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An artificial spiking quantum neuron
Lasse Bjørn Kristensen 1✉, Matthias Degroote 2,3,4, Peter Wittek5,6,7,8, Alán Aspuru-Guzik 2,3,4,7,9,10 and Nikolaj T. Zinner1,11

Artificial spiking neural networks have found applications in areas where the temporal nature of activation offers an advantage,
such as time series prediction and signal processing. To improve their efficiency, spiking architectures often run on custom-
designed neuromorphic hardware, but, despite their attractive properties, these implementations have been limited to digital
systems. We describe an artificial quantum spiking neuron that relies on the dynamical evolution of two easy to implement
Hamiltonians and subsequent local measurements. The architecture allows exploiting complex amplitudes and back-action from
measurements to influence the input. This approach to learning protocols is advantageous in the case where the input and output
of the system are both quantum states. We demonstrate this through the classification of Bell pairs which can be seen as a
certification protocol. Stacking the introduced elementary building blocks into larger networks combines the spatiotemporal
features of a spiking neural network with the non-local quantum correlations across the graph.
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INTRODUCTION
As Moore’s law slows down1, increased attention has been put
towards alternative models for solving computationally hard
problems and analyzing the ever growing stream of data2,3. One
significant example has been the reinvigoration of the field of
machine learning: neuromorphic models, inspired by biology,
found applications in a large host of fields4,5. In parallel, quantum
computing has been taking significant steps moving from a
scientific curiosity towards a practical technology capable of
solving real-world problems6. Given the prominence of both fields,
it is not surprising that a lot of work has gone into exploring their
parallels, and how one may be used to enhance the other. One
such synergy has emerged in the field of quantum machine
learning7–9. Recent results aim to mimic the parametric, teachable
structure of a neural network with a sequence of gates on a set of
qubits10–12 or on a set of photonic modes13. A subset of these
algorithms focus on quintessentially quantum problems: the input
to the learning model is a quantum state and so is its output. This
scenario is relevant in building and scaling experimental devices
and it is often referred to as quantum learning14,15.
We take a slightly different approach to quantum learning

wherein the structure of the network manifests itself as
interactions between qubits in space rather than as gates in a
circuit diagram. Specifically, we will present a small toolbox of
simple spin models that can be combined into larger networks
capable of neuromorphic quantum computation. To illustrate the
power of such networks, a small example of such a ‘spiking
quantum neural network’ capable of comparing two Bell states is
presented, a task which could have applications in both state
preparation and quantum communication. The term ‘spiking’
refers to the temporal aspect in the functioning of the model
during the activation of the neuron, akin to the classical spiking
neural networks16. As illustrated in the example, a fundamental
property of these networks is that they generate entanglement
between the inputs and outputs of the network, thus allowing

measurement back-action from standard measurements on the
output to influence the state of the input in highly non-trivial
ways. The proposed model for spiking quantum neural networks is
amenable to implementation in a variety of physical systems, e.g.,
using superconducting qubits17–19.
A key inspiration for the constructions presented in this paper is

the advent of dedicated classical hardware for simulating spiking
classical neural networks, including implementations from both
Intel and IBM20–23. These systems emulate the function of a
biological spiking neural network through networks of small
neuron-like computing resources. They can be roughly grouped
into digital systems simulating the dynamics of spiking networks
using binary variables and in discrete time-steps21,22, and analog
circuitry emulating spiking behavior of physical observables in
continuous time23. The main focus of this paper is to extend the
concept of the discretized models to the quantum domain,
facilitating the use of purpose-built neuromorphic systems for
applications within quantum learning, and providing the models
access to quantum resources like entanglement. Additionally, an
outlook towards the implementation of continuous-time compu-
tational quantum dynamics is also briefly discussed.
Note that several similar proposals for real-space quantum

neural networks do exist. One prominent example is within the
field of quantum memristors, where a spiking quantum neuron
was recently constructed, and networks of these objects were
proposed24. The central distinction to our scheme is the degrees
of freedom under consideration. Whereas our scheme is based on
generic qubits, memristive schemes revolve around the dynamics
of voltages and currents. This means that the operations of our
neural networks below will be more easily interpretable in a
quantum computing context in comparison to these dissipative
memristive schemes. A more apt comparison may therefore be a
recent proposal for implementing a quantum perceptron through
adiabatic evolution of an Ising model25. Indeed, the interaction
implemented in that proposal very closely resembles the
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operation of the first spin-model presented below. However, the
nature of the adiabatic protocol makes the path towards
connecting such building blocks into a larger dynamical network
unclear. Neither case fully captures the properties of the spiking
quantum neural network proposed here.

