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Secure quantum key distribution with a subset of malicious
devices
Víctor Zapatero1✉ and Marcos Curty 1

The malicious manipulation of quantum key distribution (QKD) hardware is a serious threat to its security, as, typically, neither end
users nor QKD manufacturers can validate the integrity of every component of their QKD system in practice. One possible approach
to re-establish the security of QKD is to use a redundant number of devices. Following this idea, we address various corruption
models of the possibly malicious devices and show that, compared to the most conservative model of active and collaborative
corrupted devices, natural assumptions allow to significantly enhance the secret key rate or considerably reduce the necessary
resources. Furthermore, we show that, for most practical situations, the resulting finite-size secret key rate is similar to that of the
standard scenario assuming trusted devices.
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INTRODUCTION
Quantum key distribution1–4 (QKD) allows for information
theoretically secure communications, unaffected by the long-
term security weakening inherent to public-key cryptography5,6.
Its security relies on fundamental physical principles and various
assumptions, a crucial one being that the legitimate QKD users,
say Alice and Bob, hold honest devices that stick to the QKD
protocol and do not intentionally leak their private information to
an eavesdropper (Eve). However, this strong assumption is
probably unjustified, considering the amount of hardware and
software Trojan horse attacks against conventional cryptographic
systems reported in the past years7–11. After all, likewise
conventional security hardware, QKD devices incorporate many
sophisticated components typically provided by specialized
companies, and neither QKD vendors nor users are capable of
validating the security of all these components in practice12.
However, a malicious component can totally compromise the
security of QKD. Indeed, the fabrication process of QKD systems
might provide Eve with plenty of opportunities to meddle with
the QKD hardware, including both the optical equipment and the
classical post-processing (CP) units. Moreover, Eve could even
sidestep post-fabrication tests by arranging attack triggers that
depend on a sequence of unlikely events10,13.
Remarkably, not even device-independent (DI) QKD14–18 can

provide security against malicious devices, as shown in ref. 19. It is
the classical nature of the secret keys that makes QKD systems
vulnerable to classical hacking in both the DI and the non-DI
scenarios because classical keys are susceptible to copying.
A possible solution to foil malicious hardware and software in

QKD was recently presented in ref. 20, and then experimentally
demonstrated in ref. 21. The triggering idea is that it might be
more difficult for Eve to corrupt various devices than a single
device; for example, if they originate from different providers.
Therefore, one can use a redundant number of devices for both
the raw key generation and the post-processing of QKD. As shown
in ref. 20, under the assumption that the number of devices
controlled by Eve is restricted, secure QKD is possible by
combining verifiable secret sharing (VSS)22–26—whose essential
building block is secret sharing27,28, a standard technique in

secure hardware design29—and privacy amplification (PA)30,31. Of
course, both tools operate on top of DI and non-DI security
analyses, which determine the secret key length that one can
extract from the honest optical apparatuses.
However, a major limitation of the proposal in ref. 20 is that it is

conceived for the case where all the corrupted devices fully obey a
single Eve who can access their internal information and make
them arbitrarily misbehave from the protocol. This scenario, which
we refer to as the active-collaborative (AC) model, might be over-
conservative in many practical situations. For instance, if Alice and
Bob purchase devices from different vendors, it might be
reasonable to expect that, even if they are corrupted, they do
not collaborate, meaning that they do not share their private
information with each other or cooperate in any way. Also, if the
information delivered by a certain device is different from the one
prescribed by the protocol, it might be detected by Alice and Bob
a posteriori. In this sense, some QKD users might only request
security against non-collaborative (rather than collaborative) or
passive (rather than active) corrupted devices.
Crucially, when applied in more sensible corruption models like

these, the proposal in ref. 20 provides no advantage at all with
respect to the AC model. One major contribution of this work is to
prove that some of these models actually enable a significant
enhancement of the secret key rate, require fewer honest devices
and classical communications than the AC model, or allow to
remarkably diminish the post-processing time, a severe bottleneck
in QKD. In particular, we introduce conditional VSS, a weaker
version of VSS that is more suitable for the task of QKD. In
addition, we present a general distributed QKD post-processing
protocol appropriate for all the corruption models. Lastly, we
evaluate the performance of two well-known QKD schemes in the
presence of malicious devices. The simulations corroborate that
notably improved non-asymptotic key rates can be reached by
replacing the AC model by less conservative and probably more
realistic models. Furthermore, in all the considered models, we
find that the increased authentication cost of our protocol
(compared to that of standard QKD post-processing) is negligible
with respect to the secret key length for practical data block sizes
and moderate numbers of corrupted devices.
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RESULTS
We start by describing the general formalism we consider.
Without loss of generality, a standard QKD setup can be divided
into two parts with separate roles: a QKD module and a CP unit.
Alice’s and Bob’s QKD modules form a so-called QKD pair, whose
role is to generate raw correlated data between the parties via
quantum communication. Each module transfers its raw data to its
local CP unit, and the two distant CP units distill a pair of secret
keys from the raw data via coordinated classical post-processing
and authenticated classical communication.
The focus of this work is the general scenario where not all the

