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Attaining Carnot efficiency with quantum and nanoscale
heat engines
Mohit Lal Bera1, Maciej Lewenstein 1,2 and Manabendra Nath Bera3✉

A heat engine operating in the one-shot finite-size regime, where systems composed of a small number of quantum particles
interact with hot and cold baths and are restricted to one-shot measurements, delivers fluctuating work. Further, engines with
lesser fluctuation produce a lesser amount of deterministic work. Hence, the heat-to-work conversion efficiency stays well below
the Carnot efficiency. Here we overcome this limitation and attain Carnot efficiency in the one-shot finite-size regime, where the
engines allow the working systems to simultaneously interact with two baths via the semi-local thermal operations and reversibly
operate in a one-step cycle. These engines are superior to the ones considered earlier in work extraction efficiency, and, even, are
capable of converting heat into work by exclusively utilizing inter-system correlations. We formulate a resource theory for quantum
heat engines to prove the results.
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INTRODUCTION
Heat engines are the fundamental building blocks of modern
technology. These were invented primarily to convert heat into
mechanical work. To lay a theoretical framework and to uncover
the laws governing the processes in the engines, the thermo-
dynamics was empirically developed1. Later, it has been founded
on statistical mechanics2 assuming that the systems are large and
composed of an asymptotically large number of particles (N→∞)
interacting with even larger baths, where the average fluctuation
in energy approaches zero. This is termed usually as the
asymptotic regime.
However, the situation changes completely for the systems of a

finite, but moderate or even small number of quantum particles
(N≪∞) where the standard thermodynamics is not applicable. In
such cases, from the very beginning, the fluctuations may play a
much more important role. The situations may be classified in two
regimes: many-shot finite-size regime, where repeated measure-
ments (in time) are allowed on a system, is made up of moderate
or a small number of particles, and one-shot finite-size regime,
where only one-shot measurements are allowed on a system,
composed of a single or a moderate number of particles. In the
last decades, enormous efforts have been put forward to
extend thermodynamics to these regimes, leading to two major
approaches.
The first approach is based on fluctuation theorems, exploiting

statistical mechanics and open quantum systems dynamics3–5. The
other one is based on the quantum information theory6–19.
Among others, the latter leads to a resource theory of quantum
systems out of thermal equilibrium, which is commonly termed as
the resource theory of quantum thermodynamics (RTQTh)6,8,10.
The RTQTh stands out among the other approaches, as it exploits
a rigorous mathematical framework similar to the resource theory
of entanglement. Recently, the approaches based on fluctuation
theory and resource theory have been interconnected for some
cases20–22. All these investigations are majorly limited to the
situations, where the quantum system is interacting with only one

thermal bath at a fixed temperature. Apart from some efforts to
quantify extractable work and engine efficiency in few special
cases, and to study the finite-size effects and the quantum
signatures23–32, there has been no major progress, so far, in
formulating a resource theory for quantum heat engines.
One of the striking features is that the engines operating in the

one-shot finite-size regime can only deliver fluctuating work8,10

and the lesser the fluctuation lesser becomes the extractable
deterministic or one-shot work. Further, a heat engine operating
in this regime cannot in general achieve reversible transformation.
As a consequence, it is not possible to attain the maximum
allowed heat-to-work conversion efficiency (i.e., the Carnot
efficiency) in a Carnot engine, unless the system interacting with
the baths is made up of an asymptotically large number of
particles where Carnot efficiency may at most be achieved on
average.
In this work, we present quantum and nanoscale heat engines

that attain the maximum possible heat-to-work conversion
efficiency, i.e., the Carnot efficiency, in the one-shot finite-size
regime. These engines are superior in work extraction efficiency
compared to the traditional engines. To prove our results and to
address quantum thermodynamics in the one-shot finite-size
regime in general, we formulate a resource theory for quantum
heat engines (see Supplementary Information) in which a system
with few quantum particles interacts with two or multiple thermal
baths. With the precise characterization of thermodynamic
operations by introducing a first law for engines, we derive the
second laws for quantum state transformation in presence two or
multiple baths at different temperatures by using information-
theoretic tools. The newly introduced engine operations are more
general in the sense that the system interacts with the baths
simultaneously. We term these engine operations as “semi-local
thermal operations” (SLTOs). The SLTOs not only enable us to
build a Carnot heat engine operating with a one-step cycle but
also enhances the work extraction efficiency in the one-shot finite-
size regime—in this sense, the SLTOs are more powerful than the
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ones considered earlier. As revealed by this resource theoretic
framework, the state transformations in the quantum engine are
fundamentally irreversible and must obey many second laws. As
an important result of this framework, we design a reversible
engine transformation that attains the maximum possible
efficiency for work extraction, i.e., the Carnot efficiency, there by
demonstrating the supremacy of quantum heat engines.

