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Zero uncertainty states in the presence of quantum memory
Huangjun Zhu 1,2,3,4✉

The uncertainty principle imposes a fundamental limit on predicting the measurement outcomes of incompatible observables even
if complete classical information of the system state is known. The situation is different if one can build a quantum memory
entangled with the system. Zero uncertainty states (in contrast with minimum uncertainty states) are peculiar quantum states that
can eliminate uncertainties of incompatible von Neumann observables once assisted by suitable measurements on the memory.
Here we determine all zero uncertainty states of any given set of nondegenerate observables and determine the minimum
entanglement required. It turns out all zero uncertainty states are maximally entangled in a generic case, and vice versa, even if
these observables are only weakly incompatible. Our work establishes a simple and precise connection between zero uncertainty
and maximum entanglement, which is of interest to foundational studies and practical applications, including quantum certification
and verification.
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INTRODUCTION
The uncertainty principle represents a key distinction between
quantum mechanics and classical mechanics and is still a focus of
current research1–4. It imposes a fundamental limit on our ability
to predict the measurement outcomes of incompatible observa-
bles, such as position and momentum5,6. However, uncertainty
relations have to be modified in the presence of a quantum
memory because entanglement between the memory and system
can reduce the uncertainty7–12. Besides foundational significance,
this simple fact is of interest to diverse applications, including
entanglement detection8–10 and quantum cryptography8,11,13.
Nevertheless, several fundamental questions are still left open.
Notably, what quantum states of the system and memory can
minimize or even eliminate the uncertainty completely? How
much entanglement is required to achieve this goal?
In this paper we are interested in those quantum states that can

eliminate the uncertainty completely, which are referred to as zero
uncertainty states (ZUSs) henceforth. In contrast with the familiar
minimum uncertainty states and intelligent states studied in the
literature14–16, our definition of ZUSs does not rely on a specific
uncertainty measure, but has a clear operational interpretation.
In particular, we determine all ZUSs with respect to any given
set of nondegenerate observables on a finite-dimensional Hilbert
space coupled with a quantum memory. We also determine the
minimum entanglement required to construct any ZUS. It turns
out all ZUSs are determined by a simple graph constructed from
transition probabilities between eigenbases of the relevant
observables. Moreover, all ZUSs are maximally entangled states
(MESs), and vice versa, whenever this graph is connected. Notably,
this is the case for a generic set of two or more observables, even
if these observables are only weakly incompatible. Nevertheless,
ZUSs and MESs are not necessarily pure states.
Our study establishes a simple and precise connection between

zero uncertainty and maximum entanglement, which is indepen-
dent of specific uncertainty and entanglement measures. More-
over, our approach applies to arbitrary sets of nondegenerate
observables, in sharp contrast with most previous approaches,

which are restricted to two observables or complementary
observables. This work may shed light on the foundational studies
of uncertainty relations, quantum entanglement, and quantum
steering7,17–20. Meanwhile, it is of direct interest to many tasks in
quantum information processing, including remote state prepara-
tion21,22 and semi-device-independent quantum certification and
verification18,23–26.

RESULTS
Maximally entangled states
To establish our main results, first we need to better understand
MESs. A bipartite state ρ on the Hilbert space HA �HB of
dimension dA × dB is a MES if we can create every state on HA �
HB from ρ by local operations and classical communication
(LOCC)27. This definition is independent of any specific entangle-
ment measure and is thus quite appealing to the current study.
When dA≤ dB, the state Φj i :¼ PdA�1

j¼0 jjj i= ffiffiffiffiffi
dA

p
is a canonical

example, where f jj igdA�1
j¼0 and f jj igdB�1

j¼0 are the computational
bases of HA and HB, respectively. A MES is not necessarily pure, as
clarified in the following lemma, essentially proved in ref. 28; see
the Supplementary Information for an independent proof.
Lemma 1 Let ρ be a bipartite state on HA �HB with dA≤ dB.

Then the following statements are equivalent.

