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Entanglement formation in continuous-variable random
quantum networks
Bingzhi Zhang 1,2 and Quntao Zhuang 2,3✉

Entanglement is not only important for understanding the fundamental properties of many-body systems, but also the crucial
resource enabling quantum advantages in practical information processing tasks. Although previous works on quantum networks
focus on discrete-variable systems, light—as the only traveling carrier of quantum information in a network—is bosonic and thus
requires a continuous-variable description. We extend the study to continuous-variable quantum networks. By mapping the
ensemble-averaged entanglement dynamics on an arbitrary network to a random-walk process on a graph, we are able to exactly
solve the entanglement dynamics. We identify squeezing as the source of entanglement generation, which triggers a diffusive
spread of entanglement with a "parabolic light cone”. A surprising linear superposition law in the entanglement growth is predicted
by the theory and numerically verified, despite the nonlinear nature of the entanglement dynamics. The equilibrium entanglement
distribution (Page curves) is exactly solved and has various shapes depending on the average squeezing density and strength.
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INTRODUCTION
Quantum information science has brought to us capabilities to
enhance the performance of computing1, sensing2, and commu-
nication3,4, through entangling local or distant processing nodes.
Therefore, a quantum network5 that enables entanglement6–8

establishment is important for achieving the promised quantum
advantages. The study of entanglement formation and quantum
information scrambling has been fruitful in complex systems such
as random quantum networks9–11, and circuits12–16, many-body
systems17–26, quantum graphs27–29, models of holography30–33,
and quantum gravity34–46. Universal scaling laws and dynamical
models of entanglement formation has been established, based
on nonlinear surface growth models12,13. Recently, experimental
probing21,47,48 of scrambling is also made possible; from the
quantum network perspective, protocol design49–52 for entangle-
ment establishment has also been a recent focus.
The above works, across multiple disciplinaries, mainly focus on

entanglement in discrete-variable (DV) systems, which is natural
for computing. However, light as the only carrier of quantum
information in network transmission, is bosonic and requires a
continuous-variable (CV) description. Moreover, various applica-
tions in the photonic or microwave domain, including cluster-
state-based quantum computing53, quantum sensing applica-
tions54–61, and entanglement-assisted communication62,63, require
CV entanglement in the form of Gaussian states64. In this regard,
noiseless linear amplifiers65 and error correction codes66,67

provide initial tools for CV networking, and an out-of-time-order
correlator (OTOC) has revealed a squeezing-dependent butterfly-
velocity of operator spreading68.
In this paper, we study quantum information scrambling in CV

quantum networks (see Fig. 1) focusing on the entanglement
formation dynamics. Inspired by the classical statistical theory of
complex networks69–71, we consider random quantum networking
protocols to enable analytical solutions, through a mapping to a
random-walk process on graph. We study the dynamics and
equilibrium, of bipartite and multipartite entanglement, on local

and general network topologies, as we detail in the following
paragraphs.
We provide an analytical formula connecting the entanglement

entropy to weights in the passive linear optical transforms,
therefore establishing a mapping between (ensemble-averaged)
entanglement dynamics to the probability evolution of a
(Markovian) random-walk process on a general graph (see Fig. 1),
with a transition matrix determined by the graph connectivity.
Through the mapping, we also connect the scrambling time—the
time it takes for the entire system to be maximally entangled—
directly to the mixing time of the random walk.
At infinite time, the equilibrium entanglement distribution

(Page curve72–74) can be solved analytically from the stationary
state of the random walk. Surprisingly, the Page curve is
independent of the topology of the network, as long as the
graph is connected. And, in general, it depends on two statistical
properties of the quantum network—the squeezer’s density and
the average squeezing strength.
To go beyond the bipartite characterization of entanglement

through entanglement entropy, we also give an operational
witness of multipartite entanglement, based on the precision in
distributed sensing protocols67. Maximum values of the entangle-
ment witness are achieved towards the late time, therefore
verifying the full scrambling of the entire network. This entangle-
ment witness adds to the toolbox of CV entanglement character-
ization, including the separability criteria8,75–79, entanglement of
formation80–84, tangle and cotangle85–87, and Rényi entropy-based
measures88 (see Supplementary Note 1 for details).
Although our theory works for general graphs, we also apply to

networks respecting “locality” of interactions—D-dimensional
Cartesian graphs where links only exist between nearest
neighbors (see Fig. 2). In this regard, we identify a diffusive
"parabolic entanglement light cone” at the early time, which
divides the regions with almost no entanglement and regions
with substantial entanglement. After the parabolic light cone
reaches each node, there is a period of entanglement sudden
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growth, where the entanglement entropy quickly gets close to its
equilibrium value. In the end, there is a long period of saturation,
determined by the mixing time ~M2 quadratic in the length M on
each dimension.
Our theory framework provides a complement to the DV

counterparts12–16,23. And our results provide insights into not only
CV quantum networks being engineered, but also quantum
information scrambling in various physical systems, as any form of
bosonic radiation is intrinsically CV.