devices are trusted, thus forcing the parties to use a redundant
number of them20. Throughout the paper, we shall consider that
Alice and Bob share nq QKD pairs (or simply “pairs”), and that each
of them holds nc CP units (or simply “units”). Similarly, we assume
that up to tq QKD pairs are corrupted (a QKD pair is corrupted
when at least one of its modules is) and up to tc CP units are
corrupted per lab. Nevertheless, our results could be easily
adapted to contemplate different numbers of honest and
corrupted units in each lab. For j= 1,…, nq, Alice’s (Bob’s) module
QKDAj (QKDBj ) is connected to all her (his) units fCPAlgncl¼1
(fCPBl0 gncl0¼1) via secure channels, that is, channels that provide
both privacy and authentication. Also, all of Alice’s (Bob’s) units are
pairwise connected by secure channels too. Since all these links
take place within Alice’s (Bob’s) lab, in practice security could be
enforced by using, say, physically protected cables. Similarly,
the CPAl are connected to the CPBl0 by authenticated classical
channels. Lastly, as usual, a quantum channel fully accessible to an
eavesdropper links QKDAj to its partner QKDBj . A schematic of this
QKD setup is given in Fig. 1.

AC corruption
In the first place, let us briefly summarize the proposal in ref. 20,
which establishes the security of QKD in the AC model using the
setup of Fig. 1. On the one hand, given that nq > tq, PA allows to
“remove” not only the information Eve gains through her
intervention in the quantum channel (as it is done in standard
QKD post-processing), but also the information she learns from
the corrupted QKD pairs. On the other hand, given that nc > 3tc

26,
VSS enables an honest QKD module to split a raw key into shares
and redundantly allocate them among its local CP units for
distributed post-processing. Crucially, the properties of VSS may
guarantee the secrecy and the correctness of the final keys

reconstructible by Alice and Bob at the end of this post-
processing.
Before we analyse alternative corruption models, it is con-

venient to tight up some few loose ends affecting the proposal in
ref. 20. In the first place, it requires the execution of nq+ 1 separate
PA steps to distill a secret key. On the contrary, in section
“Alternative corruption models” we show that a single PA step
suffices, which actually applies to all possible corruption models
(see also section “Distributed QKD post-processing protocol” for a
distributed post-processing protocol that implements PA in a
single step).
In the second place, the use of standard VSS assures that the

post-processing is resilient to the misbehaving of the CP units at
the price of relying on simulated broadcast, better known as
byzantine agreement32. However, this is a very stringent task: it
requires the exchange of an exponentially increasing number of
classical messages, say C � Oðntcc Þ, among the units that want to
reach the agreement32. What is more, the achieved resiliency is
probably not relevant for QKD. After all, Eve has unrestricted
access to the quantum channel and thus may induce the abortion
of the QKD protocol at will. For these reasons, in all corruption
models we replace VSS by a weaker cryptographic primitive,
namely, conditional VSS (defined in the “Methods” section), which
circumvents simulated broadcast by simply allowing the CP units
to abort the protocol. As seen in section “Alternative corruption
models” below, this replacement is not only advantageous in the
AC model, but whenever actively corrupted CP units are
considered, whether they collaborate or not.

Alternative corruption models
In what follows, we address various adversarial scenarios
alternative to the AC model. In particular, three looser non-
mixed corruption models exist: passive and collaborative (PC),
active and non-collaborative (AN) and passive and non-
collaborative (PN), where non-collaboration is obviously only
defined if multiple corrupted devices exist. Importantly, we
decouple the analysis of the different corruption models for the
QKD modules and the CP units, such that the results we present
for the QKD modules do not assume a specific model for the CP
units and vice versa. In addition, we maintain the general QKD
setup presented in Fig. 1.
Let us discuss the QKD modules first. In virtue of the privacy of

conditional/standard VSS (see the “Methods” section), a distrib-
uted QKD post-processing protocol using VSS guarantees that the

Fig. 1 QKD setup with multiple devices. Proposal of a QKD setup with redundant devices suggested in20. The areas surrounded by dashed
lines define Alice’s and Bob’s labs. Alice’s (Bob’s) lab contains nq QKD modules (yellow boxes). Each module of Alice is linked to a single module
of Bob through a quantum channel (dashed blue lines), forming a so-called QKD pair, and tq pairs are possibly malicious at most. In addition,
Alice (Bob) holds nc CP units (grey boxes), tc of them being possibly malicious at most. In each lab, all the CP units are connected to each other
and to all nq local QKD modules via secure channels that provide both privacy and authentication (black solid arrows). Also, every unit of Alice
is linked to every unit of Bob through an authenticated classical channel (all of them together symbolized by the red double-end arrow).
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extractable secret key length does not depend on the corruption
model of the CP units, but only on that of the QKD pairs. What is
more, let us assume for now that the parties select the AC model
as their preferred model for the QKD pairs. For j= 1,…, nq, the j-th
QKD pair runs an independent QKD session. As shown in
Supplementary Note 1, for nq= tq+ 1 (minimum valid choice of
nq for a given tq), the ϵcor-correct, ϵsec-secret key lengthlextractable
via one-step PA from all these sessions is given by

l ¼ min
j

hjε � λj
� �� log 2

1
ϵ̂corϵ2PAδ

� �� �
; (1)

where hjε is a hypothetical lower bound on the ε-smooth min-
entropy of Bob’s j-th raw key conditioned on the information held
by Eve up to the parameter estimation (PE) step, and the smooth
parameter ε depends on the PE procedure. As explained in
Supplementary Note 1, the term “hypothetical” here refers to the
fact that the information delivered by corrupted QKD modules
cannot be trusted. Similarly, λj is the public syndrome information
required for the reconciliation of the j-th pair of raw keys, and
ϵ̂cor ¼ ϵcor � ϵAU for a pre-agreed authentication error ϵAU, such
that ϵAU < ϵcor and ϵAU < ϵsec. Lastly, ϵPA is the error probability of
the PA step and δ > 0 is arbitrary, such that