1. ρ is a MES.
2. HðAjBÞρ ¼ �log 2dA.
3. ERðρÞ ¼ log 2dA.
4. EFðρÞ ¼ log 2dA.
5. ρ has a spectral decomposition ρ ¼ P

sλs Ψsj i Ψsh j such that
all Ψsj i are MESs, and trAð Ψsj i Ψsh jÞ have mutually orthogo-
nal supports.

Here H(A∣B)ρ= S(ρ)− S(ρB) is the conditional entropy of A given
B, where S(ρ) and S(ρB) are the von Neumann entropies of ρ and
ρB :¼ trAðρÞ, respectively. ER(ρ) and EF(ρ) are the relative entropy
of entanglement and entanglement of formation27. By Lemma 1,
all MESs on HA �HB are pure when dA≤ dB < 2dA

28. In general,
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each MES is a convex mixture of pure MESs whose local supports
for Bob are mutually orthogonal. Given a MES ρ on HA �HB with
dA≤ dB, let HB0 be the support of ρB. Then HB0 has a
decomposition HB0 ¼ HB1 �HB2 with dimðHB1Þ ¼ dA such that
ρ ¼ Φ0j i Φ0h j � τ, where Φ0j i is a pure MES in HA �HB1 , and τ is a
full-rank density operator on HB2 . So all MESs on HA �HB are
equivalent under local operations of Bob.
Corollary 1 All MESs on HA �HB with dA≤ dB can be turned into

each other by local operations on HB. When dA≤ dB < 2dA, all MESs
are pure and can be turned into each other by unitary transforma-
tions on HB.

Zero uncertainty states
Consider the uncertainty game in which Alice can measure m
nondegenerate von Neumann observables O ¼ fOxgmx¼1 on HA
with uniform probabilities (generalization to nonuniform prob-
abilities is straightforward), and Bob is asked to predict the
measurement outcome given the specific observable chosen by
Alice8. Let Bx ¼ f ψxkj igk be an orthonormal eigenbasis of Ox and
B ¼ fBxgmx¼1. Then predicting the outcome of Ox amounts to
predicting the outcome of the projective measurement on the
basis Bx . When these observables are incompatible (do not
commute with each other), in general Bob cannot predict the
measurement outcome with certainty even if he knows the
complete classical description of the system state as characterized
by the density matrix ρA. In the case of two observables for
example, the uncertainties of the measurement outcomes satisfy
the Maassen-Uffink inequality29,

HðO1Þ þ HðO2Þ � log 2ðc�1Þ; (1)

where H(O1) and H(O2) are the Shannon entropies of the
measurement outcomes of O1 and O2, respectively, and
c ¼ maxj;k j ψ1jjψ2k

� �j2.
The situation is different if Bob holds a quantum memory with

Hilbert space HB and can create an entangled state ρ on the joint
systemHA �HB, as illustrated in Fig. 1. Suppose Alice chooses the
basis Bx (observable Ox), then Bob can perform a generalized
measurement characterized by a positive operator-valued mea-
sure (POVM) fΠxkgk on his subsystem HB, where Πxk corresponds
to guessing the outcome k given the measurement basis Bx of
Alice. The average success guessing probability reads ∑xpx/m with

px ¼
X

k

tr ½ρð ψxkj i ψxkh j � ΠxkÞ� ¼
X

k

tr ðρxkΠxkÞ; (2)

where ρxk ¼ ψxkh jρ ψxkj i are subnormalized reduced states of Bob.
Note that px is also the probability that the POVM fΠxkgk can
successfully distinguish the ensemble of states

Sðρ;BxÞ ¼ f ψh jρ ψj i : ψj i 2 Bxg: (3)