RESULTS
Modeling and main results
Our overall goal is to characterize generic entanglement formation
dynamics towards equilibrium in a CV quantum network (see Fig.
1 for a schematic). In general, a quantum network can have
complicated topology, which makes the problem difficult. More-
over, each node can possess multiple optical modes, and perform
local operations (LO) coordinated by classical communication (CC)
to entangle them. Considering the optical modes, we can reduce a
general entanglement generation protocol to a quantum circuit

on a graph, as we illustrate in an one-dimensional (1-D) hopping
quantum network in Fig. 2a. To establish entanglement, each
node performs the following protocol repetitively: it receives a
light mode from a neighbor, which gets entangled with a stored
mode through a local unitary; then, it sends out a mode to
another neighbor and stores one mode locally. For simplicity, the
nodes send light to the left and right neighbors alternatively in
even and odd steps. If we focus on the dynamics of the optical
modes, the above protocol reduces to a 1-D local circuit in Fig. 2b,
where local gates apply alternatively on the light modes68.
The transmission links in a quantum network are in general

lossy. To cope with loss, error correction66 can be applied in each
link transmission. On the physical layer, this means including
additional components that seemingly complicate the analyses.
However, on the logical layer, up to some small residual errors
from imperfect error correction, the state being protected is
identical to the state being generated in a lossless quantum
network, as demonstrated in ref. 67 for sensing purposes.
Therefore, we start with the lossless case.
With the mapping between quantum networks and quantum

circuits in mind, we specify the setup of the circuits on an arbitrary
(undirected) graph (see Fig. 1c). In general, the topology can be
described by an undirected graph ðG; EÞ, where G denotes the set
of all vertices, each described by a coordinate system x. Since
unconnected components can simply be regarded as two
separate networks, we consider connected graph without loss of
generality. The set of edges E can be described by a generalized
connection matrix Ex;x0 . When Ex;x0 ¼ 1, the vertices x; x0 are
connected by an edge xx0, zero when not connected. For
simplicity, we write the set of vertices that are directly connected
to x (neighbors) as NðxÞ. We are interested in the entanglement
between a set of vertices L and the rest R ¼ GnL.
Unitaries are applied on the edges E. We separate the edges

into disjoint sets fEkgKk¼1, such that the edges in each set Ek do
not have common vertices. The dynamics repeat in a period of K
steps; in the k-th step of each period, one applies unitaries Ut;x;x0

on each edge xx0 2 Ek . The particular separation of the unitaries is
not essential to the dynamics and equilibrium. As an example, in a
1-D local circuit, K= 2 and we alternative between gates {Ut,k,k+1}
on k odd and even; in a 2-D local circuit, we have K= 4, as shown
in Fig. 2f.
To produce the Gaussian states that enable various applications

in communication, sensing, and computing, we consider Gaussian
unitaries64, which are unitaries generated by Hamiltonians that are
second order in the quadrature operators (see details in
Supplementary Note 2). Gaussian unitaries include squeezing,
which creates asymmetry in quadrature noises; and passive linear
optics, which includes beamsplitters and phase-shifters.
Squeezing is essential for entanglement generation. However,

as an “active” component, squeezing is relatively difficult to
implement. Thus, we consider the gates fUt;x;x0 g to be passive
linear-optics gates. And squeezing operations are added in
between in a sparse way. As an example, in Fig. 2b, to establish
entanglement, in this case a single vertex performs a squeezing
operation (the cyan box), and then entanglement is generated by
passing it around through passive components (the orange
boxes), with vacuum on the other input modes.
We expect random protocols to reveal universal characteristics,

therefore we choose the passive linear optics gates fUt;x;x0 g to be
Haar random (see details in Supplementary Note 2). This is also
justified by the following reasons: (1) In classical complex network
theory69–71, various networks can be modeled as random
networks with a proper degree distribution. (2) In condensed
matter theory, random quantum circuits and Hamiltonian
systems12–16,23 are able to capture the essential quantum
information spreading features in generic many-body interacting
systems. (3) In real quantum networks, the form of entanglement
required can be complicated, depending on the purpose, e.g., the

Fig. 1 Quantum networks and graph random walk. a Schematic of
a quantum network. Through entanglement distribution, the nodes
get entangled to enhance communication, sensing and computa-
tion tasks. Cyan nodes have squeezers, whereas green nodes do not
have. Solid and dashed lines represent quantum and classical links.
b Random unitary gates correspond to random walk on a graph. The
probability distribution among three output ports (dashed cyan
circles) of a photon (cyan circle) initially at the center passing
through two beamsplitters is equivalent to that of a random walk
with proper transition probabilities. See Section "Mapping to
random walk on graphs'' for more details. c A general graph
ðG; EÞ, where G denotes all the vertices and E denotes all edges.
Time evolution of the entanglement entropy between the sub-
system L inside the dashed circle (vertices 1–5) and the rest R
(vertices 6–9) depends on the random walk on the boundary ∂L
(edges 3–6, 4–7, and 5–8). Vertices 3, 4, and 5 form the inner
boundary ∂L� (vertices of L connected to R); vertices 6, 7, and 8
form the outer boundary ∂Lþ (vertices in R but connected to L).
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weights of the global parameter of interest in a distributed
sensing protocol58.
We aim to characterize the entanglement dynamics in the

above random circuits. The entanglement entropy, measured by
von Neumann entropy or Rényi entropy, can be numerically
evaluated efficiently (see details in Supplementary Note 3). Two 1-
D examples of time evolution of von Neumann entropy between
the left part L ¼ ½�N; x� and the right part R ¼ ½x þ 1;N� of the
system are given in Fig. 2c, d. In Fig. 2c, we have a single squeezer
at the center in the first step, which is identical to the case
depicted in Fig. 2b. The entanglement entropy grows diffusively
from the source of squeezing. Different from the DV case, we can
identify a parabolic entanglement light cone (green lines), which is
the boundary between regions with substantial entanglement and
regions with almost-zero entanglement. These phenomena can
also be found in higher dimensional random local circuits, as
shown in Fig. 2g for the 2-D case. When choosing a subsystem L
as an individual mode at (x1, x2), we can see similar parabolic
entanglement light cone (green dashed).
As shown in Fig. 1b and detailed in Section "Mapping to

random walk on graphs”, the above entanglement dynamics can
be solved by mapping to a random walk of the squeezed vacuums
on a graph. Although involving non-classical states with squeezing
and entanglement, the mapping can be understood through the
evolution of probability distribution of a single photon after going
through the two beamsplitters. We can therefore obtain the exact

ensemble-averaged entanglement entropy SðL; tÞh i as a function
of the total probability ηL;t of having the walker in region L in the
corresponding random walk,