ϵsec � 2εþ δþ ϵPA þ ϵAU: (2)

As one would expect, from Eq. (1) we see that, if a single honest
QKD pair exists, “a single key” can be extracted from all nq raw
keys in the AC model. Notably, the generalization of Eq. (1) to
nq− tq > 1 is straightforward.
Now, let us address the alternative models, PC, AN and PN. As

long as the malicious QKD pairs are collaborative, an omniscient
Eve could learn all the information they hold about the keys, and
as long as they are active, they can deliver untrustworthy protocol
information unsuitable for correct PE. Hence, although for
different reasons, the intermediate scenarios PC and AN cannot
lead to an enhancement of the secret key length with respect to
the AC model: they also require to remove all the key material that
comes from corrupted QKD pairs via PA, thus demanding nq > tq
as well. In particular, the extractable key length for nq= tq+ 1 in
the PC (AN) corruption model is given by Eq. (1) too.
In the PN corruption model, one assumes an independent Eve

per malicious QKD pair that does not collaborate with the
eavesdroppers possibly controlling the other pairs. Moreover,
passivity implies that corrupted pairs deliver trustworthy protocol
information that allows to quantify the “ignorance” (in secret bits)
that the Eves possibly corrupting other pairs have about their raw
data. Thus, it suffices to remove the information held by the most
knowledgeable eavesdropper via PA in order to provide security
against all of them. As a consequence, secure QKD is possible even
if all the QKD pairs are corrupted in the PN model, that is, even if
nq= tq. In this setting, one can show that the ϵcor-correct,
ϵsec-secret key length extractable via one-step PA (see Supple-
mentary Note 2) is given by

l ¼ min
v

Xnq

j≠v

Hε
minðsjBjEvÞ � λj

n o
� log 2

1

ϵ̂corϵ2PAδ
nq�1

 !$ %

; (3)

where Hε
minðsjBjEvÞ denotes the ε-smooth min-entropy of Bob’s j-th

sifted key, sjB, conditioned on the information Ev held by the v-th
eavesdropper (i.e. the one that corrupts the v-th QKD pair, with
v= 1,…, nq). The remaining parameters were introduced in Eq. (1),
and the secrecy parameter now satisfies

ϵsec � ðnq � 1Þð2εþ δÞ þ ϵPA þ ϵAU: (4)

Remarkably, Eq. (3) trivially outperforms Eq. (1) for any given
tq > 1 (and we recall that non-collaboration is only defined in
this case).

In what follows, we discuss the CP units. Although the
corruption model of the CP units does not affect the extractable
key length, l, it determines the necessary resources to securely
implement a distributed post-processing using conditional VSS:
the number of units per party, nc, the number R of copies per
share of raw key to be delivered by any given QKD module, and
the total number of raw key shares managed per CP unit, say r,
originating from a given QKD module. On the one hand, nc and R
determine the necessary classical communications both between
labs and inside each lab, and the total authentication cost of the
former, say lAU. On the other hand, r strongly affects the post-
processing time, a usual concern in the performance of QKD. In
Table 1 we list the minimum values of nc, R and r required for
distributed QKD post-processing, depending on the corruption
model of the CP units.
The entries of the table follow from the requirements of

conditional VSS and are established in Proposition 1 in the
“Methods” section (see Supplementary Note 3 for a proof of this
proposition). As we observe, all the restricted models allow to
reduce the resources with respect to the AC model. For instance,
note that the number r of shares per unit grows exponentially with
nc for a fixed fraction of corrupted units in the AC model. This
might lead to prohibitively long post-processing times even for
small values of nc. Nevertheless, this problem disappears if one
assumes that the possibly corrupted units are non-collaborative,
thus moving to the AN model. Also in this model, it is worth
noting that conditional VSS tolerates nc= 2tc+ 2, while standard
VSS would still require nc= 3tc+ 1, a constraint imposed by the
necessity to allow for simulated broadcast.
Within the passive models (PC and PN), the distributed post-

processing has the extra advantage that the PE and the lab-to-lab
classical communications can be conducted by a single CP unit
per lab. On the contrary, the active models require the
participation of R= 2tc+ 1 units per lab for these tasks, in order
to assure the presence of a majority of honest units.
Remarkably, in the “Methods” section, we formulate a

distributed QKD post-processing protocol adequate for all the
corruption models, matching the entries of Table 1 in each case.
The security of this protocol, established in Proposition 3 (see
section “Distributed QKD post-processing protocol”), is proven in
Supplementary Note 4 combining conditional VSS with a standard
QKD security analysis.
Lastly, as stated above, the corruption model of the CP units

also determines the authentication cost, lAU, of the distributed
post-processing. The classical communications require to select R
distinct CPAl and R distinct CPBl0 , such that each of the former pre-
shares a dedicated pool of secret key bits with each of the latter