RESULTS
A typical (Carnot) heat engine comprised two heat baths B1 and B2
with the inverse temperatures β1= 1/T1 and β2= 1/T2, respectively,
and a working system S, as shown in the Fig. 1. We assume β1 < β2
throughout this article. In our proposed quantum heat engine, we
define a new engine operation where a working system (S12) is
composed of two non-interacting subsystems S1 and S2. The
Hamiltonian is HS12 ¼ HS1 þ HS2 � HS1 � IS2 þ IS1 � HS2 . The
Hamiltonians of the baths B1 and B2 are denoted as HB1 and HB2
respectively. The subsystems S1 and S2 semi-locally interact with the
baths B1 and B2, respectively. With this, the number of steps in the
Carnot engine is reduced. For instance, consider that the subsystems
S1 and S2 are in the states ρ and σ, respectively. Then the isothermal
steps (C1) and (C3) can be combined to one step, as

ðρ� σ; HS1 þ HS2Þ ! ðσ � ρ; HS1 þ HS2Þ;

where the HS1 ¼ H and the HS2 ¼ H0. In this step, the subsystems
swap their states without changing their Hamiltonian. Further,
both the adiabatic steps (C2) and (C4) can be performed in one
step as well, i.e.,

ðσ � ρ; HS1 þ HS2Þ ! ðσ � ρ; H0S1 þ H0S2Þ;

where the H0S1 ¼ H0 and H0S2 ¼ H. Here, the subsystems swap their
local Hamiltonians without modifying their states. In fact, the four
steps in a Carnot heat engine can be further reduced to just one
step (see Fig. 2), which enables one to attain maximum possible
heat-to-work conversion efficiency, as we shall discuss later.

Semi-local thermal operations
Let us now introduce the general form of thermodynamically
allowed (semi-local) operations that a (bipartite) quantum system
S12 undergoes in a quantum heat engine, where the bipartite
system S12 can be in an arbitrary state. Even, the states may
possess strong correlation, e.g., quantum entanglement, shared by
the subsystems S1 and S2.
Definition 1. SLTOs. In a quantum heat engine, the thermo-

dynamic operations on system S12 in a state ρS12 are defined as

ΛS12 ρS12
� �

¼ TrB1B2 UðγB1 � γB2 � ρS12ÞU
y� �
; (1)

with the condition that the global unitary U satisfies the
commutation relations

U; HB1 þ HS1 þ HB2 þ HS2½ � ¼ 0; (2)

U; β1 ðHB1 þ HS1Þ þ β2 ðHB2 þ HS2Þ½ � ¼ 0; (3)

where the thermal states of the baths are denoted by
γBx ¼ e�βxHBx

Tr½e�βxHBx � for x= 1, 2.

The resultant operations on the system S12 are semi-local in the
sense that, even though the subsystems (S1 and S2) “selectively”
interact with the baths (B1 and B2), the unitary U still allows certain
interactions among them with the constraints (2) and (3). It
should be noted that the commutation relations (2) and (3)
together constitute the first law for quantum heat engines. The
relation (2) guarantees strict conservation of the total energy
E12= E1+ E2, where E1 and E2 are the energies of the B1S1 and

Fig. 1 A schematic of the operations in a traditional Carnot heat
engine. The horizontal and vertical axes are the thermodynamic
entropy (S) and the temperature (T). The engine is made up of one
working system and two heat baths with inverse temperatures β1=
1/T1 and β2= 1/T2, where β1 < β2. The engine operates in a cycle
composed of four thermodynamically reversible steps: (C1) First, an
isothermal transformation (ρ, H)→ (σ, H) in interaction with the bath
B1 at inverse temperature β1, where the state changes (ρ→ σ)
without updating the system Hamiltonian H. (C2) Second, an
adiabatic transformation ðσ;HÞ ! ðσ;H0Þ without any contact with
the baths, where state remain unchanged but the system
Hamiltonian modifies to H! H0. (C3) Third, an isothermal transfor-
mation ðσ;H0Þ ! ðρ;H0Þ in interaction with the bath B2 at inverse
temperature β2, only changing the state. (C4) Finally, an adiabatic
transformation ðρ;H0Þ ! ðρ;HÞ without any interaction with the
baths and updating only the system Hamiltonian H0 ! H. The steps
(C1)–(C4) constitute a cycle and the engine operates repeating the
cycle many times. The important point is that, in the steps (C1) and
(C2), the working system interacts with one bath at a time.