SðηL;tÞ ¼ g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ηL;tð1� ηL;tÞsinh2ðrÞ

q
� 1

� �
=2

� �
; (1)

where g(x) is the (von Neumann or Rényi) entropy of a thermal
state with mean photon number x (see details in Supplementary
Note 3) and r is the original squeezing strength. Note that the
mapping holds for arbitrary graphs beyond the local Cartesian
graphs shown above. The scrambling time—the time that the
entire system becomes maximally entangled—can be calculated
by the mixing time of the random walk. The mapping also gives
the Page curves—the late-time equilibrium entanglement entropy

SðL;1Þh i ¼ SðjLj=jGjÞ (2)

as the CV analog to Page curve, while the fluctuation can be
solved as / jLjjRj. Moreover, when there are multiple squeezers,
we can regard the entanglement dynamics as the superposition of
all single-squeezer dynamics, as depicted in Fig. 2d. Therefore,
combining the results, we have a complete understanding of the
entanglement dynamics in a CV quantum network.

Statistical theory of quantum networks
Now we present a statistical theory of the entanglement growth.
We will focus on the single squeezer case in Fig. 2c, whereas the

Fig. 2 Schematic of the Cartesian quantum networks and the corresponding heatmap of ensemble-averaged entanglement entropy. a–d
are for the 1-D case and e–g are for the 2-D case. In the schematic plots, cyan squares are single-mode squeezers, whereas the orange
rectangles are the two-mode beamsplitters (combining phase shifters). In the entanglement plots, the green dashed line represents the
parabolic entanglement light cone (t= T1) and the black dashed line represents the characteristic time-scale T1+ T2 of entanglement growth.
a The 1-D hopping quantum network. Each empty circle denotes a local mixing operation by beamsplitters and the dashed arrows indicate
the transmission of optical modes in the network. The cyan lines indicate the linear light cone starting from the vertex with the single-mode
squeezer. b The corresponding 1-D local circuit. The red dashed line represents the linear light cone from the center. c, d Entanglement
evolution of the single-squeezer (r= 8 at the center shown as a cyan box) and multiple-squeezer case (r1= 5 at ~x ¼ 0; t ¼ 0, r2= 3 at
~x ¼ �0:35; t ¼ 200, and r3= 7 at ~x ¼ 0:2; t ¼ 500, shown as cyan boxes). Number of modes M= 2N+ 1= 201. e, f The 2-D Cartesian graph and
its corresponding repeating time steps. g Snapshots of entanglement entropy in 2-D Cartesian of 25 × 25 modes at t= 4, 12, 20,∞. Single
squeezer of r= 5 is placed at the center of system at t= 0. Subsystem L is chosen to be each mode at x= (x1, x2). Results with alternative
choices of L can be found in Fig. 5e, f.
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extension to multiple squeezers is presented in the later part. We
first introduce the mapping between random unitary circuits and
random walk on a graph, which allows us to solve the Page curves
and scrambling time for general graphs. Explicit closed-form
solutions can be obtained for local Cartesian graphs of an arbitrary
dimension. Finally, we present the entanglement witness for
multipartite entanglement.

Mapping to random walk on graphs. Consider the entire unitary
evolution U(t) of the random circuit. In the single-squeezer
case, the mode annihilation operator ax,t at vertex x 2 G
experiences a passive transform, which in general can be
expressed as

ax;t ¼ eiθx;t
ffiffiffiffiffiffiffiffi
wx;t

p
aSV þ vac; (3)

where mode aSV is in a squeezed-vacuum (SV) state with
strength r and “vac” denotes all vacuum terms that complete
the commutation relation. Here the phase θx,t is entirely
random, and the positive weights wt � fwx;tgx2G describe the
overall energy splitting of the single SV among all modes.
For any subsystem L, we can design a passive linear optics

circuit to concentrate all the squeezing parts to a single mode

aL;t ¼ ffiffiffiffiffiffiffiffi
ηL;t

p
aSV þ vac; (4)

with the total transmissivity

ηL;t ¼
X
x2L

wx;t; (5)

and all other modes are in vacuum required by energy
conservation. Because unitary operations preserve entropy,
the entanglement entropy of L can be calculated from the
entropy of mode aL;t as

S L; tð Þ ¼ S ηL;t
� �

(6)

’ 1
2
log 2 ηL;t 1� ηL;t

� �	 
þ 1
ln 2

r þ 1ð Þ � 1; (7)

where SðηL;tÞ is defined in Eq. (1). We will focus on von
Neumann entropy, but all of our results can be adapted to
Rényi entropy easily. At the large squeezing limit offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηL;tð1� ηL;tÞ

q
er � 1, for von Neumann entropy we have Eq.