RESULTS
Defining the building blocks
The first step towards a neuromorphic quantum spin model is the
construction of neuron-like building blocks. In other words, we
need objects capable of sensing the state of a multi-spin input
state and encoding information about relevant properties of this
input into the state of an output spin. Additionally, we will require
that this operation does not disturb the state of the input. This
additional property is partially motivated by a similar property of
the neurons used in e.g., classical feed forward networks, which
similarly only exerts influence on the state of the network through
their output. Furthermore, we show below that the preservation of
inputs allow for interesting and non-trivial effects of the
entanglement between the generated output and the preserved
input. The cost of this preservation is a set of restrictions on each
building block, as described in more detail below.
Inspired by the way classical neurons activate based on a

(weighted) sum of their inputs, the first building block will be one
that flips the state of its output spin, depending on how many of
the input spins are in the ‘active’ "j i -state. The second building
block, on the other hand, measures relative phases of components
in the computational (i.e., the σz) basis, and thus has no classical
analog.

Neuron 1: Counting excitations
In analogy to the thresholding behavior of classical spiking
neurons, we start by constructing a spin system that is capable of
detecting the number of excitations (i.e., the number of inputs in
the state "j i) and exciting its output spin conditional on this
information. As shown in Supplementary Note 1, this behavior can
be implemented using dynamical evolution driven by the
Hamiltonian

HExc ¼ J
2 σx

1σ
x
2 þ σy

1σ
y
2 þ σz

1σ
z
2

� �þ β σz
2σ

z
3

þA cos 2β
_ t

� �
σx
3;

(1)

assuming the evolution is run for a time τ= πℏ/A and that the
Hamiltonian fulfills some restrictions on the interaction strengths
J, β, A that will be discussed below. In this model, we label spins 1
and 2 as the input, and spin 3 as the output. The intuition behind
this model is that the Heisenberg interaction between the inputs
sets up energy differences among the four possible Bell state of
the inputs. Through the σz

2σ
z
3 coupling to the output, these

differences then influence the energy cost of flipping the output
spin, resulting in the cosine drive on the output only being
resonant when the input qubits are in certain states. The result is
that the driving induces flips in the output qubit if and only if the
input is in a Bell state with an even number of excitations. Since
the conditionality is a resonance/off-resonance effect, the detun-
ing of the undesired transitions needs to be much larger than the
strength of the driving, which leads to the criterion

Δ± ¼ 2β± 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ β2

q����
���� � A; (2)

which is naturally fulfilled whenever the driving-strength A is
much smaller than the chain interaction strength J.
Due to dynamical phases, the requirement that superpositions

of input states should be preserved adds two additional
constraints for the parameters of the model. Specifically,
conservation of relative phases within the subspaces of inputs

that either flips (“above threshold”) or does not flip (“below
threshold”) the output yields

β ¼ kA k 2 Z

J ¼ ±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � k2

p
A l 2 Z:

(3)

If these constraints are fulfilled, the only non-trivial phase will be a
coherent phase between the above-threshold and below-
threshold subspaces of �ið�1Þkþl exp �iJt=_ð Þ, where t is the time
elapsed during detection. Since these two subspaces are now
distinguished by the state of the output, correcting for this phase
is just a matter of performing the corresponding phase-gate on

the output qubit. In the special case where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � k2

p
is an integer,

this reduces to performing a π/2-rotation of the output about the
z-axis (see Supplementary Note 1 for details).
When combined with this subsequent unconditional phase

gate, the dynamical evolution induced by the Hamiltonian in (1) is
to coherently detect the parity of the number of excitations of the
input, and to encode this information in the output spin, i.e., in
conventional Bell-state notation:

Ψ±j i #j i �! Ψ±j i #j i
Φ±j i #j i �! Φ±j i "j i; (4)

where the first ket denotes the state of the inputs and the second
ket the state of the output. The output is either fully excited or not
excited at all by the evolution—hence we refer to this structure as
a spiking quantum neuron, in analogy to similar objects from
classical computing. Sample simulations showing the dynamics of
the spiking process are shown in Fig. 1. Note that the dynamics
implementing this behavior is linear unitary time evolution, thus
the effect on general 2-qubit inputs follows from expressing the
input in the Bell-state basis and applying the rules of (4). For the
neuron-parameters l= 17 and k= 8, the corresponding operation
is performed with an average fidelity of 99.98% when averaged
over all possible 2-qubit inputs.