The maximum of the average guessing probability over all POVMs
can be determined by semidefinite programming, and this
maximum is determined by the state ρ and the basis set B (or
the observable set O) of Alice.
Given a set of observables O ¼ fOxgmx¼1 or bases B ¼ fBxgmx¼1

for Alice, a joint state ρ of Alice and Bob is a ZUS if Bob can predict
the measurement outcome of Alice with certainty by a suitable
measurement depending on the choice of Alice. Given a ZUS, the
guessing probability px for each measurement of Alice can attain
the maximum 1, and the conditional entropy H(Ox∣B) is 0.
In contrast with minimum uncertainty states and intelligent
states14–16, ZUSs not only minimize the uncertainty, but also
eliminate the uncertainty completely. Moreover, here the defini-
tion is independent of any specific uncertainty measure.
To appreciate the significance of entanglement to constructing

a ZUS, consider an example with two observables, in which case
the uncertainty relation in Eq. (1) is modified as follows8,

HðO1jBÞ þ HðO2jBÞ � log2ðc�1Þ þ HðAjBÞρ: (4)

Here the conditional entropy H(A∣B)ρ manifests the impact of
entanglement in reducing the uncertainty. Interestingly, a variant
of Eq. (4) may be interpreted as uncertainty-reality complemen-
tarity, which builds on an intimate connection between uncer-
tainty (or rather certainty) and reality7,30–32.
By Eq. (4), any ZUS ρ must satisfy the inequalities

EFðρÞ � ERðρÞ � �HðAjBÞρ � log2ðc�1Þ; (5)

where the second one is derived in ref. 33 (cf. ref. 34). Suppose O1

and O2 are complementary, so that B1 and B2 are mutually
unbiased, which means j ψ1jjψ2k

� �j2 ¼ 1=dA for all j, k35. Then we
have c= 1/dA and

EFðρÞ ¼ ERðρÞ ¼ �HðAjBÞρ ¼ log 2dA; (6)

which implies that dB≥ dA and ρ is a MES by Lemma 1, in which
case ρ is indeed a ZUS. Unfortunately, this reasoning does not
work in general. To address this problem, we need a completely
different line of thinking.

Fig. 1 Connection between zero uncertainty and maximum entanglement in the uncertainty game. By performing suitable measurements
(depending on the observables of Alice) on his quantum memory, Bob can better predict the measurement outcomes of Alice. When the set
of observables of Alice is irreducible, Bob can predict these measurement outcomes with certainty iff his quantum memory is maximally
entangled with Alice.
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Key observations about ZUSs
Bob can predict the measurement outcome on the basis Bx with
certainty iff the ensemble Sðρ;BxÞ defined in Eq. (3) is perfectly
distinguishable, that is, all states in Sðρ;BxÞ have mutually
orthogonal supports. The state ρ is a ZUS with respect to B ¼
fBxgmx¼1 iff each ensemble Sðρ;BxÞ is perfectly distinguishable.
The following three propositions are simple corollaries of these
observations.
Proposition 1 Suppose ρ is a ZUS, then any state supported in

the support of ρ is a ZUS.
Proposition 2 Suppose ρ1 and ρ2 are two ZUSs on HA �HB. If

tr Aðρ1Þ and tr Aðρ2Þ have orthogonal supports, then any convex
mixture of ρ1 and ρ2 is a ZUS.
Proposition 3 Suppose ρ is bipartite state on HA �HB and Λ is a

completely positive and trace-preserving (CPTP) map (quantum
channel) from system B to system ~B. Then ρ is a ZUS if (1� Λ)(ρ) is.
Here Propositions 1 and 2 are tied to the fact that mixture of

quantum states can only reduce distinguishability unless the
reduced states of Bob have orthogonal supports. Proposition 3
follows from the simple fact that quantum operations cannot
enhance distinguishability. Two states ρ1 and ρ2 on HA �HB are
equivalent if they can be turned into each other by local
operations on HB. In that case, ρ1 is a ZUS with respect to B iff
ρ2 is. Under these local operations, ZUSs divide into equivalent
classes.

