalized to the multi-
setting scenarios20, multipartite21, and high-dimensional22 systems.
The research of the GHZ paradox has achieved vigorous

developments. It was experimentally tested23 with three qubits,
and can be observed in a fault-tolerant manner by using non-
abelian anyons24 to avoid the detection loophole. Besides the GHZ
states, the earlier GHZ-type paradox is also known to be present in
other pure states, such as the linear cluster states25 and, more
generally, a class of highly entangled multipartite states called graph
states26. The investigation of the GHZ-type paradox has a
continuous interest, since there are still some remnant issues with
particular importance that require further investigation: (i) it is
currently unknown whether a GHZ-type paradox can be exploited to
determine a graph state; (ii) it is also not clear whether GHZ-type
paradoxes exist for the states that are not equivalent to graph states
under local unitary; and (iii) there is no known method to
experimentally test of a GHZ-type paradox with an efficient way, i.
e, through its equivalent Hardy’s paradox. Resolution to these issues
may yield significant applications of quantum paradoxes.
In this article, we address the above issues to advance the study

of GHZ-type paradoxes in quantum mechanics: First, a unified
construction for the GHZ-type paradox is presented, naturally
including all the previous results for graph states. For a graph with
odd number of total vertices and at least one vertex being universal
(i.e, connecting all the other vertices), observation of the GHZ-type
paradox verifies the corresponding graph states, and efficiently
detects multipartite entanglement. Second, due to a Hamiltonian
description, some single-qubit Clifford equivalent graph states, their
coherent superpositions and convex mixtures are also found to
have the GHZ-type paradoxes. As such, the GHZ-type paradox exists
beyond the graph states. Interestingly, for the convex mixtures of
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some single-qubit Clifford states that support the GHZ-type
paradox + 1C=−1Q for Bell nonlocality, GHZ-type paradoxes
1C= 2Q for EPR steering27 can be established, thus manifesting
the sharp contradictions between a broader class of semiclassical
models and quantum theory. Finally, the GHZ-type paradoxes can
be converted to the perfect Hardy’s paradox, on which we perform
an experimental test through measuring the success probability in
Hardy’s paradox, thus providing an efficient way to reveal the GHZ-
type paradoxes. Our experimental results are in agreement with the
theoretical predictions with high accuracy, thus advance the study
of the field of quantum paradoxes.

RESULTS
GHZ-type paradox for graph states
To introduce the idea of GHZ-type paradoxes, we begin with
an explicit example based on the 3-qubit GHZ state
GHZ3j i ¼ ð 000j i þ 111j iÞ= ffiffiffi

2
p

. In this case, the results of the Pauli
measurements,

E1 ¼ σ1
xσ

2
xσ

3
x

� �
GHZ3j i ¼ þ GHZ3j i;

E2 ¼ σ1
xσ

2
yσ

3
y

h i
GHZ3j i ¼ � GHZ3j i;

E3 ¼ σ1
yσ

2
xσ

3
y

h i
GHZ3j i ¼ � GHZ3j i;

E4 ¼ σ1
yσ

2
yσ

3
x

h i
GHZ3j i ¼ � GHZ3j i;

(1)

cannot be interpreted by any LHV model: when we assign the
dichotomic values v= ±1, as pre-determined by the hidden
variables, to each measurement outcome, σi

ν ! viν , ν ∈ {x, y, z},
i ∈ {1, 2, 3}, they must satisfy v1xv

2
xv

3
x ¼ þ1, v1xv

2
yv

3
y ¼ �1,

v1yv
2
xv

3
y ¼ �1, and v1yv

2
yv

3
x ¼ �1 in order to recover the predic-

tions of QM. However, multiplying over these equations

yields �1q ¼LHV ðv1xÞ2ðv1yÞ2ðv2xÞ2ðv2yÞ2ðv3xÞ2ðv3yÞ2 ¼ þ1c , a sharp
contradiction.
The graph state is the common eigenstate of the stabilizing

operators28 for an undirected, connected graph G, which has m
vertices. We define Cj

i as the connectivity of the vertices i and j, so
that Cj

i ¼ 1ð0Þ means that vertices i and j are connected
(disconnected). For each vertex i, the stabilizing operators read:

Si ¼ σix
Y

j≠i

ðσj
zÞ

Cj
i ; (2)

where i, j= 1, 2,⋯ ,m; σx,y,z are Pauli matrices; and ðσj
zÞC

j
i ¼ σj

zð1Þ if
Cj
i is 1(0). The operators Si are involutory and mutually commutative,

and serve as the generators of an abelian group, namely,
the stabilizing group. The ground state of the Hamiltonian
H ¼ �Pm

i¼1 Si is then defined as the graph state Gj i (i.e.,
Si Gj i ¼ þ Gj i; 8i 2 f1; � � � ;mg). To construct the GHZ-type para-
dox, we focus on a vertex labeled as 1 with a degree of n+ 1, where

3 ≤ n ≤m. Without loss of generality, its neighbor vertices are
labeled as 2, 3,…, n, and the other vertices unconnected to it are
labeled n+ 1, n+ 2,…,m. Then, the following theorem then holds.
Theorem 1.— A GHZ-type paradox can be formulated from the

observables E in Table 1. The cardinality of {E} is n+ 1 when n is
odd, and n when n is even.
A sketch of the construction of Theorem 1 is presented in the

Methods section, and the detailed proof for it is provided
in Supplementary Information (SI) (See Supplementary Informa-
tion for proofs of the theorem, some examples and experimental
details.). In SI, we apply the Theorem 1 on all possible graphs with
m= 3 and 4 to recover the GHZ-type paradoxes above and in18,25.
A concrete example for m= 4 is as follows.
Example 1.— Consider a (m, n)= (4, 3) linear graph connected as

2—1—3—4. Its connectivity reads C2
1 ¼ C3

1 ¼ C4
3 ¼ 1, and

the other C values are zero. The ground state of H is
the 4-qubit cluster state with the form Gj i ¼ ð þ0þ 0j iþ
þ0� 1j i þ �1� 0j i þ �1þ 1j iÞ=2, where ±j i ¼ ð 0j i± 1j iÞ= ffiffiffi

2
p

.
From theorem 1, we have a2= a3= 1, so the GHZ-type paradox
can be derived from operato1rs fS1 ¼ σ1

xσ
2
zσ

3
z1;�S1S2S3 ¼

σ1xσ
2
yσ

3
yσ

4
z ; S1S2 ¼ σ1

yσ
2
yσ

3
z1; S1S3 ¼ σ1

yσ
2
zσ

3
yσ

4
zg. Under local unitary

transformation, the ground state is equivalent to the standard
form of the cluster state LC4j i ¼ ð 0000j i þ 0011j i þ 1100j i�
1111j iÞ=2. Then we recover the usual construction of the GHZ-
type paradox for the 4-qubit cluster state as25
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E4 ¼ σ1
yσ
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3
yσ

4
x

h i
LC4j i ¼ þ LC4j i:

(3)

Based on equation (3), we have the quantum prediction
Q ¼ Q4

i¼1 LC4h jEi LC4j i ¼ �1. However, in the LHV models, the
product of the observable σi

ν ’s expectation values viν are
ðv1xÞ2ðv1yÞ2ðv2xÞ2ðv2yÞ2ðv3yÞ2ðv3z Þ2ðv4xÞ2 ¼ þ1, thus leading to the
GHZ-type paradox+ 1C=− 1Q.

Quantum state verification. A GHZ-type paradox is of particular
interest if, using the specific observables, the paradox can be
observed only with a specific graph state Gj i, similar to the
situation of a Bell inequality that gives a single maximum for
Gj i29–31. From the form of Theorem 1, when m= n is odd, any
n operators E can still generate the n stabilizers of G, so their
grand total cannot have a degenerate ground state. Further-
more, in the case of n=m, there are no unmeasured qubits
and the GHZ-type paradox constructed from operators
E singles out Gj i.

Entanglement detection. Theorem 1 also has a significant
application in entanglement detection. In the case of odd n, we
may transform the GHZ-type paradox into the Bell’s inequality

In ¼
Xnþ1

i¼1

f i Eih i �LHV n� 1; (4)

with f i ¼ Gh jEi Gj i 2 fþ1;�1g; the maximal violation is then
directly given by IQM

n ¼ nþ 1. Note that every stabilizer appears
an even number of times in all E, so

Qnþ1
i¼1 f iEi ¼ 1. Moreover, the

second-largest and the smallest eigenvalues of
Pnþ1

i¼1 f iEi are n− 3
and− n− 1, respectively. According to the properties of the
spectrum, the value of In evaluated for quantum state ψj i can be
related to the fidelity of ψj i with respect to the target graph state.
Using the two extremes above, it is straightforward to conclude
that for relatively large In, the fidelity is sandwiched between

Table 1. Construction of GHZ-type paradoxes for graph states.