Neuron 2: Detecting phases
While neuron 1 is a fully quantum mechanical object, capable of
coherently treating superpositions in the inputs, the property that
it detects—the number of excitations in the input—would be
similarly well-defined for a classical neuron participating in a
classical digital computation. However, the state of the two input
qubits will also be characterized by properties that have no
classical analog, such as the relative phases of terms in a
superposition state. The goal of the second neuron is to be able
to detect these relative phases of states in the computational
basis. Specifically, it aims to distinguish the states f Ψþj i; Φþ�� �g
from the states f Ψ�j i; Φ�j ig. Combining this detection-capability
with the capabilities of the excitation-counting neuron of the
previous section (exemplified by (4)) allows complete discrimina-
tion between the four Bell states.
The operational principle of the phase-detection neuron is

similar to that of the excitation-detection neuron: it relies on a
combination of single-qubit gates and the unitary time-evolution
generated by a Hamiltonian of the form:

Hphase ¼ J
2

σx1σ
x
2 þ σy

1σ
y
2 þ σz

1σ
z
2

� �þ δ σx
2σ

x
3 þ B σz3: (5)

As shown in Supplementary Note 2, running the dynamics of this
Hamiltonian for a time τ= πℏ/2B performs a �iZð Þ-gate on the
output qubit if and only if the state of input qubits are in the
subspace spanned by Ψ�j i and Φ�j i. Thus by conjugating this
operation with Hadamard gates on the output qubit and
correcting for the −i-phase using a phase-gate (see Fig. 2) yields
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the desired phase-detection operation:

Ψþj i #j i �! Ψþj i #j i
Φþ�� � #j i �! Φþ�� � #j i
Ψ�j i #j i �! Ψ�j i "j i
Φ�j i #j i �! Φ�j i "j i:

(6)

The fundamental principle of operation is identical to the one of
the excitation-counting neuron, in that the Hamiltonian once
again contains three terms: a Heisenberg interaction to set up an
energy spectrum that distinguishes the Bell states, an interaction
that tunes the energy of the output qubit (i.e., qubit 3) dependent
on the state of the inputs, and a single-qubit operator attempting
to change the state of the output and succeeding if and only if the
driving related to this term matches the energy cost of flipping
the output. The only difference is that the interaction term now
sets up an energy splitting between the spin states ±j i ¼
1ffiffi
2

p #j i± "j ið Þ rather than the states "j i= #j i, hence the need for

Hadamard gates to convert between the two bases. Note that all
of these operations are again linear, thus (6) specifies the
operation also for general 2-qubit inputs. For the neuron-
parameters n= 82 and m= 3, the corresponding phase-
detection operation is performed with an average fidelity of
99.07% when averaged over all possible 2-qubit inputs, with
higher values achievable through small adjustments (see Supple-
mentary Note 2 for details).

As the operation of the phase-detection neuron also relies on
resonance/off-resonance effects, a restriction of similar to (2) is
present. Specifically, we require that

Δ ¼ 2δ � B: (7)

Additionally, the requirement that the state of the inputs should
not be distorted by the operation of the neuron yields the
requirement that the ratios between J, δ and B should fulfill:

J ¼ 2nB n 2 Z
δ ¼ 2mB m 2 Z:

(8)

with n≫m.

State comparison network
Having introduced a set of computational building blocks above,
we now aim to illustrate how these can be combined into larger
networks in order to solve computation- and classification-
problems. Specifically, we will illustrate how a network of these
objects allows one to compare pairs of Bell states to determine if
they are the same Bell state. As detailed below, such a network
could play a central role in the certification of Bell-pair sources and
quantum channels, and may also have potential applications for
machine learning and state preparation tasks.
The basic structure of the proposed network is depicted in Fig. 3,

and consists of three layers. The first layer constitutes the input to
the system. It is in these four qubits that the two Bell states to be
compared are stored. Each pair is used as an input to both of the