Table 1. Conditional VSS with non-mixed corruption.

nc, R, r Active Passive

nc= 3tc+ 1 nc= tc+ 1

Collaborative R= 2tc+ 1 R= 1

r ¼ nc�1
tc

� 	
r= 1

nc= 2tc+ 2 nc= 2

Non-collaborative R= 2tc+ 1 R= 1

r= nc− 1 r= 1

Minimum resources of a distributed QKD post-processing protocol based
on conditional VSS, depending on the corruption model of the CP units.
While nc is the total number of units per party, R is the redundancy of each
raw key share and r is the number of key shares managed per CP unit from
each of its local QKD modules. The number tc of possibly corrupted units
per lab is at least two for the non-collaborative models (AN and PN), as
non-collaboration is only defined in this case.
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for authentication purposes. Thus, denoting the common size of
every key pool by kj j, it follows that
lAU ¼ R2 ´ kj j; (5)

where R is given in Table 1 for each model. A possible estimation
of kj j using a typical authentication scheme33 is presented in
Supplementary Note 5. Within this scheme, the authentication
cost of a message scales logarithmically with its length, suggesting
that for most practical situations lAU≪ l, as we shall corroborate in
the next section.

Performance evaluation
To complete the analysis, we calculate explicit secret key rates in
various significant corruption models, and in the finite key regime.
The secret key rate is defined as

K ¼ l � lAU
nqN

; (6)

where we recall that l (lAU) is the extractable secret key length
(authentication cost) and nq (N) is the number of QKD pairs (number
of transmission rounds per pair). For illustration purposes, lAU is
computed according to the classical communications of the
distributed post-processing presented in the “Methods” section.
For concreteness, we assume the same corruption model for the

QKD modules and the CP units, a natural supposition in practice.
Moreover, we restrict ourselves to the extreme corruption models,
AC and PN, as the intermediate scenarios (AN and PC) do not
allow to enhance the secret key rate, disregarding the authentica-
tion cost (see section “Alternative corruption models”). We also
assume that Alice and Bob use the minimum number of devices
that allows for K > 0, which depends on the corruption model they
consider. For AC corruption, this means that they agree on the
number tq ≥ 0 (tc ≥ 0) of malicious QKD pairs (CP units per lab) they
want to be protected against, and use nq= tq+ 1 pairs (nc= 3tc+
1 units per lab). Alternatively, for PN corruption, they use nq= 2
QKD pairs and nc= 2 CP units per party, which suffices to achieve
K > 0 even if all the devices are possibly malicious (see section
“Alternative corruption models”).
We consider two practical QKD protocols with decoy states: an

efficient measurement-device-independent quantum key distribu-
tion (MDI-QKD) scheme34 with three decoy intensities in the basis
X (devoted to PE) and one signal intensity in the basis Z (devoted
to key distillation), and the standard decoy-state BB84 scheme35

with three decoy intensities per basis. Detailed analyses of
these protocols are provided in Supplementary Notes 6 and 7,
respectively. For each protocol, we compute estimates of l (given
by Eq. (1) for the AC model and by Eq. (3) for the PN model) and
lAU (given by Eq. (5)), by setting the observables to their expected
values according to respective channel models described in the
cited Supplementary Notes. These channel models depend on
various common experimental parameters: the efficiency of the
photo-detectors, set to ηdet ¼ 65%, their dark count probability,
set to pd= 7.2 × 10−8 (both values matching the recent MDI-QKD
experiment reported in ref. 36) and the polarization misalignment,
set to say δmis= 0.08, for illustration purposes. Moreover, in both
the MDI-QKD and the BB84 schemes, the weakest decoy intensity
is set to ω= 10−3 for the numerics. In each case, we optimize the
remaining protocol inputs (i.e. intensity settings, and basis and
decoy probabilities) to maximize K as a function of the channel
loss between Alice and Bob.
For the finite key analysis, we select a post-processing block size

of M bits. Then, for every value of the channel loss, we choose the
smallest number of transmission rounds per QKD pair, N, that
assures that all nq sifted keys reach this block size except with a
probability of, say γsift= 5 × 10−3, according to the channel model.
Regarding the error correction (EC) leakage, we assume the

typical model syðsjBÞ








 ¼ Mf EChðEtolÞ for every EC syndrome, where

fEC= 1.16 is the efficiency of the EC protocol, h(⋅) is the binary
entropy function, and Etol is a pre-fixed threshold quantum bit
error rate (QBER). In particular, Etol is an upper bound on the QBER
that any pair of sifted keys can reach according to the channel
model, except with an error probability of γEC= 5 × 10−3.
Finally, the security parameters are set to ϵcor ¼ ϵsec ¼ 10�8

and ϵAU= 5 × 10−9. As shown in Supplementary Note 5, ϵAU
determines the individual authentication error probability γAU via
ϵAU ¼ ðtc þ 1Þ2ðnq þ 1ÞγAU (ϵAU= (nq+ 1)γAU) in the presence of
actively (passively) corrupted CP units. Given ϵsec and ϵAU, the
remaining parameters, ϵPA and δ, entering the extractable key
length, l, are determined by imposing a common value, γsec, for
every error term that contributes to ϵ̂sec ¼ ϵsec � ϵAU (given by
Eqs. (2) and (4)). In particular, from the PE procedure presented in
Supplementary Note 6 (Supplementary Note 7), it follows that
γsec ¼ ϵ̂sec=48 (γsec ¼ ϵ̂sec=20) in the MDI-QKD (BB84) scheme
within both the AC and the PN scenarios, where we used the fact
that nq= 2 in the latter case.
Adhering to all the above, in Fig. 2, we plot the secret key rate

as a function of the total channel loss for the MDI-QKD scheme,
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(b) M=106