(7) to the leading order. When ηL;t ¼ 0; 1, subsystem L has zero
or entire portion of the SV, indeed from Eq. (6) we have
S L; tð Þ ¼ 0. When ηL;t ¼ 1=2, we have the maximum entropy
S0ðrÞ ¼ gðsinh2ðr=2ÞÞ.
So far we have the exact result S ηL;t

� �
of the entanglement

entropy of an arbitrary subsystem L, given the weights wt

(which determines ηL;t) obtained in each random circuit
realization. Owing to the self-averaging in the random circuit,
we expect

S ηL;t
� �� � ¼ S ηL;t

� �� �
(8)

up to corrections that decay with the system size. Thus, we
have reduced the problem of solving the ensemble-averaged
entanglement dynamics to solving the ensemble-averaged
dynamics of the weights wth i.
We start by focusing on a single gate Ut;x;x0 on the modes at x

and x0. By considering the Haar random ensemble averaging,
we can derive the exact equation of motion of the weights as
(see details in Supplementary Note 4)

wx;tþ1
� � ¼ wx0;tþ1

� � ¼ 1
2

wx;t
� �þ wx0;t

� �� �
: (9)

The overall dynamics alternates in K steps, in the k-th step the
transition of Eq. (9) on all edges in Ek is applied.
An immediate observation from Eq. (9) is that the change of

the entanglement entropy of L, determined by the total

weights ηL;t
� �

, is related only to the boundary ∂L (schematic in
Fig. 1c), in the sense that

ηL;tþ1

� �� ηL;t
� � ¼ 1

2

X
x2∂Lþ

wx;t
� �� X

x2∂L�
wx;t
� �" #

; (10)

which equals the net flow of the weights from the vertices on
the outer boundary ∂Lþ toward L and the weights from the
inner boundary ∂L� out from L.
Another observation is that the weights update rule in Eq. (9)

also describes the probability evolution of a lazy symmetric
random-walk step, where the walker has half probability of
staying and half probability of taking a step along xx0 (see
Fig. 3). Combining the K steps, the underlying transition matrix
for the weights

Ex;x0 ¼
YK
k¼1

1
2

I þ Ek;x;x0
� �

; (11)

where I is the identity matrix and Ek;x;x0 describes the adjacency
matrix for the corresponding graph ðG; EkÞ (an isolated mode is
regarded as a vertex with a loop). Eq. (11) describes a modified
symmetric random walker on the graph (see Fig. 3), with K steps
combined to implement a single random-walk step from the current
position x to all neighborsNðxÞ (including x) with equal probability.
Utilizing the K-step transition matrix, the ensemble-averaged

weights can be solved at any time t as

wth i ¼ w0h iE½t=K�
x;x0 ; (12)

with the initial condition w0h i ¼ δx0 as the Kronecker delta at the
squeezer position x0. Thus, one can obtain ηL;t

� �
and the exact

result of Sð ηL;t
� �Þ from Eq. (6) on any graph.

We give examples of the random walk in Fig. 3 in 1-D and 2-D
Cartesian graphs, whose entanglement evolution can be found in
Fig. 2. For the later use, we also introduce a general D dimensional
Cartesian lattice GD , with the coordinates x= (x1, ⋯, xD) on a grid
(xd∈ [−N,N]). The total number of modes is jGDj ¼ MD, with M=
2N+ 1 modes on each dimension.
In the following, we will consider the equilibrium and the

dynamics. Some results hold for general graphs, while some
analytical results are made possible by considering the special case
of GD.

Page curves and scrambling time. In this section, we focus on the
Page curves—the equilibrium entanglement distribution at
infinite time. In order to share entanglement, squeezers are
applied, which are then followed up by the random beamsplitters
and phase shifters. As the layers of gates increases, the overall
passive linear transform will approach the Haar measure (see
details in Supplementary Note 2). Therefore, we can regard the
equilibrium entanglement distribution as the CV analog to Page
curves.
Considering the mapping from the circuit to the random walk,

the equilibration of the entanglement also corresponds to the full
mixing of the random walk on the graph. Assuming the full
connectivity of the graph, owing to the special transform matrix in
Eq. (11), the equilibrium (stationary) state of weights is uniform,
i.e.,

wx;1
� � ¼ 1=jGj; (13)

where jGj is the total number of vertices, despite how one
arranges the set of edges Ek . Therefore, the total transmissivity
(i.e., total weights)

ηL;1
� � ¼ jLj=jGj: (14)

In fact, assuming fully random weights from a Haar random
unitary, one can obtain the probability density of total weights as
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(see details in Supplementary Note 5)

PðηL;1 ¼ ηÞ / ηjLj�1ð1� ηÞjRj�1: (15)

From Eq. (6), the Page curve is therefore given by

SðL;1Þh i ¼ SðjLjjGjÞ (16)

’ 1
2
log 2

jLj
jGj 1� jLj

jGj
� �� �

þ 1
ln 2

r þ 1ð Þ � 1: (17)

The maximum is achieved at jLj=jGj ¼ 1=2, which equals S0ðrÞh i
introduced following Eq. (6). The second equality is the leading
order result similar to Eq. (7).
Note that in terms of Page curves, the graph topology is

irrelevant as the entire dynamics is equivalent to a single passive
global Haar unitary; therefore, it then suffices to verify our theory
of Page curves in G1, which allows simple visualization. In the G1,
consider a subsystem L with x+ N modes, we have ηL;1

� � ¼
jLj=jGj ¼ ðx þ NÞ=ð2N þ 1Þ ’ ~x þ 1=2; where we introduced
~x ¼ x=2N 2 ½�0:5; 0:5�. Therefore, it is convenient to choose the
parameterization ~x. Fig. 4a plots Sð~x;1Þh i for various squeezing
values of r and system sizes of M, where we see perfect
overlapping among curves with identical r for different system
sizes. And they all agree with Eq. (16) very well, as shown in Fig.
4b. As a by-product, the maximum entanglement—the maximum
height of the Page curve max x Sðx;1Þh i—agrees with the theory
prediction S0ðrÞh i following Eq. (6), as shown in Fig. 4b inset.
The same analyses can be extended to derive the fluctuations of

the equilibrium entanglement entropy, where we find the
variance / jLjjRj. The analytical formula are then numerically

verified (see Supplementary Note 6 for details).
The entanglement scrambling time—the time for the system to

be maximally entangled and reach the equilibrium is an important
quantity for many physical problems, especially those related to
the black hole34,39. In the CV quantum network, this scrambling
time can be directly obtained from the mixing time t?ϵ of random
walks on a graph, where the probability measure (weights) get
ϵ-close to the stationary state in Eq. (13). Utilizing the mixing time,
we can obtain the scaling of the scrambling time as t?ϵ / DM2 (see
details in the Supplementary Note 7).

