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Quantum computing with exciton-polariton condensates
Sanjib Ghosh 1* and Timothy C. H. Liew1,2*

Exciton-polariton condensates have attractive features for quantum computation, e.g., room temperature operation, high
dynamical speed, ease of probe, and existing fabrication techniques. Here, we present a complete theoretical scheme of quantum
computing with exciton-polariton condensates formed in semiconductor micropillars. Quantum fluctuations on top of the
condensates are shown to realize qubits, which are externally controllable by applied laser pulses. Quantum tunneling and
nonlinear interactions between the condensates allow SWAP, square-root-SWAP and controlled-NOT gate operations between the
qubits.
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INTRODUCTION
Exciton-polaritons are hybrid light-matter particles, where the
small dephasing of a photonic system is blended with the
particle–particle interactions from a condensed matter system.
The overwhelming majority of research into exciton-polaritons has
been focused on semi-classical physics, that is, physics where the
quantization of the particle number according to quantum theory
is not itself apparent: Bose-Einstein condensation and polariton
lasing;1 quantum fluids and solitons;2 and topological polaritons3

are all well-described within semi-classical theory. Nevertheless, it
has always been expected that exciton-polaritons are ultimately
quantum particles,4 theoretically capable of entanglement,5,6 and
it has been speculated that polaritons could perform as quantum
computers7,8 or quantum simulators.9,10

As the quality factor of microcavities has steadily progressed,
there has been a recent resurgence of interest in quantum
exciton-polariton physics. Through exciting a polariton with an
entangled photon it was proven that exciton-polaritons are
indeed quantum particles, capable of carrying correlations at the
quantum level.11 The onset of the polariton blockade12 has also
shown that the repulsive interaction energy between just two
polaritons is considerable,13,14 and that suggestions of strongly
interacting polaritons can be reachable in the future.15,16

However, serious challenges must be addressed before claiming
that exciton-polaritons can perform as a quantum computer. First,
a suitable basis for encoding information must be chosen and it
must be shown that exciton-polaritons are compatible with such a
basis. Typically, architectures for quantum computation are based
on qubits, which require a two level quantum system. It is not
immediately obvious that exciton-polaritons can serve in this
regard, since they typically form multi-particle states. Even though
binary degrees of freedom (e.g., spin or vorticity17,18) exist, this
does not automatically mean that polaritons can operate as qubits
as the different degrees of freedom can themselves be populated
by a range of particle number (Fock) states.
Even if a quantum computational basis can be established, a

significant task remains in designing quantum logic gates
(assuming that one aims for emulation of the most well-known
quantum circuit model of quantum computation). If a set of
universal quantum gates can be established, then in principle any
unitary operation can be reproduced on a given input state. For

example, a set of single qubit logic gates combined with square-
root-SWAP gate (or controlled-NOT gate) is universal. However, it
is essential that the gates can be arbitrarily connected and formed
into scalable circuits, which is already a challenging task for
classical polaritonic logic gates.19

Finally, it is important that the logic gates should be operable
on a timescale faster than the dissipation and dephasing rates of
exciton-polaritons. While classical information carried in the form
of a polariton wavepacket can be re-amplified with a non-
resonant external laser,20 which replaces lost particles with those
of the same classical properties (e.g., phase and polarization),
applying the same to a quantum polariton state actually causes
quantum information to be lost faster.21 Essentially, if a polariton
carrying quantum correlations is lost from the system it can not be
replaced with a fully identical particle. Attempting to do so
necessarily worsens the situation as the replacement particle can
not possibly have the same quantum correlations with the rest of
the system as the particle that was lost. Thus all gates need to act
before polaritons escape the system. Fortunately, state-of-the-art
microcavities support polariton lifetimes exceeding hundreds of
picoseconds,22 while applied laser pulses can be operated on sub
picosecond scale or faster.
Here we address the above challenges from the theoretical