(a) M=105

Fig. 2 Performance evaluation. Secret key rate, K of a decoy-state
MDI-QKD scheme34 in various adversarial scenarios with malicious
devices, as a function of the total channel loss between Alice and
Bob (assumed to be at the same distance of the untrusted
measurement node). Two finite block sizes are considered, a M=
105 and b M= 106, and the authentication cost is computed
according to the distributed post-processing protocol of the
“Methods” section. In both figures, the purple line is the secret
key rate in the standard scenario—where each party holds one QKD
module and one classical post-processing (CP) unit, both of them
trusted—and green lines denote different corruption models. In
particular, the dashed-dotted phosphorescent line is the secret key
rate assuming passive and non-collaborative corrupted devices,
which requires the use of two QKD pairs and two CP units per lab
(all of them being possibly malicious) to provide security. A more
conservative scenario is represented by the solid non-
phosphorescent green lines, which assume active and collaborative
corrupted devices. These lines further assume the same number, say
t, of malicious QKD pairs and malicious CP units per lab, which
requires the use of at least nq= t+ 1 QKD pairs and nc= 3t+ 1 CP
units per party to provide security. Specifically, the dark (light) green
line corresponds to t= 3 (t= 5).
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considering that Alice and Bob are at the same distance of
the central untrusted node. Similarly, the secret key rate of the
BB84 scheme is plotted in Supplementary Fig. 4. In both cases, for
illustration purposes, two different block sizes are considered, M∈
{105,106}. Within the AC corruption model, for concreteness, we
only address the symmetric case tq= tc= t, such that nq= t+ 1
and nc= 3t+ 1. Hence, we use the notation KAC,t (lAC,t) for the
secret key rate (length) secure against t corrupted devices of each
kind in this model. Similarly, KPN (lPN) denotes the secret key rate
(length) in the PN model, which, as explained above, unambigu-
ously requires nq= nc= 2. Lastly, Khonest (lhonest) denotes the
secret key rate (length) in the standard situation where each party
holds one trusted QKD module and one trusted CP unit, that is,
Khonest= KAC,0 (lhonest= lAC,0).
The conclusions gathered from Fig. 2 are readily understood in

view of the results of section “Results”. In the first place, for both
M= 105 and M= 106, we find that KPN ≈ KAC,1 to a precision that
cannot be distinguished in the figure. This follows from the fact
that, in both cases, two raw keys are generated (as nq= 2) and the
parties need to remove the information from one of them via PA.
Indeed, comparing Eqs. (1) and (2) with Eqs. (3) and (4), one
observes that

lPN ¼ lAC;1; (7)

that is, the secret key lengths coincide exactly for fixed security
parameters, fixed experimental inputs (N and Etol) and average
observables. Thus, the minuscule difference between KPN and KAC,1
comes from the authentication cost, as lAU∝ R2 with R= 2t+ 1 (R= 1)
in the AC (PN) model.
The same argument relates KAC,t and Khonest/(t+ 1) for all t. On

the one hand, for the specifications above,

lAC;t ¼ lhonest (8)

for all t, which corresponds to the key material coming from the
honest QKD pair. On the other hand, in the presence of tmalicious
QKD pairs, the extraction of the above key length requires the
generation of t+ 1 raw keys in the AC model. Thus, from Eq. (6), it
follows that

Khonest

t þ 1
� KAC;t ¼ δlAU

ðt þ 1ÞN (9)

in the simulations, where δlAU denotes the extra authentication
cost of the AC model with tq= tc= t, compared to the honest
scenario. Due to the factor N−1 in the right-hand side of Eq. (9),
larger block sizes lead to smaller differences Khonest/(t+ 1)− KAC,t.
Finally, since KAC,t∝ (lhonest− lAU) and lAU∝ (2t + 1)2 in the AC

model, KAC,t vanishes for any given block size if a large enough
number of CP units is considered, as eventually lAU > lhonest. This is
the case for M= 105 and t= 5 in Fig. 2.

DISCUSSION
QKD security today requires every QKD component to be honest
and follow the protocol steps. Nevertheless, our experience in
classical cryptography indicates that this might be very hard to
certify in practice. Even in the DI setting, where the QKD devices
are often referred to as uncharacterized black boxes, it is
mandatory to assure that, beyond the reception of quantum
signals from an untrusted source, the only interaction these boxes
have with the outside world is the exchange of inputs and outputs
with the legitimate parties. This assumption, despite weak, is still
very hard to verify. Fortunately, as pointed out in ref. 20, one can
protect QKD against malicious equipment by using redundant
devices to combine VSS with PA, an approach that we follow in
this work.
However, a major limitation of the proposal in ref. 20 is that it

relies on simulated broadcast, a very high-priced task in terms of
total communication, especially for large numbers of CP units.