Symbol Definition of symbol

{E} := (for odd n) fð�1Þai Sai1 SiSiþ1 j i 2 f2; � � � ; n� 1gg
∪ fS1g∪ San1 Sj j j 2 f2; ng� �

{E} := (for even n) ð�1Þai Sai1 SiSiþ1 j i 2 f2; � � � ; ngf g∪ fS1g
Miscellaneous ai ¼ 1þ Cn

2 þ
Pn�1

k¼2;k≠i C
kþ1
k

Sai1 ¼ S1; if Mod ai ; 2½ � ¼ 1;
1; if Mod ai ; 2½ � ¼ 0;

; Snþ1 ¼ S2

�

The set of observables {E} as defined herein manifests a GHZ-type paradox
for a graph state Gj i with its graph representation G having connectivity Cj

i ,
and the stabilizing operators of Gj i being Si.
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ðIn � nþ 3Þ=4 and ðIn þ nþ 1Þ=ð2nþ 2Þ. Therefore, the amount
of violation of (4) gives a lower bound of the fidelity between an
unknown state and the target graph state. Especially, violating (4)
guarantees a fidelity of at least 50%.
Moreover, when the argument is applied to a target state with a

large Schmidt measure32, a quantum value In that is well below
the LHV bound can still reflect non-trivial feature of entanglement.
For example, the 5-qubit ring graph state RC5j i in Fig. 1 has a
Schmidt measure of 3, so a fidelity of 2−3= 0.125 with RC5j i
already guarantees entanglement. As this only requires achieving
I5 � 2:5 with the Bell-type inequality (4), our construction has the
notable feature of revealing non-classicality even when the
observed correlation is not strong enough to reject the LHV
models.

GHZ-type paradox beyond graph states
So far, only graph states have been known to be able to exhibit
GHZ-type paradoxes. Here, we show that there are GHZ-type
paradoxes presenting beyond graph states. Let us consider the
measurement operators in Example 1. We can define a new
Hamiltonian H0 ¼ �ðE1 þ E2 þ E4Þ þ E3, whose ground states are
interestingly two-fold degeneracies, i.e., H0 LC4j i ¼ �4 LC4j i and
H0 LC0

4

�� 	 ¼ �4 LC0
4

�� 	
, with LC0

4

�� 	 ¼ ð1� 1� 1� σxÞ LC4j i. As in
equation (3), we can verify that the extended cluster state

LC4ðθÞj i ¼ cos θ LC4j i þ sin θ LC0
4

�� 	
(5)

also exhibits a GHZ-type paradox (See Supplementary Information
for proofs of the theorem, some examples and experimental
details.). For θ ≠ 0, π/2, it is easy to check that the pure state
LC4ðθÞj i is not the common eigenstate of operators {Si}; it thus
cannot be viewed as a graph state. Therefore, we have a GHZ-type
paradox for the non-graph state LC4ðθÞj i.
Furthermore, let us consider the following mixed state

ρðθÞ ¼ cos2θ LC4j i LC4h j þ sin2θ LC0
4

�� 	
LC0

4


 ��: (6)

It can be verified that a GHZ-type paradox is also valid and that
the paradox is θ-independent (i.e., Q ¼ Q4

i¼1 tr½ρðθÞEi� ¼ �1). In
addition, based on Fig. 1c in SI (See Supplementary Information
for proofs of the theorem, some examples and experimental
details.), we similarly obtain GHZ-type paradoxes for other
non-graph states, i.e., the extended GHZ state GHZ4ðθÞj i ¼
cos θ GHZ4j i þ sin θ GHZ0

4

�� 	
and the mixed state ρ0ðθÞ ¼

cos2θ GHZ4j i GHZ4h j þ sin2θ GHZ0
4

�� 	
GHZ0

4


 ��, with GHZ4j i ¼
ð 0000j i þ 1111j iÞ= ffiffiffi

2
p

and GHZ0
4

�� 	 ¼ ð 1000j i þ 0111j iÞ= ffiffiffi
2

p
.