point of view, considering exciton-polariton condensates in
micropillar arrays9 as a platform. Even though a polariton
condensate is composed of many particles, we show that number
fluctuations on top of the mean-field value themselves correspond
to an anharmonic oscillator in the presence of moderate
polariton–polariton interactions. Transitions between the lowest
two energy levels are non-resonant with other levels, effectively
allowing a qubit basis, which can be measured with homodyne
detection techniques. As outlined in Fig. 1, single qubit gates are
controllable by laser parameters and the availability of quantum
tunneling between neighboring micropillars, it is possible to
realize SWAP and square-root-SWAP (sSWAP) gates, which allow
for moving qubits between different pillars and universal quantum
operations to establish a complete scalable quantum circuit
architecture. Additionally, the availability of cross–Kerr interactions
between polaritons, which are allowed via the presence of
cross–spin interactions, are shown to realize a quantum
controlled-NOT (cNOT) gate.
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THE EXCITON-POLARITON CONDENSATE
We consider a semiconducting micropillar that supports a
nonlinear polariton mode â. The mode is excited with a coherent
optical field PðtÞ. The Hamiltonian is thus

H ¼ Δ âyâþ α âyâyââþ PðtÞ�ây þ PðtÞâ; (1)

where Δ is a detuning between the optical field and the polariton
mode and α is the Kerr nonlinear interaction strength. We define a
condensate as a coherent state, which is readily generated by the
application of a constant coherent optical field PðtÞ ¼ P0 with the
occupation number, Nc ¼ hâyâi. We aim to engineer the quantum
operations by switching the optical pump from PðtÞ ¼ P0 to
PðtÞ ¼ Peiφ for a very short time compared to the polariton
lifetime. Since the condensate formed by P0 does not have
enough time to decay, the short excitation Peiφ will only induce
fluctuations on top of the preformed condensate. We now
consider the following change of variable: ây ¼

ffiffiffiffî
N

p
expðiθ̂Þ,

where N̂ and θ̂ are the number and phase operators of the
condensate satisfying the commutation relation ½θ̂; N̂� ¼ i. In
terms of these operators the Hamiltonian reads:

H ¼ ΔN̂þ αN̂ðN̂� 1Þ þ 2P
ffiffiffiffî
N

p
cosðφ� θ̂Þ (2)

The polariton number operator can be expressed as
N̂ ¼ âyâ ¼ Nc þ n̂, where Nc ¼ hâyâi is the mean-field part of the
condensate and n̂ is the quantum part. Note that the mean field
Nc cannot carry quantum information itself. Instead, the quantum
part n̂ will be used for encoding quantum information. We express
the Hamiltonian in terms of n̂:

H ¼ C þ Ω n̂þ αn̂2 þ 2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc þ n̂Þ

p
cosðφ� θ̂Þ; (3)

where C= ΔNc+ αNc(Nc− 1) is a classical number and Ω = Δ+ α
(2Nc− 1) is defined as the effective detuning. Here we now
consider that the magnitude of Nc is much larger than the
quantum fluctuations n̂ (which is the standard case for polariton
condensates), such that the effective Hamiltonian is given by,

Hf ¼ Ωn̂þ αn̂2 þ 2P
ffiffiffiffiffi
Nc

p
cosðφ� θ̂Þ (4)

Note that inside the square-root, we have neglected the operator

n̂ which is justified when
ffiffiffiffiffiffiffiffiffi
hn̂2i

q
=Nc � 1. In Fock space, the

number operator satisfies n̂ nj i ¼ n nj i and the corresponding

phase operator satisfies expð± iθ̂Þ nj i ¼ n± 1j i (see the Supple-
mentary Information). The effective Hamiltonian in the Fock space
then reads,

Hf ¼
X
n

Ωnþ αn2
� �

nj i nh j þ P
ffiffiffiffiffi
Nc

p
eiφ nj i nþ 1h j þ e�iφ nþ 1j i nh j� �h i

(5)

This effective system is formed with an exciton-polariton
condensate in a micropillar interacting with a laser field. Note
that a coherent condensate can be achieved even in the strongly
interacting regime (see Supplementary Information). The system
has similarity with a superconducting qubit formed in a Josephson
junction between two superconducting islands. While one among
the two superconducting islands is analogous to the condensate
in the micropillar, the second one is replaced by the classical laser
field which can be manipulated (through controlling its phase,
detuning and amplitude) with much more ease and accuracy than
a cryogenically cooled superconducting island (controlling phase,
energy and amplitude of the superconducting wavefunction are
much more challenging). Moreover, the condensate in a
semiconductor micropillar itself can operate at much higher
temperatures (even at room temperature) than the operating
temperatures of superconducting qubits.