Closed-form solutions to Cartesian graphs. With the understand-
ing of the equilibrium Page curves, we now proceed to
characterize the dynamical evolution towards the equilibrium.
We will focus on the Cartesian graphs GD, which allows closed-
form solutions. In particular, we identify a parabolic entanglement
light cone, followed by an entanglement sudden growth
phenomenon in CV networks, as has already been shown in Fig. 2.
In Cartesian graphs, the random walk analog to Eq. (9) can be

understood as independent along each dimension. Thus, we
modify the Pascal’s triangle from a usual random walk to obtain
the solution

wth iðBiÞ¼ 1
2tþD

YD
d¼1

nt
nxd ;t

� �( )
xd¼�N

; (18)

with nt ¼ ½t=D�; nxd ;t ¼ ½xd2 � þ ½ t2D� and
a
b

� �
as the binomial factor

of a-choose-b.
With the weights in hand, we can calculate the entanglement

entropy of an arbitrary subsystem L. For example, we can consider

Fig. 3 Random circuits and the corresponding modified random walk in 1-D and 2-D Cartesian graphs GD. a, b Schematic of a K-step cycle
of gates that implements a random-walk step, independent on each direction. c, d Examples of the modified random walk in 1-D and 2-D,
following the rule in Eq. (11). In 1-D, the time trajectories up to t= 500 of different instances are plotted in different colors. In 2-D, the
trajectories are shown up to t= 5000 for three different instances.
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L ¼ fx0jx0d < xd; 1 � d � Dg, i.e., the system is cut into two parts
by a high-dimensional plane. Then, we can obtain the ensemble-
averaged total transmissivity

ηL;t
� �ðBiÞ ¼ X

x2L
wx0;t
� �ðBiÞ

¼
YD
d¼1

1� 1
2t

nt
1þ nxd ;t

� �
´ Fð1; 1� nt þ nxd ;t; 2þ nxd ;t;�1Þ

� �
;

(19)

where F is the hypergeometric function. Numerical evaluation (see
details in Supplementary Note 8) shows a good agreement up to
rounding errors between the exact solution of weights wth i from
numerically solving Eq. (12) and the binomial solution of weights
wth iðBiÞ in Eq. (18). Moreover, in Fig. 5a–d we verify the agreement
between the entanglement dynamics via numerically solving Eq.
(12)) and real random circuit evolution.
In general, the entanglement dynamics highly depend on the

choice of subsystem L. We consider the 2-D case as an example. In
Fig. 2g, L is chosen as each single mode at (x1, x2). There, we can
see a clear light cone similar to the 1-D case. Here, we consider
two alternative choices. First, as an analog to the 1-D choice, we
can choose rectangles on the corner, as shown in Fig. 5e. We see a
gradual saturation to the equilibrium, where entanglement
entropy along ðx1 þ NÞðx2 þ NÞ ¼ constant are about equal, as
the total weights ηL;t are equal along this line. Second, we can
choose rectangles centered at the center. In Fig. 5f, We can also
see gradual saturation to equilibrium, where now the entangle-
ment entropy along jx1jjx2j ¼ constant are equal.
In the above, we see the entanglement entropy from the

exact ensemble-averaged evolution of Eq. (12) (combined with
Eq. (6)) and the actual results from numerically solving the
entropy agree well, therefore verifying the underlying random-
walk model. Taking the continuum limit, the binomial distribu-
tion can be approximated as Gaussian and the system is
governed by a diffusive PDE (see details in Supplementary Note
8). Below, we further address the parabolic entanglement
light cone.

Parabolic entanglement light cone and sudden growth. We now
proceed to consider the entanglement evolution. One of such an
evolution is depicted in Fig. 2c, where we see entanglement
diffusively spreads from the source at the origin. We can introduce
a parabolic entanglement light cone (green lines) and a wave
front of the entanglement sudden growth (black lines), as will be
explained in the following paragraphs.
To further understand the dynamics, we focus on particular

modes and consider Sðx; tÞh i as a function of t (see Fig. 6a for

examples). We observe a three-stage evolution: (1) In the first
period 0 ≤ t < T1, the entanglement Sðx; tÞh i is almost zero. This is
the time period before the parabolic entanglement light cone
reaches location x. As we see in Fig. 2c, the green curves show the
threshold T1 for spots at different distances Δ~x to the initial
squeezer—a parabolic entanglement light cone much slower than
the usual linear light cone of operator spreading. (2) In the second
period T1 ≤ t < T1+ T2, the parabolic entanglement light cone
reaches the spot and causes a rapid increase in Sðx; tÞh i, after
which Sðx; tÞh i gets close to Sðx;1Þh i. As we see in Fig. 2c, the
black curve depicts the threshold T1+ T2 for spots at different
distances Δ~x. The parabolic shape again indicates a diffusion
behavior. (3) In the last period, T1+ T2 ≤ t, Sðx; tÞh i gradually
saturates towards Sðx;1Þh i.
This parabolic light cone can be explained by our statistical

theory. We want a constant fraction of the maximum entangle-
ment ϵS0ðrÞ ¼ SðηL;tÞ in Eq. (6), combining with Eq. (19) we can
solve T1, T1+ T2 precisely, despite the analytical formula being
lengthy, one immediately recognizes the scaling

T1; T2 � ðΔ~xÞ2f ðrÞ; (20)

with some function f of the squeezing strength r. Indeed, as
shown by Fig. 6b, the green curve (parabolic entanglement light
cone) and the black curve (entanglement sudden growth) both
agrees well with the quadratic fitting. This is indeed consistent
with the OTOC diffusion identified in ref. 68, revealing a universal
behavior intrinsic to CV quantum networks and absent in DV
circuits12,13.