Transition graphs
To determine ZUSs with respect to a given basis set B ¼ fBxgmx¼1
inHA, we first need to pinpoint a key property of the basis set. The
transition graph GðBÞ ofB is anm-partite graph withmdA vertices
which are in one-to-one correspondence with the basis states
(identical states in different bases correspond to different vertices).
Two different vertices are adjacent iff the corresponding states are
not orthogonal, that is, the transition probability between the two
states is nonzero. The graph GðBÞ encodes the incompatibility
structure of the basis set B, which is crucial to studying ZUSs and
quantum verification, as we shall see later.
The basis set B is irreducible if the transition graph GðBÞ is

connected, in which case the projectors onto basis states generate
the whole operator algebra on HA. Any basis set composed of
m ≥ 2 mutually unbiased bases (or generic random bases) is
irreducible since the transition graph is a complete m-partite
graph, as illustrated in Fig. 2.

The basis set B is reducible if the transition graph GðBÞ is not
connected. In this case, the basis set may be seen as a direct sum
of basis sets defined on smaller subspaces. Suppose GðBÞ has g
connected components G1, G2,…, Gg, then each component Ga is
also an m-partite graph in which all parties have the same number
of vertices. Let Ba

x be the subset of Bx that corresponds to the
vertices in the component Ga. The component subspaceHA;a

associated with component a is the subspace of HA spanned
by all ψj i 2 Ba

x , with component projector and component rank
given by

Pa ¼ PaðBÞ ¼
X

ψj i2Ba
x

ψj i ψh j; ra ¼ tr ðPaÞ: (7)

These definitions are independent of the choice of the basis
index x. Denote by PðBÞ :¼ fPaðBÞgga¼1 the set of component
projectors, which are mutually orthogonal. In this way, HA

decomposes into a direct sum of component subspaces HA;a . In
addition, Ba

x for x= 1, 2,…,m can be regarded as bases in HA;a,
and the basis set Ba :¼ fBa

xgmx¼1 is irreducible for HA;a .

Connect ZUSs with MESs
Now we are ready to present our main results on ZUSs and MESs
as illustrated in Fig. 1. First, we clarify when Bob can predict the
outcome of one projective measurement of Alice. The following
lemma proved in the Supplementary Information is a stepping
stone to understanding ZUSs in the presence of a quantum
memory.
Lemma 2 Suppose ρ ¼ Ψj i Ψh j is a bipartite pure state on HA �

HB and B is an orthonormal basis for HA. Then the ensemble
Sðρ;BÞ is perfectly distinguishable iff B is an eigenbasis of
ρA ¼ tr BðρÞ.
Note that Bob can predict the measurement outcome of Alice

on the basis B with certainty iff the ensemble Sðρ;BÞ defined in
Eq. (3) is perfectly distinguishable. By Lemma 2, this is the case iff
ρA is diagonal with respect to the basis B. Therefore, the pure state
ρ is a ZUS with respect to a basis set B iff ρA is diagonal with
respect to each basis in B. When B is irreducible, it turns out only
MESs can satisfy this condition. Based on this observation we can
derive the following theorem as proved in the Supplementary
Information.
Theorem 1 Suppose B is an irreducible basis set in HA. Then a

bipartite (pure or mixed) state ρ onHA �HB is a ZUS with respect to
B iff dB ≥ dA and ρ is a MES.
By Theorem 1 and Lemma 1, each ZUS with respect to B is a

tensor product of a pure MES and an ancillary state. In addition, to
attain zero uncertainty, the measurements of Bob on the support
of ρB are uniquely determined by the counterpart of Alice, as
shown in Supplementary note E. All ZUSs with respect to B can
be turned into each other by local operations on HB and thus
form a single equivalent class. If dA≤ dB < 2dA, then all ZUSs are
pure and can be turned into each other by unitary transforma-
tions on HB. These results hold as long as the transition graph
GðBÞ is connected, even if B consists of only two nearly identical
bases, so that the corresponding observables are only weakly
incompatible, as quantified by the commutator or incompat-
ibility robustness36–38.
Theorem 1 establishes a simple and precise connection

between zero uncertainty and maximum entanglement, which
is independent of specific uncertainty and entanglement
measures. This connection offers a fresh perspective for under-
standing the uncertainty principle in the presence of a quantum
memory8. It may also shed light on uncertainty-reality comple-
mentarity given the close relation between the notation of
uncertainty and that of reality7,30–32.