ANHARMONIC SPECTRUM AND THE QUBIT
In Fig. 2, we find that the spectrum of the Hamiltonian is periodic
in the effective detuning Ω with a period 2α. Let us replace Ω with
an effective detuning parameter ω that varies between ±α such
that the spectrum is restricted within one period. Moreover, in
Fig. 2 we see that the gaps between the lowest two energy levels
and the next ones are different. According to our need, we can
operate in some regime where the difference in the gaps can be
obtained by diagonalizing the Hamiltonian given by Eq. (5). These
unequal gaps are originating from the anharmonic behavior of the
Hamiltonian, which can be explicitly seen in Eq. (4) in the form of
the cosine term (if instead of the cosine term one had a θ̂

2
term,

one would have a harmonic oscillator). Let us consider that δE1 is
the gap between the first two energy levels and δE2 is the same
between the second and third energy levels. In the regime, where
∣δE1 − δE2∣ is larger than the linewidth γ, we can consider only the
lowest two energy levels as our qubit basis 0j i and 1j i. In this low

Fig. 1 A scheme of quantum computing with exciton-polariton condensates. a A polariton condensate confined in a semiconductor
micropillar and excited with a coherent laser supports a qubit suitable for quantum computing. b The evolution under the effective qubit
Hamiltonian induces rotation on the Bloch sphere. The amount of rotation and the axis of rotation is controlled by the laser parameters. With
specific sets of laser parameters we achieve single-qubit quantum gates. c SWAP and sSWAP gates: quantum tunneling between two
micropillars allows SWAP and sSWAP (square-root-SWAP) operations between qubits in different micropillars. d cNOT gate: accounting for the
spin degree of freedom, two qubits can be encoded in the single micropillar and interact via a cross-Kerr type interaction to induce the cNOT
gate operation.
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energy qubit subspace, the effective qubit Hamiltonian reads
Ĥq ¼ Exσ̂x þ Eyσ̂y þ Ezσ̂z, where σ̂i are the Pauli matrices,
Ex ¼ P

ffiffiffiffiffi
Nc

p
cosφ, Ey ¼ P

ffiffiffiffiffi
Nc

p
sinφ, and Ez= (α− ω)/2. Note that

here we have excluded the overall energy shift 1ðα� ωÞ=2 from
the Hamiltonian. Formally, this Hamiltonian can be rewritten in a
compact form:

Ĥq ¼ E � σ̂; (6)

where the vectors E= (Ex, Ey, Ez) and σ̂ ¼ ðσ̂x; σ̂y; σ̂zÞ. This qubit
Hamiltonian can be externally controlled by tuning the vector E
through controlling the laser detuning ω, strength P, and the
phase φ.

SINGLE-QUBIT GATES
For universal quantum computing, single-qubit gates are required.
A single-qubit gate operation is equivalent to a unitary rotation of
a qubit around a given axis. Here, we show that the evolution of
an initially prepared state under the effective Hamiltonian Ĥq can
induce an arbitrary single-qubit quantum gate operation. For
specific operation, the parameters involved in the Hamiltonian
must be chosen appropriately. If the duration of the application of
the pump Peiφ is τ, then the evolution operator is given by
expð�iτĤq=�hÞ, which can be rewritten as,

UϵðβÞ ¼ 1 cos β� iϵ:σ̂ sin β; (7)

where β ¼ τE=�h, and ϵ= E/E is a unit vector controlled by the

system parameters, and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2Nc þ ðα� ωÞ2=4

q
. This is a

general form of a unitary matrix in single-qubit space. More
explicitly the operator can be written in matrix form:

UϵðβÞ ¼ cos β� i sin β cos ξ �i sin β sin ξ e�iφ

�i sin β sin ξ eiφ cos βþ i sin β cos ξ

� �
; (8)

where we parameterized the unit vector in angular coordinates
ϵ ¼ ðsin ξ cosφ; sin ξ sinφ; cos ξÞ. By choosing appropriate β, ξ,
and φ we can obtain different quantum operations, e.g., a rotation
R̂xðβÞ around σ̂x with (ξ= π/2, φ= 0), and a rotation R̂yðβÞ around
σ̂y with (ξ= π/2, φ= π/2). Since any single qubit unitary operation

can be composed as R̂xðβ1ÞR̂yðβ2ÞR̂xðβ3Þ (where β1,2,3 correspond
to three time durations),23 arbitrary single-qubit gates can be
obtained with a fixed ξ= π/2 and controlling only β and φ. This
shows that arbitrary single-qubit operations are allowed by a pulse
with a fixed detuning ω= α (equivalently Ez= 0) but a time
dependent phase φ. However, additional control on the laser field
amplitude P provides control on ξ, which allows more flexibility on
achieving single-qubit gates, e.g., a frequently used single-qubit
gate, known as the Hadamard gate, can be readily realized with
(β= π/2, ξ= π/4, φ= 0).

Fig. 2 Spectrum of the Hamiltonian in different regimes. We show the lowest four energy levels as functions of Ω (the effective detuning)
for ~P=α<1 (a), ~P=α ¼ 1 (b), and ~P=α> 1 (c), where ~P ¼ P

ffiffiffiffiffi
Nc

p
. In all regimes, the spectrum is periodic in Ω with a period 2α. In d and e, we show

the two energy gaps δE1 and δE2 between lowest energy levels as functions of ~P=α at two different values of the effective detuning Ω. Here
δE1 is the gap between the first two levels and δE2 is the same between the second and third levels.
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SWAP AND SSWAP GATES
Let us now consider that two physically separated polariton
condensates with associated field operators â1 and â2 are coupled
via a coherent (Josephson) tunneling term. The corresponding
Hamiltonian is given by,

H12 ¼
X
j¼1;2

Hj þ Jðây1â2 þ ây2â1Þ; (9)

where Hj ¼ Δj â
y
j âj þ αj â

y
j â

y
j âj âj þ Pjðâjeiφj þ âyj e

�iφj Þ corresponds to
a single condensate. Following the same procedure as we have
shown for a single condensate, we obtain a low energy effective
Hamiltonian:

Hq1q2 ¼
X
j¼1;2

Ej � σ̂j þ ETðσ̂1
þσ̂

2
� þ σ̂2

þσ̂
1
�Þ; (10)

where ET is the tunneling amplitude. This Hamiltonian allows both
efficient SWAP and sSWAP operations. While a SWAP operation
swaps the quantum states between the two quibts, sSWAP
operations establish universality (any quantum operation can be
achieved with sSWAP and single-qubit gates).
Our considered system is a driven dissipative system. Exciton-

polaritons have a finite lifetime �h/γ. An accurate description of this

driven dissipative system is given by the quantum master
equation:

i�h _̂ρ ¼ ½Ĥq1q2 ; ρ̂� þ
γ

2

X
j¼1;2

Ljðρ̂Þ; (11)

where ρ̂ is the density matrix describing the qubits,
Ljðρ̂Þ ¼ 2σ̂j

�ρ̂σ̂
j
þ � σ̂j

þσ̂
j
�ρ̂� ρ̂σ̂j

þσ̂
j
�, and σ̂j

± are the raising and
lowering operators. In Fig. 3b, we show the gate fidelities of
sSWAP and SWAP gates as the function of the ratio of the
polariton–polariton interaction strength to the dissipation rate.
For efficient gate operations we need to externally control the

tunneling amplitude ET, such that the quantum tunneling can be
activated at will. In principle, Josephson coupling can be
modulated by applying stress24 or a magnetic field,25 however,
here we opt for a scheme where two qubits in two physical
semiconductor micropillars are connected by a third micropillar
placed between them (see the inset of Fig. 3b). This three site
system is considered with a fixed nearest-neighbor tunneling
amplitude, g (see Fig. 4). The on-site energy of the middle site
could be controlled via an external laser field. In Fig. 4, we show
the probability of the transition 10j i ! 01j i as a function of the
ratio between the relative detuning Δs and the tunneling