Fig. 1 Dynamics of Neuron 1. Schematic depiction of the excitation-number detecting neuron (top) and plots of the time-evolution of the
output-qubit state (red) and the overlap between the state of the input qubits and their initial state (green) for the four Bell states during the
operation of the neuron. As illustrated in these plots, the state of the output is either flipped or not depending on whether the input contains
an odd (middle) or even (bottom) number of excitations. In contrast, the input qubits return to their initial states in all four cases. Parameters
used are l= 17, k= 8, which yields an average operational fidelity of 99.98% in the absence of noise.
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types of neurons detailed above, with the output stored in two
pairs of qubits in the second layer. In this way, sequentially
running each of the two neuron operations extracts both the
excitation-number parity and the relative phase of superpositions
in the inputs and encodes it into the second layer. In other words,

this layer ends up containing exactly the information needed to
distinguish among the four Bell states. State comparison therefore
boils down to detecting if the information extracted from one
input matches that extracted from the other input. Since detecting
if two qubits are in the same state (i.e., both #j i or both "j i) boils
down to checking the number of excitations modulo two, this
comparison can be done using the excitation-counting neuron
defined above. The third layer thus encodes two bits of
information: whether the excitation parity of the two inputs
match, and whether the relative phases match. Detecting if the
two inputs were the same Bell state is thus a matter of detecting if
both of these bits are in the "j i-state. This detection can be done
using similar methods to those of the excitation-detection
neuron–see Supplementary Note 3 for details.
The result of the manipulations is that the output is put into the

"j i-state if the two Bell-state inputs were identical and #j i
otherwise. Since all of the operations are achieved through linear,
unitary dynamics, the behavior for superposition inputs follow
from this rule and linearity. This also implies that the network
cannot compare arbitrary states, as is indeed prohibited by the no-
cloning theorem of quantum mechanics. For instance, two
identical inputs in a superposition in the Bell basis may return
either "j i or #j i as output:

1
2 Ψþj i þ Φ�j ið ÞIN1 Ψþj i þ Φ�j ið ÞIN2 #j iOUT

�! 1
2 Ψþj iIN1 Φ�j iIN2 þ Φ�j iIN1 Ψþj iIN2
� � #j iOUT

þ 1
2 Φ�j iIN1 Φ�j iIN2 þ Ψþj iIN1 Ψþj iIN2
� � "j iOUT:

(9)

Fig. 2 Dynamics of Neuron 2. Schematic depiction of the phase-detecting neuron (top) and plots of the time-evolution of the X-component
(blue) and Z-component (red) of the output-qubit state as well as the overlap between the state of the input qubits and their initial state
(green) for the four Bell states during the operation of the neuron. As illustrated in these plots, the state of the output is either flipped or not
depending on whether the input contains a positive (top) or negative (bottom) relative phase. In contrast, the input qubits return to their
initial states in all four cases. Parameters used are n= 82, m= 3, which yields an average operational fidelity of 99.07% in the absence of noise.
As detailed in Supplementary Note 2, small adjustments around these values can yield a slightly higher fidelity, in this case 99.58%.

Fig. 3 Bell-state comparison network. Schematic depiction of
network for comparing pairs of Bell states. The left-most layer
marked in red constitute the inputs to the network, with subsequent
layers extracting and comparing information about either the phase
(blue) or the excitation parity (orange) of the input states, with the
result of the comparison stored in the green output qubit.
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This illustrates an interesting property of quantum neural networks,
namely that entanglement between inputs and outputs means
that measurements of the outputs may have dramatic effects on
the state of the inputs. In this case, a measurement of "j i in the
output will always project the input qubits into the states
corresponding to this output, i.e., to identical Bell-state pairs. In
this sense, a classifying quantum network like the one above will
simultaneously be a projector onto the spaces corresponding to
the states it is build to classify—a property that might prove
helpful in, for instance, state preparation schemes. Note that this
simple interpretation of measurement back-action follows from the
fact that no other perturbations on the input state have been
performed by the network during the computation, and hence
from the corresponding non-disturbance requirement applied to
each of the neurons.
A more concrete application of the network above is the

certification of quantum channels and Bell-state sources. The
ability to determine the reliability of resources such as Bell-state
sources and quantum channels would be a practical benefit in
many quantum communication and quantum cryptography
applications. This is an active area of research: for instance,
device-independent self-testing through Bell inequalities works
for certain multipartite entangled states26, or quantum template
matching for the case where we have two possible template
states27,28. Since the device presented above allows for the
comparison of unknown systems with known-good ones, it is
ideally suited to this kind of certification task.
Finally, it is worth noting that the comparative nature of the

network means that the output of the network defines a kernel
between 2-qubit quantum states. Specifically, given two inputs
represented by amplitudes {ai} and {bi} in the Bell-state basis, the
probability of measuring "j i in the output will be given by