What is more, the scheme presented in ref. 20 requires the
execution of nq+ 1 PA steps, where nq is the total number of QKD
pairs. In this work, we eliminate the limitation of simulated
broadcast and show that a single PA step suffices, thus turning the
approach in ref. 20 into practical.
Moreover, the proposal in ref. 20 assumes that the malicious

devices may actively deviate from the protocol and collaborate
with each other, which is probably over-pessimistic. For instance,
an archetypical security breach consists of a malicious item
implanted by an eavesdropper in an honest apparatus, leading to
a passively corrupted device that may leak private information but
sticks to the protocol prescriptions. Likewise, if the devices
originate from different vendors, it is reasonable to expect that
possibly corrupted apparatuses do not collaborate. In this work,
we show that very natural assumptions like these allow to achieve
a better performance than the AC model, both in terms of secret
key rate and necessary resources.
Also, it is often stated in the QKD community that one could

simply bitwise add modulo 2 (XOR) the final keys generated by
different QKD systems to defeat malicious equipment. Although
this alternative may assure the privacy of the output, it has the
major problem of generally requiring more devices than actually
necessary to establish security, due to the non-distributed post-
processing. For instance, note that not only the QKD module but
also the CP unit in any given QKD system learns the raw key in the
XOR approach, leading to a double-trouble situation where one
must contemplate the worst possible combination of modules
and units to guarantee the privacy of the raw key material.
Similarly, the XOR approach does not prevent an actively
malicious unit from jeopardizing the post-processing of the raw
key generated by its module.
Furthermore, we would like to note that secret-sharing-type

techniques are, in fact, the standard tool to guarantee security
against untrusted devices. For instance, it is the adopted solution
in modern hardware secure modules37–39. Likewise, similar ideas
to those we present here may be deployed in QKD to relax the
security assumptions in trusted node network architectures, such
that one can establish the security of the final keys even if some
intermediate nodes are compromised40.
Another contribution of this work is to evaluate the finite secret

key rate of practical QKD schemes in the presence of malicious
devices, for different corruption models and accounting for the
authentication cost of the redundant classical communications.
Particularly, based on our theoretical results, we devise an efficient
distributed QKD post-processing protocol adequate for all the
corruption models we examine. The simulations confirm that our
techniques may achieve finite secret key rates comparable to
those of standard QKD with trusted devices. Putting it all together,
this work is a fundamental step towards the development of
practical QKD systems secure against malicious devices possibly
sabotaged by a third party, a major threat against classical
cryptography today that cannot be put aside in the quantum-
safe era.

METHODS
Conditional VSS
Here, we introduce a modified version of the VSS scheme presented in
ref. 26 that contemplates the possibility of aborting, thus providing a
weaker cryptographic primitive than standard VSS. For this reason, we refer
to it as conditional VSS.
We consider a scenario with one possibly dishonest dealer, D, and a set

of n parties, P ¼ fP1; ¼ ; Png, t of which are possibly corrupted. In this
setting, a conditional VSS scheme is a pair of protocols, (Share,
Reconstruct), satisfying three properties: privacy, conditional commitment
and conditional correctness (defined below). In full generality, Share and
Reconstruct run as follows. During Share, D distributes an input m among
the n parties, which pairwise perform consistency tests on their common
information via secure channels and possibly abort. Upon non-abortion of
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Share, during Reconstruct the parties collaborate to retrieve m. The
defining properties of conditional VSS are given below:

1. Privacy: If D is honest, the information obtained by any set of t or less
parties prior to Reconstruct is independent of m.

2. Conditional commitment: Upon non-abortion of Share, Reconstruct
yields the same output for all non-actively corrupted parties.

3. Conditional correctness: Upon non-abortion of Share, if D is honest
the common output of all non-actively corrupted parties is the
input m.

Regarding the parties, all four non-mixed corruption models presented
in the main text shall be addressed: AC, AN, PC and PN. However, we do
not restrict to any of them yet. Also, note that the set of non-actively
corrupted parties includes all the parties (and not only the honest ones) in
the passive models. As for the dealer, D is said to be dishonest if it may
distribute incorrect/inconsistent information about his input to the
parties or directly reveal it to them. In particular, this means that if
the QKD modules belong to the PN model, even corrupted modules are
honest dealers.
In what follows, we describe a pair of protocols, (Share, Reconstruct),

that depend on various settings, and such that adequate choices of these
settings confer the pair the category of a conditional VSS scheme. We
remark that the adequacy of some given settings depends on the
corruption model one assumes for the parties. Also, the protocol
definitions below assume that the parties and the dealer do not
misbehave, whether or not these protocols are robust against active
corruption. The dealer’s input m is assumed to be a binary string, and we
recall that the symbol “⊕” denotes bitwise XOR. In addition, this operation
is generalized to a pair of strings with different lengths by padding the
shortest one with as many zeros as necessary for the lengths to match. This
said, Share runs as follows:

1. D uses a q-out-of-q SS scheme to split a message m into q random
shares, by selecting the first q− 1 shares mi at random and then
choosing mq=m⊕m1⊕…⊕mq−1.

2. For i= 1,…, q, D sends mi to all the parties in a certain subset, say
σi⊊P, via secure channels. If any of these parties does not receive
the share, she takes a zero bit string as default share.