Fig. 3 Two-qubit gate fidelities as functions of the ratio between the polariton-polariton interaction strength and the dissipation rate
(α/γ). a Fidelities of square-root-SWAP (blue circles) and SWAP (red diamonds) gates as functions of polariton lifetime. The inset shows a
scheme for sSWAP and SWAP operations based on three coupled micropillars. For sSWAP gate, we considered Ejx=E

j
z ¼ 11:55, Ejy=E

j
z ¼ 0,

Ejz=α ¼ 1, ET/α = 45.64 and pulse duration τ= 0.576�h/α and for SWAP gate, we considered Ejx=E
j
z ¼ 7:6, Ejy=E

j
z ¼ 0, Ejz=α ¼ 1, ET/α= 48.7 and

pulse duration τ= 1.08�h/α. b Fidelity of a maximally entangled state obtained with a cNOT gate as a function of the polariton lifetime. We
considered the parameters E1x ¼ E1z ¼ 0, E2x=E

2
z ¼ 0:05, E2z=α ¼ 1, E12z =α ¼ α12=α ¼ 1 and pulse duration τ= 1.36�h/α (here αj= α is the

nonlinearity strength). The inset shows a scheme for cNOT operation based on two spin components of a polariton condensate.

Fig. 4 Controlling the tunneling amplitude by tuning the detuning. a Probability of the transition 10j i ! 01j i between the qubits as a
function of the ratio between the relative detuning Δs and the tunneling amplitude g between the nearest-neighbor sites. Here the transition
occurred with a unitary evolution for a time duration τ. b A three site lattice system with nearest-neighbor tunneling amplitude g. c The site
energies: the site at the middle has a relative energy Δs with respect to the qubit sites placed at the two ends. We consider g/α = 2.07, and a
time duration τ= 1.08�h/α.
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amplitude g between the neighboring micropillars. We find that
the transition probability can be tuned from a high value to a low
one by tuning the parameter Δs/g.

CONTROLLED-NOT GATE
Although a cNOT operation can be obtained as a combination of
single-qubit and sSWAP gates, here we show that a direct
realization of cNOT gate is also possible in semiconductor
micropillars. Let us consider that two polariton condensates with
associated field operators â1 and â2 are interacting with a cross-
Kerr type nonlinearity. The corresponding Hamiltonian is given by,

H12 ¼
X
j¼1;2

Hj � 2α12 ây1â
y
2â2â1; (12)

where the Hamiltonian Hj ¼ Δj â
y
j âj þ αj â

y
j â

y
j âj âj þ Pjðâjeiφj þ

âyj e
�iφj Þ describes a single condensate, αj and α12 are the Kerr

and cross-Kerr nonlinearity strengths, and Pj, φj, and Δj are the
amplitudes, phases and detuning values of the applied laser fields.
The cross-Kerr nonlinearity can be physically realized with exciton-
polaritons by considering the spin degree of freedom. Exciton-
polaritons can have one of two spin projections on the structure
growth axis,26 corresponding to two independent quantum
modes. Noise in the spin is drastically suppressed in the regime
of polariton condensates.27 While the quantum gates in our
schemes are aimed to operate in a fraction of the polariton
lifetime, timescales associated to spin noise and the number
fluctuations are much larger for large condensate occupation.27 It
has also been well established that cross-Kerr type nonlinearity is
present between the opposite spin states, and a variety of
interaction strengths have been achieved experimentally.28

Alternatively, cross-phase modulation between neighboring opti-
cal cavity modes has been discussed in different works,29,30

although not yet realized experimentally for exciton-polariton
systems.
Following the same procedure as we have shown for a single

condensate, we obtain a low energy effective Hamiltonian:

Hq1q2 ¼
X
j¼1;2

E j:σ̂j � E12z ð1þ σ1
z Þ ð1þ σ2

z Þ; (13)

where Ej ¼ ½Pj
ffiffiffiffiffi
Nc

p
cosφj ; Pj

ffiffiffiffiffi
Nc

p
sinφj; ðαj � ωjÞ=2�,

E12z ¼ α12=2, and ωj varies between ±αj. For demonstrating cNOT
operations, we consider the two-qubit Hamiltonian Hq1q2 with
φj= 0. It has been shown earlier that this Hamiltonian can be used
for inducing cNOT operation.31 For instance, under a pulse of
duration τ, the evolution operator is given by,

Uq1q2 ¼ e�iτ_Hq1q2 : (14)

We find that this evolution operator becomes a cNOT operation
for E1z ¼ 0, E2y=E

2
z � 1, and a suitable τ. In Fig. 3b, we show the

fidelity of an exciton-polariton cNOT gate as a function of the ratio
of the polariton-polariton interaction strength to the
dissipation rate.

DISCUSSION
We have arrived at a theoretical scheme for implementation of the
quantum circuit model of quantum computation using exciton-
polariton condensates. Qubits are encoded in an anharmonic
oscillator formed by the quantized fluctuations of the particle
number about the mean-field value. A universal set of quantum
gates (single-qubit and sSWAP gates) can be engineered using
individual micropillars and quantum tunneling among them.
SWAP gates are introduced to allow the coherent transport of
quantum information between qubits. We further showed that
cNOT gates can be directly induced by exploiting the available
cross-Kerr interactions between modes with different polariza-
tions. Other quantum gates, e.g., iSWAP and square-root-iSWAP

can also be implemented straightforwardly within our scheme
(see Supplementary Information). These gates would be con-
trollable via the use of external laser pulses.
Our scheme is best suited for condensates with large number of

polaritons. While a condensate with 50–100 polaritons can induce
high quality quantum gates, smaller polariton occupancies
introduce losses in the gate fidelity (see Supplementary Informa-
tion). Technological imperfections can also introduce effects like
small polarization splitting between the spin modes in a
micropillar. However, the gate fidelity remains almost unaffected
for splittings smaller than the polariton–polariton interaction
strength (see Supplementary Information).
Aside exciton–exciton interaction another source of nonlinearity

comes from the saturation of the exciton–photon coupling, which
can be mapped to a renormalized Kerr nonlinear term in our
considered Hamiltonian in Eq. (1).2 Similarly, the biexciton
nonlinearity can also be accounted for by renormalizing the
interaction constant between polaritons with opposite spins.32

While exciton-polariton condensates allow high fidelity quan-
tum gates for lifetimes much larger than the gate operation time,
limited lifetime can introduce errors in the quantum circuits.
However, fault-tolerant quantum computers can be achieved by
encoding a logical qubit in multiple exciton–polariton qubits
(allowing quantum error correction).23,33–35 In principle, dynamical
decoupling schemes appropriate for open quantum systems could
also extend the effective loss time.36 Finally, it is notable that
typical polariton micropillar lattices can be fabricated with micron
scale precision,3 while the coherence of polariton condensates has
been reported extending over a fraction of a millimeter.37 The
state-of-the-art in quantum computing has been developing
rapidly in recent years, with companies developing systems with
around 50 qubits,38 while superconducting qubit systems39 and
ion trap40 systems have already achieved 8 and 20 qubits,
respectively. We hope that polariton lattices, which can potentially
have a size of around 100 × 100= 104 qubits (or double
accounting for spin), will also be seen as relevant candidates.
We note that typically a fraction of a milliwatt of laser power is

needed to coherently excite a micron sized condensate. A typical
1 mm2 sized sample, which could contain 106 individual
condensates, would require almost kilowatt power to achieve
cryogenic liquid Helium temperature. As superconducting qubits
occupy a much larger area, their cryogenic power required per
qubit is much higher. In addition, exciton-polaritons can operate
faster and at higher temperature.
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