Fig. 2 Generalized one-step engine operation. Consider initial state
and the non-interacting Hamiltonian of the working system are ρS12
and HS12 ¼ HS1 þ HS2 , respectively. The sub-systems S1 and S2 semi-
locally interact with the baths B1 and B2 with inverse temperatures β1
and β2, respectively, where β1 < β2. The engine operates in a cycle by

implementing the step ρS12 ; HS12

� �
�! σ0S12 ; H

0
S12

� �
, with the modified

system Hamiltonian H0S12 ¼ H0S1 þ H0S2 , so that it satisfies the conditions
σ0S12 ¼ USWAP

S1$S2 ρS12
� �

; H0S1 ¼ HS2 ; and H0S2 ¼ HS1 , where the unitary
USWAP
S1$S2 performs a SWAP operation between sub-systems S1 and S2. It

is noteworthy that all four steps in the traditional Carnot engine
(comprising the steps (C1)–(C4) in Fig. 1) can be performed in one
stroke with ρS12 ¼ ρ� σ, which is just a special case of above
general operation.
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B2S2 composites, respectively. In addition, the relation (3) ensures
strict conservation of the total weighted-energy Eβ1β212 ¼ β1E1 þ
β2E2 and it signifies that any change in (one-shot) entropy of B1S1,
due to an exchange of energy between B1S1 and B2S2, must be
compensated by a counter change in (one-shot) entropy of B2S2. It
is interesting to note that the SLTOs converge to the (local)
thermal operations that are introduced in the resource theory of
quantum states beyond thermal equilibrium presented in
refs. 6,8,10, when both the baths are of the same temperature,
i.e., for β1= β2. Several useful properties of SLTOs possess are
outlined in the “Methods.”
The SLTOs can be further generalized with an access to a

bipartite catalyst C12 composed of two non-interacting subsys-
tems C1 and C2 and the Hamiltonian HC12 ¼ HC1 þ HC2 . The C1 is
clubbed with the subsystem S1 to form the composite S1C1.
Similarly, the C2 is clubbed with the S2 to form S2C2. Then, the
composites S1C1 and S2C2 interacts with the baths B1 and B2 via
SLTOs. Such operations are called catalytic semi-local thermal
operations (cSLTOs) that satisfy

ΛS12C12 ðρS12 � ρC12
Þ ! σS12 � ρC12

; (4)

where ρC12
is a state of the catalyst. Note, the catalyst remains

unchanged before and after the process. These catalytic opera-
tions form a larger set of thermodynamically allowed operations
compared to SLTOs and respect all the properties satisfied by the
SLTOs. The cSLTOs are the allowed thermodynamic operation in a
quantum heat engine and constitute the free operation for the
resource theory developed to prove the results presented in this
article (see Supplementary Information).
When the subsystems are locally in thermal equilibrium with

the baths they are semi-locally interacting with, the joint
uncorrelated state of the system S12 becomes γS12 ¼ γS1 � γS2 ,
where γSx ¼ e�βxHSx =Zx with the partition functions Zx ¼
Tr½e�βxHSx � for x= 1, 2. We term these states as the semi-Gibbs
states. The set of all such semi-Gibbs states is denoted by the
set T S12 3 γS12 . The cSLTOs map the set T S12 onto itself. The
cSLTOs and the semi-Gibbs states are the precursors of a
resource theory of heat engines that we develop in the
Supplementary Information.

Engine with one-step cycle, second laws, and work extraction
The first important result of this work is that the cSLTOs can be
utilized to implement the cycle in a Carnot engine in one step, as
shown in Fig. 2. At the end of a cycle, the initial state of the
system is returned. Such a one-step engine cycle involves the
transformation

ρS12 ; HS12

� �
�! σ0S12 ; H

0
S12

� �
: (5)

Here, the system Hamiltonian is modified to HS12 ¼ HS1 þ HS2 !
H0S12 ¼ H0S1 þ H0S2 and satisfies the conditions σ0S12 ¼
USWAP
S1$S2 ρS12

� �
; H0S1 ¼ HS2 ; and H0S2 ¼ HS1 , where the unitary USWAP

S1$S2
swaps the subsystems S1 and S2. The next cycle starts by inter-
changing the interactions between subsystems and baths. In other
words, the first engine cycle starts with the (semi-local) interactions
as B1S1− S2B2, where the subsystems S1 and S2 semi-locally interact
with the baths B1 and B2, respectively. In the next cycle, engine
interchanges the interactions as B1S2− S1B2, where the subsystem S1
and S2 semi-locally interact with the baths B2 and B1, respectively, via
a cSLTO, and the cycles continue.
Here we restrict ourselves to the states ρS12 , which are block-

diagonal in the energy eigenbases of the system Hamiltonian
HS12 , i.e., ½ρS12 ;HS12 � ¼ 0. The cSLTOs are time-translation sym-
metric with respect to the time translation driven by HS12 , and
that is why the cSLTOs monotonically decrease the super-
positions between different energy eigenbases (see Appendix).
For a heat engine operates in an arbitrarily large number of