P "j i ¼
X
i

aij j2 bij j2 (10)

which bears a strong resemblance to the classical “expected
likelihood” kernel29. Considering this, comparison networks like
the one above may also find applications within kernel-based
quantum machine learning approaches30,31.
One thing to note is that the design of the structure in Fig. 3 is

motivated by a desire for a one-step forward propagation of
information between the layers of qubits, in analogy to the
propagation of information in artificial classical neural networks. If
each layer is allowed to probe the preceding layer more than
once, a significant reduction in qubit overhead is possible. An
example of this is the network depicted on Fig. 4. This network
performs the same operation as the network in Fig. 3 while
omitting the entire second layer. This is achieved by using the
same qubit as target for both of the neurons detecting a given
property. In this way, a shared property between the two input
pairs means the two sequential detections result in an even
number of flips to the corresponding qubit of the middle layer –
either 0 or 2. On the other hand, non-identical properties will
instead lead to precisely one flip. Thus the initial state of a qubit in
the middle layer is preserved if and only if the property that it
detects is identical between the two input pairs. The state of the
output qubit is then determined by performing a flip if and only if
both qubits in the middle layer have remained in their initial
#j i-state. In practice, this can be done using a similar general-
ization to the final step as the one used in the larger network –
See Supplementary Note 3 for details. Thus allowing multiple
sequential probings of the inputs by the middle layer allows the
qubit-count to be reduced by 4, though at the expense of a slight
increase in the complexity of the protocol for forward propagation
of information as well as an increase in the maximum number of
connections required by a qubit from 3 to 4.

DISCUSSION
We have presented a set of building blocks that detects properties
of two-qubit inputs and encodes these properties in a binary and
coherent way into the state of an output qubit. To illustrate the
power of such spiking quantum neurons, we have presented a
network of these building blocks capable of identifying if two Bell
states are identical or not, and argued the usefulness of such
comparison networks for quantum certification tasks within
quantum communication and quantum cryptography. Addition-
ally, we have seen how the entanglement of the inputs and
output results in highly non-trivial effects on the inputs when a
measurement is performed on the output of the network.
From the considerations above, several interesting questions

arise. A main question might be how to scale up structures made
from these and similar building blocks into larger networks
capable of performing more complex quantum processing tasks.
Concerning scaling, it seems reasonable to expect that the kind of
intuitive reasoning behind the operation of the network presented
here will become ever more challenging. As a result, it might be
fruitful to take inspiration from the field of classical neural
networks and design quantum networks whose operation depend
on parameters. In this way, one can then adjust these parameters
to make the network perform a certain task, in a way analogous to
how both classical and quantum neural networks are trained.
Since the Hamiltonians responsible for the operation of the
neurons already contain a number of parameters, the architecture
presented in this paper seems well-suited to such an approach. An
interesting avenue of further research is therefore the general-
ization of the dynamical models presented here to tunable models
capable of detecting other structures in multi-qubit inputs than
the two-qubit Bell-state properties detected here, or to models
capable of solving other relevant quantum-computing problems,
for instance parity detection for error correction protocols.
A central challenge in such a learning-based approach would be

how best to optimize the parameters of the model, and how to
identify the class of operations that can be implemented by a
given model. Much work is currently being dedicated to these
questions in the context of variational algorithms in gate-based
quantum computation10,32–35. However, for the dynamical models

Fig. 4 Reduced Bell-state comparison network. Schematic depic-
tion of a network for comparing pairs of Bell states employing fewer
qubits to do so than the one presented in the main text. The left-
most layer marked in red constitute the inputs to the network, with
subsequent layers extracting and comparing information about
either the phase (blue) or the excitation parity (orange) of the input
states, with the result of the comparison stored in the green
output qubit.
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described in this paper, these problems are best framed within the
field of optimal control theory, where a number of methods and
results already exist on the optimization of pulses and parameters
for quantum models36,37. Furthermore, advanced methods such as
genetic algorithms38 and reinforcement-learning39 have recently
begun to garner interest within this field. Thus the intersection of
quantum optimal control and quantum machine learning seems a
fertile avenue of further research, as recently pointed out in36.
Nevertheless, optimization of the parameters of the model is in
general expected to be a hard problem, although the difficulty
compared to the corresponding optimizations currently faced by
variational algorithms in gate-based quantum computers is
believed by the authors to be an open question.
Another possible avenue of research towards improving the

schemes presented here is to reduce the complexity of operation
related to having to turn interactions between the different layers
on and off by instead employing autonomous methods similar to
those already used within the field of quantum error correction.
Using such methods to perform quantum operations in a coherent
way can be highly non-trivial, but for networks like the one
described above where the latter stages of the network are
essentially classical processing, strict coherences should not be
needed for the network to operate, thus lowering the bar for
autonomous implementations of similar networks. Furthermore, a
faithful reproduction of the spiking action of biological neurons
necessarily requires non-linearities and non-unitary reset. Thus
engineered decoherence would also be an essential resource if
more closely reproducing the continuous-time dynamical beha-
vior of classical spiking neurons is the goal.
Finally, tapping into the temporality of the neurons presented