Fig. 2 Transition graph of three mutually unbiased bases for a
qubit, which corresponds to the eigenbases of the three Pauli
matrices. Two vertices of the same color are associated with the two
states in the same basis. This transition graph is connected, so the
corresponding basis set is irreducible.
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ZUSs with respect to reducible basis sets
Next, we determine ZUSs with respect to a reducible basis set B.
Theorem 2 Suppose B is a set of orthonormal bases in HA and

has g irreducible components with component subspaces HA;a,
component projectors Pa, and component ranks ra for a= 1, 2,…, g.
Let ρ be a bipartite state onHA �HB and ρa ¼ ðPa � 1BÞρðPa � 1BÞ.
Then ρ is a ZUS with respect to B iff the following three conditions
hold: ra≤ dB whenever tr ðρaÞ>0; each ρa with tr ðρaÞ>0 is a
(subnormalized) MES on HA;a �HB; all tr AðρaÞ have mutually
orthogonal supports.
Theorem 2 follows from Theorem 1. Recall that the basis set B

can be regarded as a direct sum of irreducible basis sets Ba

defined on component subspaces HA;a. So ρ is a ZUS with respect
to B iff its restriction ρa on HA;a �HB is a ZUS with respect to Ba

and, in addition, all tr AðρaÞ have mutually orthogonal supports.
Note that coherence between different component subspaces are
useless to constructing ZUSs. In addition, the dimension dB of HB
must satisfy dB � rmin in order to construct a ZUS, where rmin ¼
min1�a�g ra is the minimum component rank. When the lower
bound is saturated, every ZUS is a pure MES on HA;a �HB, where
HA;a is a component subspace of dimension rmin. Furthermore,
rmin determines the minimum entanglement required to construct
a ZUS, as shown in the Methods section.
In the case of pure states, ZUSs admit a much simpler

characterization, as shown in the following corollary.
Corollary 2 A bipartite pure state Ψj i in HA �HB is a ZUS with

respect toB iff the reduced state ρA is a weighted sum of component
projectors in PðBÞ.
Corollary 2 is a special case of Theorem 2 and also follows from

Lemma 2 and Supplementary Lemma 2. Here ρA is a weighted
sum of component projectors iff ρA is diagonal with respect to
each basis B in B (cf. Supplementary note C). As an implication of
Corollary 2, the reduced state ρA of any (pure or mixed) ZUS ρ with
respect to B is a weighted sum of component projectors in PðBÞ,
given that any ZUS is a convex mixture of pure ZUSs. The
equivalent classes of pure ZUSs are determined in the Methods
section.

Applications to quantum certification and verification
Our results on ZUSs have immediate implications for the
verification of MESs. Suppose Alice and Bob want to create the
MES Φj i ¼ PdA�1

j¼0 jjj i= ffiffiffiffiffi
dA

p
in this way: Bob first creates a MES in

his lab and then sends one particle of the entangled pair to Alice
via a quantum channel. To verify the resulting state ρ, they can
perform tests based on correlated local projective measurements
such that only the target state can pass all tests with certainty39–43.
Suppose Alice can perform projective measurements from the set
B ¼ fBxgmx¼1 in which Bx is chosen with probability μx > 0. For
each choice Bx , she asks Bob to perform the measurement on the
conjugate basis B�

x and return the outcome. The test is passed if
Bob and Alice obtain the same outcome41.
If Bob is honest, then the average probability that ρ passes each

test is tr ðρΩÞ, where Ω ¼ Pm
x¼1 μxPðBxÞ41 is known as the

verification operator and

PðBxÞ :¼
X

ψj i2Bx

ψj i ψh j � ψ�j i ψ�h j (8)