cycles, it is therefore safe to assume that an arbitrary state will
dephase to its block-diagonal form after some cycles. Then, the
second laws that provide the necessary and sufficient condi-
tions for such transformations are given in the theorem below.
This theorem is proven, even for more general transformation,
in the Supplementary Information.
Theorem 2. Second laws for engines. Under cSLTOs, the

transformation in Eq. (5) is possible if, and only if,

Sα ρS12 ; γS1 � γS2
� �

� Sα σ0S12 ; γ
0
S1 � γ0S2

� �
; 8α � 0; (6)

where the α-free entropy of ρS12 (and similarly for σ0S12 ) is defined,
for all α∈ [−∞, ∞], as

SαðρS12 ; γS1 � γS2Þ ¼ Dα ρS12 k γS1 � γS2
� �

� log Z1Z2; (7)

with the thermal states γSx ¼ e�βxHSx
Zx

and γ0Sx ¼
e
�βxH0Sx
Z 0x

, and the

partition functions Zx ¼ Tr½e�βxHSx � and Z0x ¼ Tr½e�βxH0Sx � for
x= 1, 2. Here, the Rényi α-relative entropy is given by
Dαðρ k γÞ ¼ sgn ðαÞ

α�1 log Tr½ρα γ1�α�.

The α-free entropies quantify the thermodynamic resource
present in the system S12 and it vanishes for the semi-Gibbs states.
Therefore, any transformation among the block-diagonal states
under the cSLTOs must respect the above monotonic relation for
the α-free entropies for all α. It is noteworthy that the second laws
leading to these monotonic relations can also be derived for more
general state transformations as allowed by non-cyclic engine
operations (see Supplementary Information). Apart from dictating
state transformations, the Theorem 2 delimits the amount of
thermodynamic resource, i.e., free entropy or work, can be
extracted using a state transformation in an engine. It also
quantifies the amount of the free entropy required to be
expended to make a transformation possible. For this, a bipartite
battery W12 is introduced that stores work in the form of pure
energy. It is attached with the system S12 and then jointly evolved
with cSLTOs, as shown in Fig. 3. Now the free-entropy distance is
introduced in Theorem 3 to quantify the extractable free entropy
or the free-entropy cost in the one-shot finite-size regime, in terms
of the works that can be stored in a battery. This in turn also

Fig. 3 Extraction of free entropy. A battery SW12 , with two
sub-systems SW1 and SW2 and the non-interacting Hamiltonian
HSW12

¼ HSW1
þ HSW2

is attached with the system S12 to store free
entropy (or work) once extracted. Without loss of generality, the
battery subsystems are considered to be two-level systems with the
Hamiltonians HSW1

¼ W1 W1j i W1h jSW1
and HSW2

¼ W2 W2j i W2h jSW2
,

and these are restricted to remain in the eigenstates of the
Hamiltonians always. The SW1 is tagged with subsystem S1
and similarly the SW2 is with S2. The initial battery state is
chosen to be the zero-energy state ρiSW12

¼ 0j i 0h jSW1
� 0j i 0h jSW2

.
The composites S1SW1 and S2SW2 interact with the baths B1 and B2
(at different inverse temperatures β1 and β2), respectively, through
semi-local thermal operations, so that the overall transformation

is ρS12 � ρiSW12
; HS12 þ HSW12

� �
! σ0S12 � ρfSW12

; H0S12 þ HSW12

� �
, where

the final state of the battery is ρfSW12
¼ W1j i W1h jSW1

� W2j i W2h jSW2
.

It is noteworthy that the battery Hamiltonian remains unchanged in
the transformation. The values of W1 and W2 depend on the very
cSLTO under which the transformation happens.
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quantifies the maximum extractable deterministic work from a
quantum engine or the minimum deterministic work required to
execute a refrigeration process.
Theorem 3. Free-entropy distance in each engine cycle. For the

transformation in Eq. (5) via a cSLTO, the free-entropy distance
between the initial and final states of the system is given by

Sd ρ12ð ! σ012
�
¼ β1W1 þ β2W2;

¼ inf
α�0

SαðρS12 ; γS1 � γS2Þ � Sαðσ0S12 ; γ
0
S1 � γ0S2Þ

h i
:

(8)

We refer to the Supplementary Information for the proof. As per
the second laws, if the initial state possesses larger free entropy

than the final one, i.e., Sα ρS12 ; γS1 � γS2
� �

� Sα σ0S12 ; γ
0
S1 � γ0S2

� �
for

all α ≥ 0, the transformation can take place spontaneously under
cSLTOs. This we term as the forward process. Then, the
guaranteed one-shot extractable work from the process is