above also holds great promise. Indeed, it has already been
shown that the temporal behavior of comparatively simpler
networks of spins allows for universal quantum computation40.
Thus we believe that augmenting the neurons of this paper with
less constrained and clock-like dynamics combined with
tunable, teachable behavior and perhaps partial autonomy
would be a promiseful route towards a neuromorphic architec-
ture capable of solving complicated and interesting problems
within quantum learning. Additionally, this approach will further
distinguish the spiking quantum neural networks from conven-
tional gate-based approaches, both through temporality and
through increased complexity. Indeed, while all neuron opera-
tions presented here can be implemented on gate-based
quantum computers at a cost of between two and six 2-qubit
gates, it is unlikely that the same will hold true for the operation
of larger, coupled, parametrized networks. This expectation
mirrors the expected advantage of classical special-purpose
hardware for neuromorphic computing—it does not perform
computations that a general-purpose processor could not
perform, but may do so faster and more efficiently. In a similar
manner, the operations performed here could be emulated on
either gate-based quantum computers or (universal) annealing
architectures, but would require some overhead, for instance in
the form of requiring multiple control pulses to emulate the
single-pulse evolution of the excitation-counting neuron. Con-
versely, while we expect universal computation with models
similar to those presented here to be possible—assuming either
sufficiently large networks, like in40, or sufficiently reconfigur-
able couplings—we do not expect such a construction to be an
efficient architecture for arbitrary classes of algorithms. In other
words, it seems likely that a spiking quantum neural network will
tend to naturally implement different operations, and therefore
tackle different classes of problems, compared to annealing-
based or gate-based algorithms, thus potentially making it a
valuable additional tool for quantum machine learning.

METHODS
Simulations of the dynamics
The plots depicted on Figs. 1 and 2 were generated by numerically
simulating the dynamics of the Hamiltonians (1) and (6), respectively, using
the Python toolbox QuTip41. Specifically, the system was initialized in
states of the form

jΨ0i ¼ j Input ij #i
j Input i 2 fjΦ± i; jΨ± ig; (11)

where the two kets in the notation specifies the state of the input qubits
(qubits 1 and 2, first ket) and the output qubit (qubit 3, second ket)
separately. The built-in numerical solver of the QuTiP library was then used
to find the trajectories resulting from the time-evolution of each of these
states:

ΨðtÞj i ¼ e�iH_t Ψ0j i: (12)

Using these trajectories, the evolution of the quantities depicted in the plot
could then be calculated, including the expectation values related to the
output qubit:

Output-X : hΨðtÞjσx3jΨðtÞi
Output-Z : hΨðtÞjσx3jΨðtÞi

(13)

and the overlap between the current state of the inputs and their initial
state:

Input-Fidelity : hΨðtÞjðjΨ0i hΨ0j þ σx3jΨ0i hΨ0jσx3ÞjΨðtÞi: (14)

Note that the effect of the second term in this expectation-value is to trace
out the dependence on the state of the output. The phase- and Hadamard-
gates required for the operation of the neurons were implemented by
evolving the system using Hamiltonians of the form:

HPhase ¼ Aσz3 Exc:Neuron

Bσz3 PhaseNeuron

	
HHad ¼ ffiffiffi

2
p

B σx3 þ σz3
� � (15)

for a sufficient amount of time to implement the operation, i.e.:

τPhase ¼
π
4A Exc:Neuron
π
4B PhaseNeuron

(

τHad ¼ π
4B :

(16)

Note that all simulations were performed without the simulation of noise
and decoherence.