is a test projector. Note that Φj i is an eigenstate of PðBxÞ and Ω
with eigenvalue 1 and so can pass each test with certainty. In
addition, Φj i can be reliably verified by this protocol iff the
maximum eigenvalue of Ω is nondegenerate, that is, the pass
eigenspace of Ω has dimension 140–43. This is the case iff the basis
set B is irreducible by the following theorem proved in the
Supplementary Information.
Theorem 3 Suppose B ¼ fBxgmx¼1 is a set of orthonormal bases

in HA, and Ω ¼ Pm
x¼1 μxPðBxÞ with μx > 0 and

Pm
x¼1 μx ¼ 1. Then

the degeneracy of the maximum eigenvalue 1 of Ω equals the

number of connected components of the transition graph GðBÞ. This
eigenvalue is nondegenerate iff the basis set B is irreducible.
Next, suppose Bob is not honest. Then Alice cannot distinguish

states that are equivalent under the local operations of Bob.
Nevertheless, she can still verify the MES Φj i up to equivalence.
Thanks to Theorem 1, the uncertainty game described before
actually provides a verification protocol whenever the basis set B
of Alice is irreducible. Note that Bob can pass each test (guess
each measurement outcome) of Alice with certainty only if the
state ρ prepared is a MES. Surprisingly, the requirement on the
measurement bases of Alice remains the same when Bob
becomes dishonest. In addition, the measurements of Bob
required to attain the maximum guessing probability are
essentially uniquely determined by the counterpart of Alice.
These results are of interest to semi-device-independent quantum
certification and verification18,23–26

Implications for quantum steering
Our study also has implications for Einstein-Podolsky-Rosen
steering or quantum steering7,17–20, which is clear if we
interchange the measurement order in the above verification
protocol. In each test Alice asks Bob to perform the measurement
on the basis B�

x with probability μx > 0 for x= 1, 2,…,m and return
the outcome. Then Alice performs the projective measurement on
Bx 2 B, and the test is passed if she obtains the same outcome as
Bob. Alternatively, Alice can choose the two-outcome POVM
f ψxkj i ψxkh j; 1A � ψxkj i ψxkh jg if Bob obtains outcome k. Suppose
Alice and Bob share the state ρ and Bob performs the POVM
fΠxkgk instead of the projective measurement on B�

x . Then the
probability that Bob passes the test reads
X

k

ψxkh jσxk ψxkj i; σxk ¼ trB½ρð1A � ΠxkÞ�; (9)

which is a variant of Eq. (2). The subnormalized states σxk satisfy
the normalization condition ∑kσxk= ρA and form an ensemble of ρA
for each x. The collection of ensembles ffσxkgkgx is known as an
assemblage19,20,44. If Bob is honest, then the assemblage
generated is ff ψxkj i ψxkh j=dAgkgx . When B is irreducible, it turns
out only this assemblage can pass each test with certainty, as
shown in the following lemma and proved in the Supplementary
Information.
Lemma 3 Suppose B ¼ fBxgmx¼1 with Bx ¼ f ψxkj igk is an

irreducible set of orthonormal bases in HA. Suppose ffσxkgkgx is
an assemblage for ρA that satisfies

P
k ψxkh jσxk ψxkj i ¼ 1 for each x.

Then ρA is completely mixed, and σxk ¼ ψxkj i ψxkh j=dA for each x
and k.
Here the condition

P
k ψxkh jσxk ψxkj i ¼ 1 means the assemblage

ffσxkgkgx can pass each test of Alice with certainty. By virtue of
Theorem 1, we can further show that the assemblage
ff ψxkj i ψxkh j=dAgkgx can only be generated by a MES, as stated
in the following theorem and proved in the Supplementary
Information.
Theorem 4 Given the basis set B in Lemma 3, suppose ρ is a

bipartite state on HA �HB that can generate the assemblage
ff ψxkj i ψxkh j=dAgkgx under the measurements of Bob. Then dB≥ dA,
and ρ is a MES and a ZUS with respect to B.
Thanks to Lemma 3 and Theorem 4, the tests of Alice can verify