Growth of multipartite entanglement. So far, we have focused on
bipartite entanglement between a subsystem L and its comple-
ment R. In quantum networks, many applications often require
multipartite entanglement, which is in general difficult to
characterize89. Here, we take an operational approach from a
quantum sensing perspective. An important application of the
entanglement generated in such a random quantum network is
distributed sensing58–61, where multipartite entanglement enables
an improvement in the measurement sensitivity. In the case of
measuring uniform real displacements of amplitude α on all
modes, one can prove that considering a total mean photon
number jGjNS, the optimum jGj-mode separable state can only
offer a variance

VC ¼ 1
4

1

jGjð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS þ 1

p þ ffiffiffiffiffi
NS

p Þ2
� 1

16jGjNS
(21)

in estimating the displacement α (the standard quantum limit).
Therefore, beating the above precision limit is an evidence of

Fig. 4 Page curves. a Page curves with a single squeezer, r= 2, 5, 8 shown by the red, blue and green lines separately. The overlapping scatter
points, solid, dashed, dash-dot, and dotted lines corresponds to system of M= 21, 101, 201, 301, 401. Error bars representing the numerical
precision for the case M= 21 lie in the empty circles. Invisible shadow area shows the numerical precision. b Re-scaled Page curves of those in
a. Black dashed lines show the theory results of Eq. (16). The inset is the dependence of maximum height S0 on the single squeezer r.
Numerical results in system M= 201 (orange dots) and analytical results (black dashed line) Eq. (6) with ηL;t ¼ 1=2 agree well.
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entanglement. In fact, one can show that the optimum precision
attainable by all entangled state is

VE ¼ 1
4

1

jGjð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijGjNS þ 1
p þ ffiffiffiffiffiffiffiffiffiffiffijGjNS

p Þ2
� 1

16jGj2NS

; (22)

which possesses the Heisenberg scaling of VE � 1=jGj2 that is only
possible with multipartite entanglement. Therefore, we can define
an entanglement witness for any jGj-mode state ρ with total
energy jGjNS as

EðρÞ ¼ max
LOCC0

log 2 VC=VðρÞð Þ; (23)

where V(ρ) is variance achievable by performing energy-
conserved LOCC on the input ρ (hence LOCC0). We maximize
over all such LOCC schemes. We have EðρÞ ¼ 0 for all separable
states, as one can simply prepare the optimum separable state in
the LOCC and discard the original input, and EðρÞ �
log 2ðVC=VEÞ � log 2jGj for all states. Moreover, similar to Eq. (22)
the optimum performance given at most K modes being
entangled and jGjNS total mean photon number is

4Kð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijGjNS þ 1
p þ ffiffiffiffiffiffiffiffiffiffiffijGjNS

p Þ2
h i�1

, one can obtain a lower bound

on the number of modes K being entangled as

K � 2EðρÞjGjð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NS þ 1

p þ ffiffiffiffiffi
NS

p Þ2

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijGjNS þ 1
p þ ffiffiffiffiffiffiffiffiffiffiffijGjNS

p Þ2
� 2EðρÞ: (24)

For the state ρ(t) generated in the single-squeezer random
network at time step t, we can design an estimator to obtain a
lower bound of EðρðtÞÞ. Given the weight {wx,t} on distributing the
SV state to jGj modes, we can design the following measurement
protocol. First, we perform a phase rotation on each mode such
that the displacements act on the corresponding squeezed
quadrature; then we perform homodyne measurements on the
corresponding quadratures to obtain the results f~αx;tgx2G. The
estimator ~α ¼ P

x2G
ffiffiffiffiffiffiffiffi
wx;t

p
~αx;t=

P
x2G

ffiffiffiffiffiffiffiffi
wx;t

p
, which gives the var-

iance

VðtÞ ¼ 1
4

1

jGjð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijGjNS þ 1
p þ ffiffiffiffiffiffiffiffiffiffiffijGjNS

p Þ2
; (25)

where the effective number of modes jGj ¼ ðPx2G
ffiffiffiffiffiffiffiffi
wx;t

p Þ2 2
½1; jGj� that are entangled provides the advantage.
Combining the weights in Eq. (18), we can obtain the effective

entangled mode number for the D dimensional Cartesian graph

jGj ’ ð2ð2πt=DÞ1=2ÞD, which leads to the entanglement witness

EðρðtÞÞ � log2 VC=VðtÞð Þ ’ D
2
log2ð8πt=DÞ; (26)

before the boundary effect comes in, when the effective modes
become comparable to jGj at t � jGj2.

Fig. 5 Ensemble-averaged entanglement entropy evolution in Cartesian graphs. Comparison between theory (blue) vs numerical results
(red) at various times (indicated by the arrows) for 1-D shown in (a, b) and 2-D shown in (c, d). e, f are 2-D heatmap plots of entanglement
entropy at various times till equilibrium. Details are given as follows; a, b A 1-D system of jGj ¼ 501 with a single squeezer r= 5 placed (a) at
the center and (b) at x=−200. c–f A 2-D graph of 25 × 25 modes with a single squeezer r= 5 placed at the center. Subsystem L ¼
½�12; x1� ´ ½�12; x2� in (c) and (e); whereas L ¼ ½�jx1j; jx1j� ´ ½�jx2j; jx2j� in (d) and (f). To enable the comparison, in (c) and (d) we choose x2= x1
to reduce to 1-D plots. e, f Area surrounded by red dashed lines shows the subsystem L. Brown dots represent the spots with maximal
entanglement in equilibrium state (up to numerical precision). Indeed, in the subfigure of (e) with t=∞ the equi-entanglement line has the
shape of (x1+ N)(x2+ N)=M2/2, whereas in the subfigure of (f) with t=∞ it is 4x1x2=M2/2. The error bar represents the numerical precision in
the averaging.
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Multiple squeezers: sparse limit
So far, we have focused on random networks with a single
squeezer and presented a thorough theory for the entanglement
dynamics and equilibrium, via an exact mapping to random walk
on a graph. Quantum networks are likely to have multiple
squeezers; therefore, we extend our analyses to random networks
with multiple squeezers in this section. A surprising linear
superposition law is numerically observed and theoretically
explained.
We begin with an intuitive example of three squeezers in the