Steering paradox for mixed states. In 2007, Wiseman et al.
classified quantum nonlocality into three distinct types: quantum
entanglement, EPR steering, and Bell’s nonlocality27. EPR steering
is a novel form of nonlocality that lies between entanglement and
Bell’s nonlocality. Gisin’s theorem shows that for pure states,
entanglement already indicates Bell nonlocality33, so the relation
among various types of non-classicality is subtler in mixed states.
Here, we demonstrate that the GHZ-type proof is also applicable
to EPR steering and, in particular, its scope is beyond the two-
qubit pure state scenario34.
For the mixed state in equation (6), an analog GHZ-type

paradox 1C= 2Q for EPR steering can be established, indicating a
sharp contradiction between the local hidden-state (LHS) model
and quantum theory. Concretely, when Alice prepares the state in
equation (6), she keeps the first two qubits and sends the latter
two qubits to Bob. Through EPR steering, Alice will persuade Bob
that his two qubits do not have a LHS description, and therefore
collapse to distinct conditional states according to Alice’s
measurement settings. Here, we demonstrate the case in which
Alice’s qubits subjects to two-settings measurements, namely, σz
⊗ σz and σy⊗ σx. According to the LHS model, the classical
prediction for a steering parameter I s is I LHS

s ¼ 1, but quantum
theory gives a prediction of IQM

s ¼ 2, thus yielding the steering
paradox 1C= 2Q. The relevant details are given in SI (See Supple-
mentary Information for proofs of the theorem, some examples
and experimental details.).

GHZ-type paradoxes verified by Hardy-type paradoxes
To experimentally verify the GHZ-type paradox for nonlocality,
conventionally the− 1 factor between the quantum and classical
predictions has to be demonstrated. For example, a direct way is
to perform four successive measurements Ei’s on the initial state
LC4j i, and show, with the help of some interference techniques,
that the final state is eiπ LC4j i. However, this way is not particularly
amenable to experiment for the following reasons: (i) a highly
pure initial state LC4j i is required, and (ii) each measurement Ei
acting on the state LC4j i must be nondestructive. To circumvent
these difficulties, we resort to other more effective approaches,
which are related to measuring various probabilities. For instance,
the GHZ-type paradox (3) can be converted to a perfect case of
Hardy’s paradox,

ð7Þ

Here, the first three equations denote the Hardy-type constraints,
and Psuc represents the success probability for observing a LHV-
impossible event. Equation (7) implies that a GHZ-type paradox
can be viewed as a perfect Hardy’s paradox, for which Psuc equals
1 in quantum mechanics35,36. The sharp contradiction+ 1C=− 1Q
in the GHZ-type paradox is thus equivalent to 0C= 1Q in Hardy’s
paradox (where Psuc= 0 for LHV models and Psuc= 1 for quantum
theory; see SI for further details about the conversion and
measurement settings).

Experimental implementation
Using a photonic setup, we experimentally tested the GHZ-type
paradoxes for some typical four-qubit graph and non-graph states
via the perfect Hardy-type paradox. The steering paradox for the
mixed state in equation (6) was also observed. The three
unequivalent GHZ-type paradoxes for graph states with m ≤ 4

Fig. 1 Five-qubit graph states and their verification. There are four
inequivalent 5-qubit graph states, namely, the GHZ states G5j i, the
linear cluster state LC5j i, the Y state Y5j i and the ring cluster state
RC5j i. We derive the relation between the violation of the Bell’s
inequality I 5 � 4 and the fidelity between the tested and target
states. The colored region means at least two qubits are entangled,
and a value exceeding the LHV bound reveals the genuine
multipartite entanglement.