the assemblage ff ψxkj i ψxkh j=dAgkgx , which in turn can verify the
MES whenever B is irreducible. In addition, Theorem 4 offers a
general recipe for constructing assemblages that are characteristic
of MESs. These results establish intimate connections between
uncertainty relations, quantum entanglement, and quantum
steering, which are of intrinsic interest to foundational studies.
Meanwhile, these results are instructive to studying remote state
preparation21,22 and semi-device-independent self testing18,23–26.
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DISCUSSION
ZUSs in the presence of a quantum memory are particular quantum
states that can eliminate uncertainties of incompatible von
Neumann observables once assisted by suitable measurements
on the memory. In this work, we determined all ZUSs with respect
to any given set of nondegenerate observables in the presence of a
quantum memory. To achieve this goal we introduced several
useful tools that apply to an arbitrary set of observables, in sharp
contrast with most previous approaches, which only apply to two
observables or complementary observables. In addition, we
determined the minimum entanglement required to construct a
ZUS. Our study shows that all ZUSs are MESs for a generic set of two
or more observables even if these observables are only weakly
incompatible. In this way, we establish a simple and precise
connection between ZUSs and MESs. This connection may shed
light on the uncertainty principle in the presence of a quantum
memory. It is of intrinsic interest to studying a number of
fascinating topics, including the uncertainty principle, quantum
entanglement, and quantum steering. Moreover, it has direct
applications in semi-device-independent quantum certification and
verification, which is currently an active research field.

METHODS
ZUSs with least entanglement
Here we determine the minimum entanglement required to construct a
ZUS, following the premises and notations in Theorem 2.
Given the basis set B in Theorem 2, define ΛB as the CPTP map acting

on quantum states on HA �HB that removes coherence between
different component subspaces, that is,

ΛBðρÞ ¼
X

a

ðPa � 1BÞρðPa � 1BÞ ¼
X

a

ρa ¼
M

a

ρa; (10)

where ρa= (Pa⊗ 1B)ρ(Pa⊗ 1B) and Pa are component projectors defined in
Eq. (7). Note that the map ΛB can be realized by LOCC. In addition, ρ is a
ZUS with respect to B iff ρB :¼ ΛBðρÞ is. When ρ is a ZUS, ρB is a direct
sum of subnormalized MESs ρa according to Theorem 2.
The component vector is defined as

qðρ;BÞ :¼ ðqaÞa; qa :¼ tr ½ρðPa � 1BÞ� ¼ tr ðρaÞ; (11)

it is invariant under the local operations of Bob and is very useful to
studying the entanglement properties and equivalent classes of ZUSs.
Note that ρB and ρ share the same component vector. The following
theorem is proved in the Supplementary Information.
Theorem 5 Suppose E is an entanglement measure, then any ZUS ρ with

component vector qðρ;BÞ ¼ ðqaÞa satisfies

EðρÞ � EðρBÞ �
X

a

qaEð ΦðraÞj iÞ � Eð ΦðrminÞj iÞ; (12)

where ΦðraÞj i is a MES of Schmidt rank ra. The second inequality in Eq. (12) is
saturated if E is a convex entanglement measure.
Here ra ¼ tr ðPaÞ is the component rank defined in Eq. (7), and rmin ¼

min1�a�g ra is the minimum component rank. Theorem 5 applies to any
entanglement measure E that is monotonic under selective and
nonselective LOCC. In addition, the lower bounds for E(ρ) only depend
on the values of the measure E at pure MESs.
When ρB ≠ ρ, the inequality EðρÞ � EðρBÞ in Eq. (12) is strict for many

entanglement measures, including the entanglement of formation, as
shown in Corollary 5 below. To determine least entangled ZUSs, we can
assume the condition ρ ¼ ρB , so ρ has no coherence between different
component subspaces. Such a ZUS is called economical. In addition, the
third inequality in Eq. (12) is usually strict unless qa= 0 when ra > rmin (cf.
Corollary 6 below). An economical ZUS ρ with qa= 0 for all ra > rmin is
called a ZUS with least entanglement (ZUSLE) since it can saturate the
ultimate lower bound in Eq. (12) for every convex entanglement measure.
Such a state can be expressed as follows,