3. If ∣σi∣ > 1, all pairs of parties in σi perform a consistency test: they
send each other their copies of mi over secure channels to check if
they are equal. If any party finds an inconsistency, she aborts the
protocol.

Importantly, abortion proceeds in two steps: the aborting party sends an
abortion order to all other parties, and each receiving party resends the
order to all the rest. Upon reception of an abortion order, the parties abort.
Step two assures that the non-actively corrupted parties always abort
collectively. Upon non-abortion of Share, Reconstruct runs as follows:

1. All pairs of parties send each other their shares through
authenticated channels.

2. For i= 1,…, q, each party uses MV to reconstruct the share mi, and
then obtains m ¼ �q

i¼1mi .

In general, in order for MV to be well defined, the output must be set to
a default value in case of a tie. Nevertheless, ties never occur for the
adequate choices of the parameters n and q and the subsets σi we
present next.
Proposition 1 Let t be the maximum number of corrupted parties,

and let fT1; ¼ ; T n
tð Þg be any ordered list of all possible combinations

of t parties. Under the following settings, (Share, Reconstruct) defines a
conditional VSS scheme:

1. n= 3t+ 1, q ¼ n
t

� �
and σi ¼ P=T i (AC corruption).

2. n= 2t+ 2, q= n and σi ¼ P=Pi (AN corruption).
3. n= t+ 1, q= n and σi ¼ Pi (PC corruption).
4. n= 2, q= n and σi ¼ Pi (PN corruption).

What is more, the above settings are optimal in the number of parties.

The reader is referred to Supplementary Note 3 for a proof of Proposition 1.
Also, note that, by definition of R (see section “Alternative corruption
models”), we have that R= ∣σi∣ for all i.
Finally, we remark that the above conditional VSS scheme enables secure

multiparty computation of linear functions of the shared private input in a
very simple way. Let L(⋅) be the linear function to be computed on m. Upon
non-abortion of Share, each party applies L to its shares ofm, in so obtaining

shares of L(m). Since this step requires null communication, privacy,
conditional commitment and conditional correctness are trivially maintained.

Generation of random bit strings (RBSs)
Distributed QKD post-processing also relies on the possibility to generate
unbiased random bit strings (RBSs) of a pre-fixed length L among n parties,
when up to t of them are possibly corrupted. Here, we describe an RBS
generation protocol suitable for the active corruption models, AC and AN,
that builds on conditional VSS to safeguard the randomness of its output
string (the passive models shall be addressed afterwards).
Let us set the total number of parties, n, the total number of shares, q,

and the subsets of parties, σi, as specified in Proposition 1 for the
considered model (AC or AN). The RBS generation protocol runs as follows:

1. For k= 1, …, t+ 1, Pk creates a random L-bit string, Rk, and
distributes it among all n parties (including itself) using Share. If, for
some k, Share aborts, the RBS generation protocol aborts. If a party
receives any share whose length differs from L, she aborts.

2. Upon non-abortion of step 1, the parties use Reconstruct to obtain
Rk for all k= 1, …, t+ 1. Then, each of them individually calculates
R ¼ �tþ1

k¼1Rk .

Proposition 2 The RBS generation protocol outputs a common random
L-bits string for all non-actively corrupted parties.
The reader is referred to Supplementary Note 3 for a proof of

Proposition 2.
Finally, using the standard notion of passivity given in the main text, one

can avoid the use of conditional VSS for RBS generation in the passive
models (PC and PN). Instead, any given unit can generate the strings
directly, and such strings are truly random by assumption.

Distributed QKD post-processing protocol
Making use of our theoretical results, here we present a distributed QKD
post-processing protocol based on conditional VSS that is appropriate for
all non-mixed corruption models introduced in section “Results”. We refer
to it simply as Protocol.
In the first place, the parties agree on the corruption models they

assume for the QKD modules and the CP units (which might be different in
general), and also select the numbers tq and tc of corrupted devices they
want to be protected against. In case they choose AC, AN or PC corruption
(PN corruption) for the modules, they must hold nq= tq+ 1 (nq= 2) QKD
pairs in total—given that they stick to the rule of using the minimum valid
amount of devices—and the secret key length l is given by Eq. (1) (Eq. (3)).
Similarly, they provide themselves with as many CP units as specified in
Table 1 for their preferred model. Coming next, they agree on a
correctness (secrecy) parameter, ϵcor (ϵsec), and a total authentication error
ϵAU, such that ϵAU < ϵcor and ϵAU<ϵsec.
For j= 1,…, nq, the pair ðQKDAj ;QKDBj Þ runs a QKD session to generate

the basis Z raw key strings, ðrjA; rjBÞ, to be kept private, and some non-
private protocol information, ðinfojA; infojBÞ, typically including the basis
and intensity settings, detection events and so on. Crucially, ðinfojA; infojBÞ
includes all the raw key material required for PE. The post-processing
procedure (namely, Protocol) starts next and is described below. Although
the description assumes that the possibly corrupted devices do not deviate
from the protocol steps, Protocol is indeed secure against active
eavesdroppers, as established in Proposition 3 below. Finally, although
not explicitly stated, in case of abortion, the aborting party must notify the
other party. This said, Protocol runs as follows.
Let us focus on, say, the j-th QKD pair:

1. Distribution of data: QKDAj (QKDBj ) distributes shares of its raw key rjA
(rjB) among the CPAl following the Share protocol of a conditional VSS
scheme (see section “Conditional VSS”) for the selected corruption
model of the CP units. We denote the set of units that receive the i-th
share of rjA (rjB) by σ

A
i (σBi ), which without loss of generality is common

for all j= 1, …, nq. In addition, QKDAj (QKDBj ) sends the protocol
information infojA (infojB) to all CPAl 2 σA1 (CPBl0 2 σB1), and the latter
perform a consistency test on this data: they pairwise check that their
copies of infojA (infojB) match via authenticated channels. If a CPAl

(CPBl0 ) finds an inconsistency, it aborts the protocol (see the Share
protocol in the section devoted to conditional VSS for the two-step
abortion procedure we consider).