1-D Cartesian graph in Fig. 2d. The overall evolution of the
entanglement entropy looks like a linear superposition of three
independent squeezers, despite the nonlinearity of the entangle-
ment dynamics. Following this observation, we consider a random
circuit C with Nq squeezers at different space-time coordinates
fξ?k ¼ ðx?k ; t?kÞgNq

k¼1, with squeezing strengths frkgNq

k¼1. Linear super-
position (spp) means the entanglement entropy of subsystem L,
SðL; tÞh i ’ SsppðL; tÞ

� �
, where

SsppðL; tÞ
� � ¼ XNq

k¼1

SkðL; tÞh i (27)

is a simple sum of the ensemble averages SkðL; tÞh i. Here SkðL; tÞ
is generated from a random circuit Ck with a single squeezer of
strength rk at ξ

?
k , therefore can be calculated by the random-walk

mapping in Eqs. (12) and (6). Note that the random beamsplitters
in all Nq single-squeezer circuits fCigNq

k¼1 and the original circuit C
are independent. To test the linear superposition law, we
numerically calculate the deviation per mode

ΔSsppðtÞ ¼ 1
jGj k SðL; tÞh i � SsppðL; tÞ

� �k1: (28)

To evaluate the relative deviation, we can also rescale the
deviation relative to the steady state value, as δsppðtÞ ¼
ΔSsppðtÞ=ðk SðL;1Þh ik1=jGjÞ. Both deviations are system-size
independent in the continuum limit.
In Fig. 8a, we evaluate the deviation for the 1-D three-squeezer

case considered in Fig. 2d. We see that the relative deviation
δspp(t) is small (<2%) through the entire dynamical evolution. To
be more explicit, in Fig. 8b, c, we directly plot Sð~x; tÞh i (blue) at
various times, which agrees well with the superposition result
Ssppð~x; tÞ
� �

(red).
Following the above observation, we provide a theory at the

sparse squeezers limit. The analyze is possible through concate-
nating the single-squeezer case sequentially to distill a set of
squeezed vacuums (see Supplementary Note 9 for details). From

the theory, we predict linear superposition for both the
equilibrium Page curves and the dynamical evolution.

Page curves with multiple squeezers. In terms of Page curves, as
we explained previously, the graph topology is irrelevant; there-
fore, we can simply consider the 1-D case. Furthermore, one can
show that each Page curve is only characterized by a list of
squeezing strength frkgNq

k¼1 (see details in Supplementary Note
10). In this case, as long as Nq 	 M; jLj, we can regard the
squeezers as sparse, and superposition SðL;1Þh i ’ SsppðL;1Þ� �
holds, with each single-squeezer result given in Eq. (16). In the
large squeezing limit, we can further utilize Eq. (17) to obtain

S L;1ð Þ ’ Mnq
1
2
log 2

jLj
jGj 1� jLj

jGj
� �� �

þ 1
ln 2

r þ 1ð Þ � 1


 �
;

(29)

We see a dependence on statistical quantities r � PNq

‘¼1 r‘=Nq and
nq � Nq=M, whereas the shape of the curve is invariant in the bulk
at the large squeezing limit (see details in Supplementary Note
10).
We numerically examine the validity of the linear superposition

in Page curves in Fig. 9a–c. Indeed when the squeezer density is
low, we see a good agreement, as shown in Fig. 9b; whereas when
the squeezers are dense, substantial deviation can be found, as
shown in Fig. 9c. The transition is captured by the relative
deviation δspp(∞) in Fig. 9a, where δspp(∞) increases linearly with
the squeezer density nq .
Although when nq is not small, superposition does not hold, we

numerically find that typical Page curves are mainly characterized
by statistical quantities r; nq , which indicates a well-defined

Fig. 6 Evolution of entanglement entropy of various spots in a 1-D system. Squeezer r= 6 is placed at the center of the M= 801 modes.
Thresholds for determining T1 and T2 is 1% and 70% of the static value. a Time evolution of entanglement entropy at different spots. T1 and T2
for the mode at x=−350 are labeled. Shadow areas show the standard deviation of the time evolution curves. b Dependence of T1+ T2 and
T1 on their relative distance to the squeezer Δ~x represented by black and green lines. Solid lines represent the fitting results �ðΔ~xÞ2. The dots
represent T1, T2 for the ensemble-averaged entropy Sðx; tÞh i, whereas the error bar indicates the precision due to finite sample size. The
background heatmap shows the entropy distribution Sðx; tÞh i among the system.

Fig. 7 Schematic of the sensing process for multipartite entangle-
ment witness. LO local operations. CC classical communication.
After the energy-preserving LOCC, each mode of the input state
goes through a displacement D(α); an estimator of the displacement
amplitude ~α is generated from a joint measurement.
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Fig. 8 Superposition in a three-squeezer case. The example is identical to Fig. 2d. a Relative deviation from linear superposition. The orange
line is the mean and the yellow area shows the precision owing to a finite sample size. Cyan dots show the time when the three squeezers are
applied accordingly. Arrows represent the time when snapshots in (b) and (c) are taken. b, c Snapshots of entanglement entropy curves at t=
600, 1000. Blue and red lines are Sð~x; tÞh i and superposition Ssppð~x; tÞ

� �
; whereas green, purple, and brown ones show Sið~x; tÞh i generated by

each of the three squeezers.