ρ ¼ ρB ¼
X

ajra¼rmin

ρa ¼
M

ajra¼rmin

ρa: (13)

It has no coherence between different component subspaces, and its local
support for Alice can only contain component subspaces with the

minimum component rank rmin. The operational significances of ZUSLEs
can be summarized as follows.
Corollary 3 Every ZUS on HA �HB with respect to B can be turned into a

ZUSLE by LOCC. In addition, all ZUSLEs can be turned into each other by
LOCC.
Corollary 4 A ZUS on HA �HB with respect to B is a ZUSLE iff it can be

created from ΦðrminÞj i by LOCC.
Corollary 3 follows from Theorem 2 and Corollary 1. Corollary 4 follows

from Corollary 3 and Corollary 6 below. This operational characterization of
ZUSLEs is independent of specific entanglement measures, which
complements the operational definition of ZUSs in the main text.
Corollary 5 Any ZUS ρ with component vector qðρ;BÞ ¼ ðqaÞa satisfies

EFðρÞ �
P

aqalog 2ra. The lower bound is saturated iff ρ ¼ ρB.
Corollary 6 Any ZUS ρ with respect to B satisfies EFðρÞ � log 2rmin, which

is saturated iff ρ is a ZUSLE.
Corollary 5 is proved in the Supplementary Information. Corollary 6

follows from Corollary 5 (cf. Theorem 5). When B is irreducible, the bound
EFðρÞ �

P
aqalog 2ra reduces to EFðρÞ � log 2dA, which is expected in view

of Theorem 1 and Lemma 1. In general, the lower bound may be seen as a
weighted average of bounds associated with individual irreducible
components of B. Incidentally, the bounds in Corollaries 5 and 6 still
hold if EF is replaced by any entanglement measure that coincides with EF
on pure states, such as the relative entropy of entanglement27.

Equivalent classes of ZUSs
Here we clarify the equivalent classes of ZUSs under the local operations of
Bob. Suppose ρ is a ZUS with respect to B and has a component vector
qðρ;BÞ ¼ ðqaÞa . According to Corollary 2, (cf. Theorem 2, Lemma 1, and
Corollary 1), ρA is a weighted sum of component projectors,

ρA ¼
X

a

qaPa
ra

: (14)

Two ZUSs have the same reduced state and thus same measurement
statistics for Alice iff they have the same component vector. So the
equivalent classes of pure ZUSs are completely characterized by
component vectors.
Corollary 7 Two pure ZUSs with respect to B are equivalent iff they have

the same component vector.
Given a ZUS ρ with respect to the basis set B, denote by HB;a the

support of trAðρaÞ and Qa the corresponding projector; then Qa and Qb are
orthogonal whenever a ≠ b by Theorem 2. In addition, we have

ρa ¼ ð1A � QaÞρð1A � QaÞ; (15)

ρB ¼
X

a

ð1A � QaÞρð1A � QaÞ: (16)

So ρ can be turned into ρB by local operations of Bob. Thanks to Corollary
1, ρB can further be turned into a direct sum of pure MESs of the formL

aqa Φaj i Φah j, where Φaj i is a normalized MES in HA;a �HB;a (a product
state when ra= 1). These observations lead to the following corollary,
which complements Corollary 7.
Corollary 8 Every ZUS on HA �HB with respect to B can be turned into

an economical ZUS with the same component vector by local operations of
Bob. Two economical ZUSs are equivalent iff they have the same component
vector.
Thanks to Corollary 8, equivalent classes of economical ZUSs with

respect to B are in one-to-one correspondence with component vectors,
which form a probability simplex of dimension g− 1, where g is the
number of irreducible components of B. In particular, two ZUSLEs are
equivalent iff they have the same component vector. If there is only one
component subspace of dimension rmin, then all ZUSLEs are equivalent.
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