Z.-H. Liu et al.
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were all tested in our experiment. Moreover, graph states with
more qubits can be effectively generated in the linear optics setup
by using, for example, the photon fusion gate37, the polarizing
beam splitter (PBS) gate38 and the controlled-Z gate39. In SI, we
give a recipe for generating all m= 5 graph states.
In this work, the four-qubit state was encoded using a two

photons scheme40,41, with each photon’s polarization and path
degrees of freedom utilizing two logical qubits. Figure 2a
shows the quantum circuit for flexible state generation. Starting
from a maximally entangled polarization qubit state of
Φþ�� 	 ¼ ð 00j i þ 11j iÞ= ffiffiffi

2
p

, we applied a controlled-NOT gate on
two path qubits to obtain the GHZ state GHZ4j i. For cluster state
LC4j i generation, two Hadamard gates and a controlled-Z gate
operating on the polarization qubits converted the state to
ð þ þ 00j i þ þ � 11j iÞ= ffiffiffi

2
p

. We then projected the first two qubits
of the input state onto 00j i 00h j þ 11j i 11h j basis to obliterate the
different inputs on the polarization qubits. This process post-
selected the system wavefunction into the 4-qubit cluster state
LC4j i. There is a 50% probability of conducting a successful
postselection for such an input state. The final probabilistic gate
was reminiscent of the PBS gate38 in the linear optics system.
When two photons meet at a PBS, only the superposition of
wavefunction components with the same polarization results in
coincident two-photon detection. Further generation of states
LC4ðθÞj i and GHZ4ðθÞj i can be realized by performing transforma-
tion RðθÞ ¼ cos θþ σx sin θ on one of the polarization qubits. This
gate is non-unitary and probabilistic, as is common in the one-way
quantum computation scenario.
The experimental setup is shown in Fig. 2b. We exploited

Hong–Ou–Mandel (HOM) interference42 to certify the spatial and
temporal overlap of the two photons at the PBS gate. As shown in
the inset of Figs. 3 and 4, the visibility of the HOM dip was 97.1%,
sufficient for observing the sharp Hardy-type paradox. Details

about the setup and the HOM interference can be found in the
Methods section.
The results for GHZ-type paradox observation via the perfect

Hardy-type paradox observation (Eq. (7)) are plotted in Fig. 3. The
probabilities of observing event correlations contrary to the LHV
predictions for LC4ð0Þj i GHZ4ð0Þj i; and GHZ4ðπ=4Þj i were 90.1%,
94.4%, and 96.2%, respectively. To statistically refute the LHV
models, we notice that each of the investigated Hardy-type
paradoxes effectively contains four contradictory predictions, and
the error rate of each measurement must be lower than 1/4 to
violate the Bell’s inequality (4). The calculated detection prob-
abilities are provided in the subplots of Fig. 3. All of the
probabilities fall well into the statistically significant region
(≥0.75 for all and ≤0.25 for nothing43) by at least 56.0, 72.7, and
93.9 standard deviations, corresponding to the GHZ-type paradox
for LC4ð0Þj i GHZ4ð0Þj i; and GHZ4ðπ=4Þj i, respectively. Here, the
errors are calculated by assuming a Poisson distribution for
counting statistics and resampling over recorded data. The
residual experimental error is mainly due to the instability of the
Mach-Zehnder interferometer, and the non-unity visibility of two-
photon interference. Taking experimental imprecision into
account, our results reasonably satisfy required constraints and
achieve high probability of successful observation of nonclassical
behaviors in the manner of a Hardy-type paradox.
Next, from the data for GHZ4ð0Þj i, we kept only the events that

register a result of +1 on the σx measurement of the first qubit to
prepare a GHZ3j i state. Under this postselection, the remaining
three qubits still exhibited the GHZ-type paradox in Eq. (1); this
manifestation can be employed to demonstrate the applications
of quantum state verification and entanglement detection. The
observed GHZ paradox precludes another possible form of
genuine three-qubit entanglement, namely, the W-state44.
By giving a value of I3 ¼ 3:792, our experimentally prepared

Fig. 2 Experimental setup. a The quantum circuit for generation and measurement of the 4-qubit linear cluster state LC4ðθÞj i and GHZ state
GHZ4ðθÞj i using the polarization (pol.) and path degrees of freedom of a photon pair. The gates in the dashed box are only implemented
when generating the LC4ðθÞj i. b The photonic realization of the quantum circuit. Aqua: the photon source, an ultraviolet pulsed laser pumps a
sandwich β-barium borate (BBO) to generate two polarization entangled photons after spatial and temporal compensation. Green: state
preparation. Two photons are further encoded into polarization and path modes. Navy blue: the PBS gate. Magenta: proposed nonunitary
qubit rotation, capable of preparing the extended cluster/GHZ state LC4ðθÞj i; GHZ4ðθÞj i. Violet: joint measurements on polarization and path
modes. IF interference filter, HWP half-wave plate, QWP quarter-wave plate, CP temporal/spatial compensation crystal, BD beam displacer, PBS
polarizing beam splitter and P/NPBS a special beam splitter, with half of it coated as a PBS and the other half coated as a nonpolarizing beam
splitter.
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three-qubit state shows a fidelity of at least 89.6% compared with
the theoretical three-qubit GHZ state.
To experimentally test the steering paradox, we note that the