Computation of the average fidelity
In order to quantify the performance of the neurons, the simulations of the
dynamics were combined with tools based on42 for calculating the average
fidelity of operations, thus allowing the operations implemented by the
neurons to be compared to the idealized operations defined in Eqs. (4) and
(6). Each of the fidelities was calculated within the subspace consisting of
the 6 states appearing in the corresponding definition, with the following
additions made in order to fully specify the desired effects of the neurons
within this subspace:

Ψ±j i 1j i ! �i Ψ±j i 0j i Exc:Neuron

Φ�j i 1j i ! i ð�1Þnþ1 Φ�j i 0j i PhaseNeuron

Ψ�j i 1j i ! i ð�1Þnþ1 Ψ�j i 0j i PhaseNeuron:

(17)

In other words, the average fidelity was computed by comparing the
implemented operation UNeur to this idealized operation Uideal and then
averaging over a uniformly distributed ensemble over the space D
spanned by the 6 states used in the definition of the gate:

Fav UNeurð Þ ¼
Z

D
dψ <ψjUy

idealUNeur ψj i
��� ���2: (18)

Note that the 6 states only enters in the ensemble of initial states—the
simulations employed the full Hilberspace, and infidelity from leakage out
of the 6-state space is fully accounted for by the fidelity-metric. In the
specific models presented here, this leakage additionally turned out to be
relatively negligible, on the order of 1⋅10−4.

L.B. Kristensen et al.

6

npj Quantum Information (2021)    59 Published in partnership with The University of New South Wales



DATA AVAILABILITY
The code and datasets used in the current study are available from the
corresponding author upon request.

Received: 16 March 2020; Accepted: 26 January 2021;

REFERENCES
1. Waldrop, M. M. The chips are down for Moore’s law. Nature 530, 144–147 (2016).
2. Gantz, J. & Reinsel, D. The digital universe in 2020: big data, bigger digital shadows,

and biggest growth in the far east. IDC iView IDC Anal. Future 2007, 1–16 (2012).
3. Hashem, I. A. T. et al. The rise of “big data” on cloud computing: review and open

research issues. Inf. Syst. 47, 98–115 (2015).
4. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep con-

volutional neural networks. Adv. Neural Inform. Process. Syst. 25, 1097–1105 (2012).
5. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to sequence learning with neural

networks. Adv. Neural Inform. Process. Syst. 27, 3104–3112 (2014).
6. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).
7. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202 (2017).
8. Dunjko, V. & Briegel, H. J. Machine learning & artificial intelligence in the quantum

domain: a review of recent progress. Rep. Prog. Phys. 81, 074001 (2018).
9. Kapoor, A., Wiebe, N. & Svore, K. Quantum perceptron models. Adv. Neural Inform.

Process. Syst. 29, 3999–4007 (2016).
10. Schuld, M., Bocharov, A., Svore, K. M. & Wiebe, N. Circuit-centric quantum clas-

sifiers. Phys. Rev. A 101, 032308 (2020).
11. Killoran, N. et al. Continuous-variable quantum neural networks. Phys. Rev.

Research 1, 033063 (2019).
12. Tacchino, F., Macchiavello, C., Gerace, D. & Bajoni, D. An artificial neuron imple-

mented on an actual quantum processor. npj Quantum Inf. 5, 26 (2019).
13. Steinbrecher, G. R., Olson, J. P., Englund, D. & Carolan, J. Quantum optical neural

networks. npj Quantum Inf. 5, 60 (2019).
14. Monràs, A., Sentís, G. & Wittek, P. Inductive supervised quantum learning. Phys.

Rev. Lett. 118, 190503 (2017).
15. Albarrán-Arriagada, F., Retamal, J. C., Solano, E. & Lamata, L. Measurement-based

adaptation protocol with quantum reinforcement learning. Phys. Rev. A 98,
042315 (2018).

16. Maass, W. Networks of spiking neurons: the third generation of neural network
models. Neural Netw. 10, 1659–1671 (1997).

17. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev.
Condens. Matter Phys. 11, 369–395 (2020).

18. Kounalakis, M., Dickel, C., Bruno, A., Langford, N. K. & Steele, G. A. Tuneable
hopping and nonlinear cross-Kerr interactions in a high-coherence super-
conducting circuit. npj Quantum Inf. 4, 38 (2018).

19. Wallraff, A. et al. Sideband transitions and two-tone spectroscopy of a super-
conducting qubit strongly coupled to an on-chip cavity. Phys. Rev. Lett. 99,
050501 (2007).

20. Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with
neuromorphic computing. Nature 575, 607–617 (2019).

21. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable
communication network and interface. Science 345, 668–673 (2014).

22. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning.
IEEE Micro 38, 82–99 (2018).

23. Benjamin, B. V. et al. Neurogrid: a mixed-analog-digital multichip system for
large-scale neural simulations. Proc. IEEE 102, 699–716 (2014).

24. Gonzalez-Raya, T., Solano, E. & Sanz, M. Quantized three-ion-channel neuron
model for neural action potentials. Quantum 4, 224 (2020).