Fig. 9 Superposition for dynamic and equilibrium entanglement entropy in 1-D with multiple squeezers. a, d show the deviation
(measured in 1-norm) between the real and the superposition results, whereas the rest are examples of the entanglement entropy curves with
solid lines for real results and dashed lines for superposition. Details are given as follows; A 1-D system of M= 200 modes is considered. a–c
Relative 1-norm deviation δspp(∞) is shown in (a). Solid lines represent the results of circuits with identical ri ¼ r squeezers, whereas scatter
dots show results of circuit where random squeezers ri uniform in a range ½0:5r; 1:5r� with fixed total squeezing strength Nqr. Page curves with
nq ¼ 0:03 and nq ¼ 0:5 are shown in (b) and (c). Red and blue lines correspond to r ¼ 3 and r ¼ 6. d–f Absolute 1-norm deviation (per mode)
of superposition measured by ΔSspp(t) is shown in d, with different minimum distances between random squeezers d. Time t is fixed at early (t
= 200, green), medium (t= 500, blue), and late time (t= 900, red). The shaded areas show the fluctuations in different squeezer space-time
configurations. In comparison, the entanglement per mode k Sð~x;1Þh ik1=M, averaged over configurations with fixed d are plotted in orange.
Squeezers with random strength ri∈ [1, 3] are randomly distributed before t= 500 following Poisson disk sampling. e and f are ensemble-
averaged entanglement entropy evolution for the setup with d= 60 and d= 20 separately. Curves from bottom to top show the curve at time
t= 200, 500, 900.
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continuum limit of CV Page curves (see details in Supplementary
Note 10).

Dynamics with linear superposition. To verify superposition in a
more general setting beyond Fig. 8, we consider circuits with
squeezers randomly distributed in space-time. To control sparsity,
we adopt the Poisson sampling method90 to obtain random
circuits with various minimum distances d between the squeezers.
With the squeezers randomly chosen, we evaluate the

entanglement dynamics for circuits with random squeezers of
different minimum distances. Two examples are given in Fig. 9d–f:
When the squeezers are sparse, the superposition results
Ssppð~x; tÞ
� �

(dashed lines) agree well with the true values
Sð~x; tÞh i (solid lines) at various time steps in Fig. 9e; when the
squeezers are dense, substantial deviations from the linear
superposition can be observed, as demonstrated in Fig. 9f.
To systematically examine the transition from “dense” to

“sparse” squeezers, we calculate the deviation Δspp(t) for distances
0 ≤ d ≤ 500 at various time steps in Fig. 9d, where the deviation
decreases monotonically with d up to the numerical precision.
Although for a smaller d, the deviation is larger, the relative
deviation is still below 10% of the static value k Sð~x;1Þh ik1=M
(orange). Therefore, we conclude that in generic CV quantum
networks with sparse squeezers, linear superposition of entangle-
ment growth holds.

DISCUSSION
In this paper, we reveal a mapping between entanglement
formation dynamics in random CV networks to random walk on
general graphs. This mapping allows analytical solutions of the
entanglement entropy dynamics, Page curves and scrambling
time for an arbitrary network topology. On networks respecting
locality, the solution enables the understanding of three major
features of entanglement formation dynamics—a parabolic
entanglement light cone, an entanglement sudden-growth period
and parameter-dependent Page curves.
Our results have implications in quantum network protocol

design, e.g., the parabolic entanglement light cone will give an
estimation on the latency in entanglement distribution in a
protocol without well-controlled phases, and also on the
fundamental understanding of many-body systems. Note that
optimized protocols, with well-controlled optical phases across
the system to generate a specific entangled state, can take less
time. At last, let us point out some future directions: it will be
interesting to extend the parabolic entanglement light cone to
long-range interacting systems; extending the multipartite entan-
glement witness to more general input states will bring further
insights of quantum entanglement; exploration of the connection
between entanglement dynamics with statistical properties of
random networks such as connectivity distribution will lead to a
full statistical theory of CV quantum networks. Our random walk
mapping is based on the weight of annihilation operators
evolution, extension to quantum random-walk91–94 can be
possible by applying the gates in a superposition95 (see
Supplementary Note 11 for further discussions).

METHODS
Entanglement entropy
The entanglement entropy SðL; tÞ can be efficiently calculated by keeping
track of the covariance matrix of L (Equivalently, one can consider the
covariance matrix of subsystem R.)

V ij ¼ fX i ; X jg
� �

; i; j 2 L; (30)

where {, } is the anti-commutator and Xi, Xj are components of quadrature
operators X that corresponds to subsystem L. Under the dynamics of each
local unitary US, the covariance matrix evolves as V→ SVST. From the

symplectic eigenvalues64 fνi ; 1 � i � jLjg of V, we can obtain the von
Neumann entropy of L (which equals that of R due to purity of the global
system)

S L; tð Þ ¼ SðR; tÞ ¼
XjLj
i¼1

gð νi � 1ð Þ=2Þ; (31)

where each term gðxÞ ¼ ðx þ 1Þlog 2ðx þ 1Þ � xlog 2 xð Þ is the entropy of a
thermal state with mean photon number x. Alternatively, we can also
choose the Rényi entropy of the order α, which can be calculated as

SαðL; tÞ ¼ 1
α� 1

XjLj
i¼1

log2gαððνi � 1Þ=2Þ; (32)

where the gα 
ð Þ is defined as gαðxÞ ¼ x þ 1ð Þα � xð Þα .
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