Wext ¼ W1 þW2 > 0; (9)

where W1 > 0 and W2. To perform the reverse transformation
ðσ0S12 ;H

0
S12 Þ ! ðρS12 ;HS12 Þ, as for a refrigeration process, the

Theorem 3 constrains that the minimum one-shot free entropy
to be supplied to ascertain the transformation is Sdðσ012 ! ρ12Þ. It
is important to note that the free-entropy distance of a forward
process is not in general equal to its reverse process and
Sdðρ12 ! σ012Þ � �Sdðσ012 ! ρ12Þ, where the equality holds for a
few special cases. Therefore, the thermodynamic reversibility is no
longer respected in the one-shot finite-size regime.
The one-step engine cycle also enables an engine to operate

exclusively utilizing inter-system correlations. This is the second
important result of this work. Consider that the subsystem S1
(and S2) is made up of two parties M1 and N1 (and M2 and N2)
with Hamiltonian HS1 ¼ HM1 þ HN1 (and HS2 ¼ HM2 þ HN2 ). We
further assume HM1 ¼ HM2 and HN1 ¼ HN2 . The cycle starts with
the state ρS12 ¼ ρ� σ, where the state ρ of S1 has no correlation
between M1 and N2, i.e., ρ ¼ ρM1

� ρN1
with ρM1

¼ TrN1ρ and
ρN1
¼ TrM1ρ. However, the state σ of S2 has non-vanishing

correlation between M2 and N2, i.e., σ ≠ σM2 � σN2 with σM2 ¼
TrN2σ and σN2 ¼ TrM2σ. The one-step engine cycle that exclu-
sively utilizes correlation is ρS12 ; HS12

� �
! σS12 ; HS12ð Þ, where

σS12 ¼ σ � ρ. Then, in each cycle, the extractable free-entropy
distance is SdðρS12 ! σS12Þ ¼ β1W

c
1 þ β2W

c
2, and the extractable

work is Wc
ext ¼ Wc

1 þWc
2.

It is known that the inter-system correlation can store
thermodynamic work potential and can lead to "anomalous” heat
flow - a spontaneous heat transfer from a cooler to a warmer
body14. However, the studies were restricted to the asymptotic
regime. Now, we are able to characterize such thermodynamic
potential and its role in anomalous heat flow in the one-shot
finite-size regime. For instance, consider a system state ρS12 , which
has non-vanishing correlation shared by the subsystems S1 and S2,
i.e., ρS12 ≠ ρS1 � ρS2 , where ρS1 ¼ TrS2 ½ρS12 � and ρS2 ¼ TrS1 ½ρS12 �.
Then, a (non-cyclic) state transformation ρS12 ; HS12

� �
!

ρS1 � ρS2 ; HS12

� �
leads to the free-entropy distance SdðρS12 !

ρS1 � ρS2Þ ¼ β1W1 þ β2W2 and the extractable work Wext=W1+
W2. In fact, this work is responsible for the anomalous heat from
or, equivalently, the refrigeration process.

Attaining Carnot efficiency
The state transformations in the one-shot finite-size regime are
very restrictive as these need to obey many second laws
simultaneously. Moreover, thermodynamics is irreversible in
general. This raises the question if there can be a heat engine
that attains the maximum possible heat-to-work conversion
efficiency (i.e., the Carnot efficiency) in the one-shot finite-size
regime. Here we give an affirmative answer to this question that

also vindicates the superiority of the quantum heat engines
operating in the one-step cycle using SLTOs. The Carnot efficiency
of a work extraction process is attained when the transformations
occurring in an engine are reversible. In the one-shot finite-size
regime, such a reversible engine transformation can be achieved if
we consider initial and final states of the (working) system to be
the energy eigenstates of the Hamiltonian.
Let us present one such engine transformation that attains

maximum possible heat-to-work conversion efficiency, i.e., the
Carnot efficiency. Without loss of generality, we consider a two-
qubit (working) system S12 with the Hamiltonian HS12 ¼ HS1 þ HS2 .
The subsystem Hamiltonians are given by HS1 ¼ a 1j i 1h jS1 and
HS2 ¼ a 1j i 1h jS2 . The engine undergoes a one-step cycle following
the transformation ðρS12 ;HS12Þ ! ðσS12 ;HS12Þ using SLTO, where the
initial and final states, respectively, are

ρS12 ¼ 0j i 0h jS1 � 1j i 1h jS2 and σS12 ¼ 1j i 1h jS1 � 0j i 0h jS2 : (10)

The Hamiltonians of the subsystems S1 and S2 do not change under
this transformation. The transformation is reversible because α-free
entropies for such pure states are α independent. As a consequence,
free-entropy distances satisfy SdðρS12 ! σS12Þ ¼ SdðρS12  σS12Þ,
where