classical prediction holds because the conditional density matrices
for Bob are pure(See Supplementary Information for proofs of the
theorem, some examples and experimental details.). Conse-
quently, we need to estimate the lower bound for the dominant
eigenvalue of Bob’s unnormalized conditional density matrix, and
here the entanglement detection methodology can again play a
role. Experimentally, Bob was instructed to jointly measure σy⊗ σx
and σx⊗ σy on his two qubits when Alice measured σy⊗ σx on her
qubits, and jointly measure σx⊗ σx and σy⊗ σy of his two qubits

when Alice measured σz⊗ σz on her qubits. Because the spectra of
σx⊗ σy+ σy⊗ σx and σx⊗ σx+ σy⊗ σy are both {2, 0, 0,− 2}, the
expectation value of σx � σy þ σy � σx


 	
and σx � σx þ σy � σy


 	

for the conditional states can be exploited as a lower bound for
the largest eigenvalue of the unnormalized conditional density
matrix. This lower bound is further utilized to calculate the
quantum value of I s and experimentally reject the LHS prediction
(See Supplementary Information for proofs of the theorem, some
examples and experimental details.). See Fig. 4, the calculated
quantum value of I s is 1.805 ± 0.014, which violates the prediction
of the LHS model by 59 standard deviations, thus manifesting the
nonclassical phenomenon of EPR steering.

DISCUSSION
This work advanced the study of the GHZ-type paradox in and
beyond graph states. In Theorem 1, we present a unified
construction of the GHZ-type paradox that naturally includes
previous results for graph states. The paradox, when transformed
into the Bell-type inequality, becomes an entanglement witness
with a significantly lower threshold for refuting the separable
models. These Bell-type inequality can also be exploited to
estimate the fidelity between a quantum state and a target graph
state, hence providing a promising way of evaluating the capacity
of a quantum state in specific tasks such as quantum error
correction45,46 and magic state distillation47.
Along with the Hamiltonian approach, we found that the GHZ-

type paradox also exists in non-graph states. On one hand, a
family of non-graph states and mixed states that also exhibits the
GHZ-type paradoxes. This observation suggests that even mixed
states can serve as resources for tasks like quantum pseudo-
telepathy48 and l2 measurement-based quantum computation49,

Fig. 3 Experimental observation of the perfect Hardy-type paradox. Data points: Calculated success probabilities that eventuate in Hardy-
type paradox plotted against the state parameter θ. The error bars correspond to 1σ standard deviation. Gray points are for generalized cluster
states and purple ones for GHZ states. Subplots: The sharp contradiction between LHV models and quantum theory corresponding to the
Hardy constraints for given data points. Shaded areas represent the effective region of 75% visibility threshold. Dashed box: the
Hong–Ou–Mandel dip of two photon interference (visibility= 0.971) and the Gaussian fitted curve. Each measurement result is recorded
across a 30 s time span with the pumping power set to 20 mW.

Fig. 4 Experimental observation of the Hardy-type steering
paradox. Left: calculated maximum eigenvalues for Bob’s marginal
states of the mixed state (6), conditioned on Alice’s possible
measurement settings and results. Right: visualized quantum
violation of I s against the LHS prediction I s ¼ 1. The error bars in
both subplots correspond to 1σ standard deviation.
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each of which typically requires highly-entangled pure states. On
the other hand, the non-graph mixed states ρ(θ) can also be used
for demonstrating the steering paradox 1C= 2Q. We hence
enriched quantum paradoxes for more kinds of quantum
nonlocality. Since the nonclassical event occurs ideally in every
round of experiment, our method has the potential of detecting
steering using very few copies of states.
We have experimentally tested the GHZ-type paradoxes for

graph and non-graph states by measuring the success probability
in Hardy’s paradox under Hardy-type constraints. Thus, we provide
a more efficient way to demonstrate the GHZ-type paradox by
turning it into a Hardy-type one. Our methodology also sheds
some new light on the construction of a genuine multipartite
GHZ-type paradoxes. In SI (See Supplementary Information for
proofs of the theorem, some examples and experimental details.)
we show that the mathematical tool of local complementation50,51

further enlarges the scope of quantum state verification. In
particular, this method of quantum state verification is applicable
to all the five-qubit graph states; we plan to investigate this
property in the near future.