2. Sifting: Each CPAl 2 σA1 sends its copy of infojA to all CPBl0 2 σB1, which
individually apply majority voting (MV) to decide on a single copy.

V. Zapatero and M. Curty

6

npj Quantum Information (2021)    26 Published in partnership with The University of New South Wales



Then, the CPBl0 2 σB1 forward some sifting information, siftj, computable
from the pair ðinfojA; infojBÞ, to the CPBl0 =2σB1, which apply MV too. Using
siftj, every CPBl0 discards some key bits from their shares of rjB to obtain
shares of the sifted key, sjB. Alternative sifting schemes that require to
discard random subsets of the data could easily be adapted by
including an RBS generation protocol (see section “Generation of
random bit strings (RBSs)”).

3. PE: Using ðinfojA; infojBÞ, each CPBl0 2 σB1 computes a hypothetical lower
bound hjε (see Supplementary Notes 1 and 2 for the details) on the ε-
smooth min-entropy of sjB conditioned on the information held by an
eavesdropper up to the PE step, for a certain ε that depends on the PE
procedure.

Once steps 1 to 3 are implemented for j= 1,…, nq, all CPBl0 construct
their shares of the concatenated sifted key sB ¼ ½s1B; ¼ ; snqB �, such that the
kth share of sB is simply given by the concatenation of the kth share of s1B,
the kth share of s2B and so on. In addition, from all nq values hjε, every
CPBl0 2 σB1 computes a lower bound l on the secret key length extractable
from sB via PA. If a CPBl0 2 σB1 finds l ≤ 0, it aborts the protocol. Otherwise,
the post-processing proceeds as follows:

4. RBS generation: Every CPBl0 2 σB1 forwards l to the CPBl0 =2σB1, which
apply MV. All CPBl0 perform an RBS generation protocol to select two
random 2-universal hash functions, hEV and hPA, respectively
devoted to error verification (EV) and PA.

5. Information reconciliation: Every CPBl0 computes its shares of the
string of concatenated syndromes, syB ¼ ½syðs1BÞ; ¼ ; syðsnqB Þ�, and
the EV tag hEV,B= hEV(sB). Here, sy(⋅) is a linear function specified by
an EC protocol for a pre-agreed QBER. Altogether, the CPBl0
reconstruct syB and hEV,B via the Reconstruct protocol of a
conditional VSS scheme (see section “Conditional VSS”). Each
CPBl0 2 σB1 sends the following items to every CPAl 2 σA1 :

(a) The total sifting information, fsiftjgnqj¼1.
(b) The syndrome information, syB, a description of hEV and the EV

tag, hEV,B.
(c) A description of hPA.

For all three items, each CPAl 2 σA1 applies MV to decide on a single copy.
Then, it forwards fsiftjgnqj¼1, hEV and hPA to the CPAl =2 σA1 (which apply MV

too), and every CPAl sifts its shares of the raw keys rjA to obtain shares of
the concatenated sifted key sA ¼ ½s1A; � � � ; snqA �. Following the EC protocol, all
CPAl compute their shares of the concatenated syndrome string,
syA ¼ ½syðs1AÞ; ¼ ; syðsnqA Þ�, and jointly reconstruct it via the Reconstruct
protocol of a conditional VSS scheme. From syB and syA, each CPAl 2 σA1
computes the error pattern ê and updates its copy of the first share of sA by
XOR-ing it with ê. Thus, by construction, Alice’s corrected key is ŝA ¼ sA � ê.
Then, all CPAl compute their shares of the EV tag hEV;A ¼ hEV ð̂sAÞ and
jointly reconstruct it via the Reconstruct protocol of a conditional VSS
scheme. Finally, every CPAl 2 σA1 checks that hEV,A= hEV,B. Otherwise, it
aborts the protocol.

6. PA: In case of not aborting, every CPAl (CPBl0 ) computes its shares of
the final key kA ¼ hPA ð̂sAÞ (kB= hPA(sB)).

In Supplementary Note 4, we prove that the following security claim holds
for all (non-mixed) corruption models of the QKD modules and the CP units.
Proposition 3 Suppose that Protocol does not abort. Then, Alice and Bob

can unambiguously determine unique ϵcor-correct and ϵsec-secret final keys.
Importantly, the determination of such final keys by Alice and Bob can

be done by simply applying MV on the key shares held by their respective
CP units, followed by an XOR operation. More generally, in the presence of
actively corrupted units, the CPAl (CPBl0 ) can forward their final shares to a
local key management layer41,42. There, they could be stored in distributed
memories or employed for applications such as message encryption, which
in turn can be performed share-wise too.
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