SdðρS12 ! σS12Þ ¼ β2a� β1a ¼ β1W1 þ β2W2 > 0: (11)

The net extracted work in each engine cycle is given byWext=W1+
W2 > 0. Recall, β1 < β2.
To understand the conversion of heat into work and how it

attains the Carnot efficiency, let us explore the state transforma-
tion in the engine considering baths-system-battery composite all
together. As the system battery S12SW12 is in a block-diagonal state,
the initial state of baths-system-battery composite can be
expressed in the block-diagonal form as

γB1 � γB2 � ρS12 � ρSW12
¼

M
E1þE2

½γB1 � γB2 � ρS12 � ρSW12
�
E1þE2

;

where ½γB1 � γB2 � ρS12 � ρSW12
�
E1þE2

is the part of the global state

that resides in the total energy block E1+ E2. Here E1 ¼ ES1 þ EB1 is
the sum of energies belonging to S1 and B1, and similarly for
E2 ¼ ES2 þ EB2 . A global unitary U is applied jointly on the
composite conserves total energy and the total weighted-energy
of the baths-system composite due to the constraints (2) and (3),
and has the block-diagonal structure, given by U¼

L
E1þE2UE1þE2

(see Supplementary Information). The unitary UE1þE2 applies to the
total energy block E1+ E2 and is allowed transfer populations
within the block so that total weighted-energy β1E1+ β2E2 is
strictly conserved. In the block of total energy E1+ E2, the
transformation becomes

½γB1 � γB2 � ρS12 �E1þE2 � ρiSW12
! ½σB1B2S12 �E01þE02 � ρfSW12

;

where ρiSW12
¼ 0j i 0h jSW1

� 0j i 0h jSW2
is the initial battery state,

ρfSW12
¼ W1j i W1h jSW1

� W2j i W2h jSW2
is the final battery state, and

TrB1B2σB1B2S12 ¼ σS12 . Here, the bipartite battery Hamiltonian is
HSW12

¼ HSW1
¼ W1 1j i 1h jSW1

þW2 1j i 1h jSW2
. Now the conserva-

tion of the total weighted-energy and the total energy ensure that

β1E1 þ β2E2 ¼ β1ðE01 þW1Þ þ β2ðE02 þW2Þ; (12)

E1 þ E2 ¼ E01 þ E02 þW1 þW2; (13)

where E1 ¼ EB1 , E2 ¼ EB2 þ a, E01 ¼ E0B1 þ a, and E02 ¼ E0B2 . The Eqs.
(12) and (13), along with Eq. (11), lead to

β1ðEB1 � E0B1Þ þ β2ðEB2 � E0B2Þ ¼ β1Q1 þ β2Q2 ¼ 0; (14)

Wext ¼ W1 þW2 ¼ Q1 þ Q2 > 0; (15)

where we have identified the heat as the change in energy of the
bath B1 given by Q1 ¼ EB1 � E0B1 and similarly Q2 ¼ EB2 � E0B2 for
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bath B2. The Eq. (14) represents the Clausius equality for the cyclic
process. The Eq. (15) quantifies the extracted work in each one-step
cycle. The other total energy blocks will result in identical Clausius
equality and the same amount of extracted work. Therefore, the
efficiency for the heat-to-work conversion is now reduced to

ηC ¼
Wext

Q1
¼ 1� β1

β2
; (16)

which is exactly the Carnot efficiency. As a result, the Carnot’s
efficiency can be attained for an engine operating in the one-shot
finite-size regime. A refrigerator can also be constructed just by
reversing engine cycle, i.e., ðσS12 ;HS12Þ ! ðρS12 ;HS12Þ, and that
achieves maximum possible coefficient of performance in the one-
shot finite-size regime. The example for the two-qubit system we
have considered above can automatically be generalized to arbitrary
dimensional (working) systems where the subsystems are also
allowed to update their Hamiltonians. The only requirement to attain
the Carnot efficiency is that the initial and final states of the system
have to be in the eigenstates of the initial and final Hamiltonians.

DISCUSSION
In this work, we have designed a heat engine that attains Carnot
efficiency in the one-shot finite-size regime. These engines are
superior in work extraction compared with the other engines so far
considered in the literature. To prove our result, we have developed a
resource theory of quantum heat engines to systematically study
thermodynamics in the presence of two or more baths in the finite-
size one-shot regime (see Supplementary Information). We stress that
the earlier works focus on how the a-thermal (or out-of-equilibrium)
properties of a system transform into thermodynamic work and do
not consider the conversion of heat into work. For such considera-
tions, one thermal bath is sufficient. On the contrary, the resource
theory developed for quantum heat engines, with two or more
thermal baths, is the only framework to systematically address how
and to what extent the heat can be converted into work in the
quantum heat engines operating in the one-shot finite-size regime.
We have proceeded with the precise characterizations of