METHODS
Construction of GHZ-type paradoxes for graph states
To formulate unified GHZ-type paradoxes for the graph states with at least
one universal vertex, we start from the following observation: when two
unconnected vertices are both connected to a third vertex, a minus sign
appears in the product of the three stabilizers for these vertices when they
are spanned on the Pauli basis, since the product on the third vertex
gives σzσxσz=− σx. This gives a sign difference between classical and
quantum prediction.
A GHZ-type paradox arise when we choose some products of the

stabilizing operators (modulo the minus signs before the Pauli matrices),
such that for every vertex, any Pauli matrix appear even times, so the
product of the classical expectations is +1, regardless of the specific values
assigned for the observables; and the three-stabilizer structure appears
odd times, so the product of the quantum expectations is −1. In addition,
to involve every vertex connected to the universal one in the GHZ-type
paradox, they are required to subject to two-setting (instead of one-
setting) measurements, so the paradox cannot be simply reproduced by a
biseparable quantum state by setting the qubit on the+ 1-eigenstate of
the one-setting measurement29.
For clarity, here we explicitly demonstrate the construction on the case

of n= even; the construction for n= odd is very similar. To exploit the
constraint of two-setting measurement, an ansatz of operator choices can
be conjectured as fS1; ð�1Þai Sai1 SiSiþ1g, so that the first observable S1
forces a σz measurement on every peripheral vertices, leaving only one of
σx and σy to be measured. This in turn gives ai�1 � Ci

i�1 ¼ ai � Ciþ1
i for i=

3, 4,⋯ , n, as can be deduced from the form of the ansatz. Finally, the
product of the quantum predictions being− 1 requires

Pn
i¼2 ai ¼ odd .

Solving the logical equations for ai yields the results in Theorem 1.

Experimetnal setup
A 780 nm mode-locked femtosecond laser pumped an 1mm-thick
bismuth triborate (BiBO) crystal to prepare high-power ultraviolet beam,
which further pumped two identical 1mm-thick, type-2 beamlike phase-
matching52β-barium borate (BBO) crystals, clipping on one true-zero-order
half-wave plate (HWP), to prepare bright entangled biphotons53. After
spatial and temporal compensation, the down-converted wavefunctions
from two pump processes were overlapped and the fidelity of prepared
state with Ψþj i ¼ ð HVj i þ VHj iÞ= ffiffiffi

2
p

is 0.991. Here, 0j ipol ¼ Hj i and
1j ipol ¼ Vj i indicate the horizontal and vertical polarization of the photon.
After filtered by 3nm bandwidth interference filter, the photons were
guided to the main setup by single-mode fibers (SMF), preceded and
succeeded by one HWP respectively, to compensate polarization disper-
sion within the fiber.
In the central interference setup, the polarization states of photons were

converted to ð Φþ�� 	 ¼ HHj i þ VVj iÞ= ffiffiffi
2

p
by HWP #1 and #2 set at 22.5∘.

Two beam displacers (BDs) detoured horizontal polarized photon
wavefunctions to the upper ( 0j ipath ¼ uj i for up) path, approximately
3mm away from the original lower ( 1j ipath ¼ dj i for down) path occupied

by vertical polarized photon wavefunctions. At this point, the two path
qubits were appended to the polarization qubits, and the entire biphoton
state is effectively a GHZ state GHZ4ðθ ¼ 0Þj i ¼ ð HHuuj i þ VVddj iÞ= ffiffiffi