25. Torrontegui, E. & García-Ripoll, J. J. Unitary quantum perceptron as efficient
universal approximator. EPL 125, 30004 (2019).

26. Šupić, I., Coladangelo, A., Augusiak, R. & Acín, A. A simple approach to self-testing
multipartite entangled states. New J. Phys. 20, 083041 (2017).

27. Sasaki, M., Carlini, A. & Jozsa, R. Quantum template matching. Phys. Rev. A 64,
022317 (2001).

28. Sentís, G., Calsamiglia, J., Muñoz-Tapia, R. & Bagan, E. Quantum learning without
quantum memory. Sci. Rep. 2, 708 (2012).

29. Jebara, T., Kondor, R. & Howard, A. Probability product kernels. J. Mach. Learn. Res.
5, 819–844 (2004).

30. Schuld, M. & Killoran, N. Quantum machine learning in feature Hilbert spaces.
Phys. Rev. Lett. 122, 040504 (2019).

31. Havliček, V. et al. Supervised learning with quantum-enhanced feature spaces.
Nature 567, 209–212 (2019).

32. Peruzzo, A. et al. A variational eigenvalue solver on a photonic quantum pro-
cessor. Nat. Commun. 5, 4213 (2014).

33. McClean, J. R., Romero, J., Babbush, R. & Aspuru-Guzik, A. The theory of variational
hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016).

34. Farhi, E. & Neven, H. Classification with quantum neural networks on near term
processors. Preprint at https://arxiv.org/abs/1802.06002 (2018).

35. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization
algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

36. Magann, A. B. et al. From pulses to circuits and back again: A quantum optimal control
perspective on variational quantum algorithms. PRX Quantum 2, 010101 (2021).

37. Yang, X.-d. et al. Assessing three closed-loop learning algorithms by searching for
high-quality quantum control pulses. Phys. Rev. A 102, 062605 (2020).

38. Mortimer, L., Estarellas, M. P., Spiller, T. P. & D’Amico, I. Evolutionary computation for
adaptive quantum device design. Preprint at https://arxiv.org/abs/2009.01706 (2020).

39. Niu, M. Y., Boixo, S., Smelyanskiy, V. N. & Neven, H. Universal quantum control
through deep reinforcement learning. npj Quantum Inf. 5, 33 (2019).

40. Childs, A. M., Gosset, D. & Webb, Z. Universal computation by multiparticle
quantum walk. Science 339, 791–794 (2013).

41. Johansson, J. R., Nation, P. D. & Nori, F. Qutip: an open-source python framework for the
dynamics of open quantum systems. Comput. Phys. Commun. 183, 1760–1772 (2012).

42. Nielsen, M. A. A simple formula for the average gate fidelity of a quantum
dynamical operation. Phys. Lett. A 303, 249–252 (2002).

ACKNOWLEDGEMENTS
L.B.K. and N.T.Z. acknowledge funding from the Carlsberg Foundation and the Danish
Council for Independent Research (DFF-FNU). M.D. acknowledges support by the U.S.
Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research, Quantum Algorithms Teams Program. A.A.-G. acknowledges support from
the Army Research Office under Award No. W911NF-15-1-0256 and the Vannevar
Bush Faculty Fellowship program sponsored by the Basic Research Office of the
Assistant Secretary of Defense for Research and Engineering (Award number ONR
00014-16-1-2008). A.A.-G. also acknowledges generous support from Anders G.
Frøseth and from the Canada 150 Research Chair Program.

AUTHOR CONTRIBUTIONS
N.T.Z. and L.B.K. formulated the initial goal of the research, and M.D., P.W. and A.A.-G.
subsequently participated in a further refinement of the scope and focus of the
research. The bulk of the analytical and numerical work of the study as well as the
creation of the initial draft was performed by L.B.K., with further significant contributions
to the manuscript by M.D. and P.W. and crucial revisions by A.A.-G. and N.T.Z.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41534-021-00381-7.

Correspondence and requests for materials should be addressed to L.B.K.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

L.B. Kristensen et al.

7

Published in partnership with The University of New South Wales npj Quantum Information (2021)    59 

https://arxiv.org/abs/1802.06002
https://arxiv.org/abs/1411.4028
https://arxiv.org/abs/2009.01706
https://doi.org/10.1038/s41534-021-00381-7
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	An artificial spiking quantum neuron
	Introduction
	Results
	Defining the building blocks
	Neuron 1: Counting excitations
	Neuron 2: Detecting phases
	State comparison network

	Discussion
	Methods
	Simulations of the dynamics
	Computation of the average fidelity

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