thermodynamic operations, i.e., the SLTOs, by introducing the first
law for engines, where the system simultaneously interacts with both
the baths. In addition to strict total energy conservation, the first law
also ensures a strict weighted-energy conservation. Then, we have
defined semi-Gibbs states as resource-free states and free entropies
as the measure of thermodynamic resource applicable in the one-
shot finite-size regime. With this, we have formulated the second
laws for state transformations in a quantum engine. Our formulation
reveals that the state transformations in a quantum engine are
irreversible, in general, and are dictated by many second laws (see
Supplementary Information). In addition, the framework enables us
to design a Carnot heat engine operating with a one-step cycle that
can enhance work extraction efficiency in the one-shot finite-size
regime (see “Methods”). Most importantly, we have presented the
reversible engine operations that result in the maximum possible
heat-to-work conversion efficiency, i.e., the Carnot efficiency, in the
one-shot finite-size regime.
Although the framework for resource theory of heat engines is

mathematically rigorous and clean in the theoretical sense, the
SLTOs are difficult to implement in experiments. It is noteworthy
that there have been various proposals exploring possible physical
realizations of (local) thermal operations in the presence of a
single bath, see for example33–35. Following a similar track, it can
also be possible to implement SLTOs. In particular, the proposed
engine operation that results in higher efficiency in the conversion
of heat into work can be implemented without much difficulties.
This will certainly open up the possibility to experimentally realize
quantum heat engines operating in a one-step cycle with higher

one-shot efficiencies in the finite-size regime, even a possibility of
attaining Carnot efficiency.
In summary, our work achieves:

● An engine with a one-step cycle leading to higher heat-to-work
conversion efficiency, even attaining Carnot efficiency in the
one-shot finite-size regime for the first time. The results in turn
demonstrate the superiority of the proposed engines over other
engines operating in the one-shot finite-size regime.

● A quantum heat engine that converts heat into work by
exclusively utilizing inter-system correlations.

● A fundamental gain, i.e., a concrete mathematical framework
leading to a resource theory and a novel theoretical under-
standing of quantum and nanoscale heat engine, and, in
particular, the conversion of heat into work in quantum heat
engines operating in the one-shot finite-size regime and the role
of inter-system correlations in such processes.

● Possibilities of new experimental avenues for quantum heat
engines that attain higher or even Carnot efficiency in the one-
shot finite-size regime.

METHODS
Characterization of the SLTOs
The SLTOs, introduced in the Definition 1, possess several important
properties. We outline them below.
(P1) For an arbitrary initial semi-Gibbs state γS12 2 T S12 , the SLTOs satisfy

ΛS12 γS12
� �

2 T S12 . Therefore, the SLTOs map semi-Gibbs states onto itself. This
is a consequence of the very definition of operation in Definition 1, in
particular the constraint (3). If the local states of the subsystems S1 and S2 are
in thermal equilibrium, the SLTOs cannot bring them away from their local
equilibrium, despite the fact that the SLTOs are semi-local in nature and allow
an exchange of energy among the subsystems. This happens despite the fact
that the operation is global in nature and justifies the semi-local character of
the SLTOs. Therefore, under the SLTOs, the semi-Gibbs states represent the
fixed points. This is one of the required properties the allowed operations
should possess to formulate a resource theory.
(P2) Action of an operation that satisfies ΛS12 γS12

� �
2 T S12 , on a system

state ρS12 can be simulated by an SLTO, given that ½ρS12 ;HS12 � ¼ 0. A
detailed proof is given in the Supplementary Information. It is noteworthy
that these operations are termed as the semi-Gibbs preserving operations
and form a larger set of operation than that of the SLTOs.
(P3) The SLTOs can implement the changes in the system Hamiltonians.

For instance, an initial non-interacting Hamiltonian of S12 can be updated
to a new one, as HS12 ¼ HS1 þ HS2 ! H0S12 ¼ H0S1 þ H0S2 , with the help of
clocks (see Supplementary Information). These operations are nothing but
the (semi-local) adiabatic transformations in a typical heat engine.
(P4) It is interesting to note that the SLTOs, as well as the cSLTOs, are

time-translation symmetric operations with respect to the time evolution
generated by the Hamiltonian HS12 ¼ HS1 þ HS2 . In other words, if there is a
time translation of the system driven by unitary VðtÞ ¼ e�itHS12 =_ for any
given time t, then

VðtÞ ΛS12 ðρS12 Þ
� �

VyðtÞ ¼ ΛS12 VðtÞðρS12 ÞV
yðtÞ

� �
; (17)

i.e., the order of the time-translation operations and the SLTO commute.
Because of this symmetric property, the SLTOs monotonically decrease the
superpositions between different eigenbases of HS12 or, in other words,
among the energy eigenbases. It is worth noting that the SLTOs are also
time-translation symmetric with respect to the system’s weighted
Hamiltonian Hβ1β2