2
p

.
Further conversion to cluster state LC4ðθ ¼ 0Þj i ¼ ð HHuuj i þ HHddj i þ
VVuuj i � VVddj iÞ=2 was done by adjusting the orientations of HWP #3–#6
and exploiting the PBS gate, and the exact settings are given in SI
(See Supplementary Information for proofs of the theorem, some examples
and experimental details).
To make joint path-polarization measurement, another pair of BDs was

introduced to combine the two paths again and form a Mach-Zehnder
intereferometer. Before each BD, two groups of polarization controllers,
each containing a quarter-wave plate succeeded by a HWP, were utilized
to analyze state of polarization in each path. By carefully tilting the BDs, we
compensated for the relative phase difference between the four possible
paths. After the convergence of the displaced beams, another group of
polarization controllers, together with a PBS, were used to measure the
path state of each photon. The single-photon avalanche detectors were
exploited to record coincidence counting rates. The length of the two
Mach-Zehnder interferometers in the experimental setup was about
27.5 cm. The integration time was 20s for each data point, giving about 104

possible counts for each state.
The non-unitary RðθÞ gate is required for the realization of variable θ. A

Sagnac ring interferometer in the dashed box in Fig. 2 is sufficient for such
operation, which was omitted in the actual experiment. The HWP at θ/2
rotates the photon polarization, meanwhile, the HWP at 0∘ operating only
on the counter-clockwise cycle of the ring provides the non-unitarity.
Adding temporal compensation guarantees coherent superposition
of the output beam. Nevertheless, by introducing a compensating HWP
to flip the polarization state of a photon, the θ= π/4 case was also
experimentally realized.

The PBS gate and its benchmarking
To illustrate the mechanism of the PBS gate, it is most intuitive to work in
the second quantization picture. Let αyμν denote the creation operator of

the first photon on polarization mode μ and path mode ν, and βyμν denote

which of the second photon. Further, let γyμν and δyμν denote the creation
operators of the photon that exits the PBS gate and propagates downward
and rightward, respectively (cf. Fig. 2b). Under this notation, the mode
conversion happening on the PBS gate can be expressed as

αyHν ! γyHν; α
y
Vν ! iδyVν; β

y
Hν ! δyHν , and βyVν ! iγyVν . When the angles of

the wave plates #3–#6 are set to θ3/2 ~ θ6/2, the inbounding wavefunction

on the PBS gate is 1ffiffi
2

p ½ðcos θ3αyHu þ sin θ3α
y
VuÞðcos θ4βyHu þ sin θ4β

y
VuÞþ

ð� sin θ5α
y
Hd þ cos θ5α

y
VdÞð� sin θ6β

y
Hd þ cos θ6β

y
VdÞ�. Using the mode con-

version, the outbounding modes are 1ffiffi
2

p ½ðcos θ3γyHu þ i sin θ3δ
y
VuÞðcos θ4δyHu

þ i sin θ4γ
y
VuÞ þ ð� sin θ5γ

y
Hd þ i cos θ5δ

y
VdÞð� sin θ6δ

y
Hd þ cos θ6iγ

y
VdÞ�. How-

ever, only the terms with both γ and δ operators result in coincident

counting, so the final wavefunction reads 1ffiffi
2

p ½ðcos θ3 cos θ4γyHuδyHu�
sin θ3 sin θ4γ

y
Vuδ

y
VuÞ þ ðsin θ5 sin θ6γyHdδyHd � cos θ5 cos θ6γ

y
Vdδ

y
VdÞ�. Thus, we

can effectively generate the desired states by adjusting the orientations of
the wave plates.
The PBS gate works ideally when the wavefunctions of the two incident

photons are overlapped both spatially and temporally. However, due to
the intrinsic difference between wavepackets of the two photons
produced in type-II down-conversion54, spectral filter and intrinsic
dispersion from SMF are not enough to render them identical. To
synchronize the arrival time of the two photons and characterize their
indistinguishability, we exploit the HOM interference42. Explicitly, we
rotated the polarization states of both photons to Dj i ¼ ð Hj i þ Vj iÞ= ffiffiffi

2
p

after they had passed through the first pair of BDs, measured the two
polarizations on DAj i basis at the final detection, where
Aj i ¼ ð Hj i � Vj iÞ= ffiffiffi

2
p

, and projected both of the path qubits on uj i. By
tuning the length of the delay line, we can scan the HOM curve as is
presented in the inset of Fig. 3.

DATA AVAILABILITY
The data that support the findings of this study are available from the authors upon
request.
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