S12
¼ β1HS1 þ β2HS2 , as ½H

β1β2
S12

;HS12 � ¼ 0.
Equation (17) further implies that the SLTOs commute with the

dephasing operations in the eigenbases of the Hamiltonian of the system
HS12 ¼

P
i;jðE

S1
i þ ES2j Þ ijj i ijh j, i.e.,

ΛS12 � PS12 ðρS12 Þ ¼ PS12 � ΛS12 ðρS12 Þ; (18)

where PS12 ðρS12 Þ ¼
P

ij ijjρS12 jij
� 	

ijj i ijh j is the dephasing operation. Also the
dephasing operation can be achieved by time-averaging time-translated
state for a long enough time T,

PS12 ðρS12 Þ ¼
1
T

Z T

0
VðtÞ ðρS12 Þ VðtÞdt: (19)
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Equation (18) signifies that the diagonal elements in the eigenbases of HS12 ,
i.e., PS12 ðρS12 Þ, evolve independently of the off-diagonal elements. Further, the
amount of asymmetry present in a state due to the superposition between
different energy eigenbases monotonically decreases under the SLTOs. We
use these properties to understand the free-entropy locking in superpositions
and to add more conditions to supplement the second laws for state
transformations (see Supplementary Information).

More extractable work using cSLTOs
Here we show how the semi-local character in the cSLTOs can lead to a higher
amount of extractable work compared to the engine that operates using
(local) thermal operations. Consider that the working system is initially in an
uncorrelated state ρS12 ¼ ρ� σ in an engine. Then the one-step engine
transformation, given in Eq. (5), reduces to

ðρ� σ; HS12 Þ ! ðσ � ρ; H0S12 Þ: (20)

In this transformation, there are two sub-transformations happening
simultaneously via a cSLTO: (i) forward sub-transformation,
ðρ;HS1 Þ ! ðσ;HS2 Þ, in presence of the bath B1 at inverse temperature
β1, and (ii) the reverse sub-transformation ðσ;HS2 Þ ! ðρ;HS1 Þ while
interacting with bath B2 at inverse temperature β2.
For the uncorrelated state ρ12= ρ⊗ σ, the α-free entropy becomes

additive Sαðρ� σ; γS1 � γS2 Þ ¼ Sαðρ; γS1 Þ þ Sαðσ; γS2 Þ, where SαðρSx ; γxÞ ¼
Dα ρSx k γSx

� �
� log Zx. The SαðρSx ; γxÞ=βx is the accessible α-free energy

stored in the system ρSx and can be converted into work using a (local)
thermal operation in presence of a bath at inverse temperature βx

10.
The second laws, considering the sub-transformations (i) and (ii)
simultaneously occur via a cSLTO, imply

β1W
ðαÞ
1 þ β2W

ðαÞ
2 � 0; 8α � 0; (21)

where the WðαÞx quantifies the change in α-work due to the transformation
in the presence of the bath at inverse temperature βx. In terms of the α-free
energies10, we express these α-works as

WðαÞ1 ¼
1
β1

Sα ρ; γS1
� �

� Sα σ; γ0S1

� �h i
; (22)

WðαÞ2 ¼
1
β2

Sα σ; γS2
� �

� Sα ρ; γ0S2

� �h i
; (23)

where γSx ¼ e�βx HSx
Tr½e�βx HSx � for x= 1, 2, γ0S1 ¼

e
�β1HS2

Tr½e�β1HS2 �
, and γ0S2 ¼

e
�β2HS1

Tr½e�β2HS1 �
. Given

β1 < β2 and a spontaneous engine cycle, Eq. (21) guarantees that

WðαÞext ¼ WðαÞ1 þWðαÞ2 > 0; 8α � 0.
Let us now show that the one-shot efficiency of the Carnot engine

operating via cSLTOs is larger, in general, compared to the case considered
in Fig. 1, where the system locally interacts with individual baths at a time.
Suppose that the system locally interacts with the baths using local
thermal operations6,8,10 and undergoes two sub-transformations (i) and (ii)
in separate steps to complete the Carnot cycle, as discussed earlier. For
these sub-transformations (i) and (ii), the one-shot extractable work and
the work cost under local thermal operations, respectively, are

W1 ¼ inf
α�0
½WðαÞ1 � � W1; and W2 ¼ sup

α�0
½WðαÞ2 � � W2: (24)

The net one-shot extracted work using local thermal operations
is Wext ¼ W1 þW2, where W1 � 0 and W2 � 0. It is easy to
check that Wext � Wext which is satisfied for arbitrary engine cycle in
general.
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