
ARTICLE OPEN

Measurement-free preparation of grid states
Jacob Hastrup 1✉, Kimin Park1,2, Jonatan Bohr Brask 1, Radim Filip 2 and Ulrik Lund Andersen 1

Quantum computing potentially offers exponential speed-ups over classical computing for certain tasks. A central, outstanding
challenge to making quantum computing practical is to achieve fault tolerance, meaning that computations of any length or size
can be realized in the presence of noise. The Gottesman-Kitaev-Preskill code is a promising approach toward fault-tolerant
quantum computing, encoding logical qubits into grid states of harmonic oscillators. However, for the code to be fault tolerant, the
quality of the grid states has to be extremely high. Approximate grid states have recently been realized experimentally, but their
quality is still insufficient for fault tolerance. Current implementable protocols for generating grid states rely on measurements of
ancillary qubits combined with either postselection or feed forward. Implementing such measurements take up significant time
during which the states decohere, thus limiting their quality. Here, we propose a measurement-free preparation protocol, which
deterministically prepares arbitrary logical grid states with a rectangular or hexagonal lattice. The protocol can be readily
implemented in trapped-ion or superconducting-circuit platforms to generate high-quality grid states using only a few interactions,
even with the noise levels found in current systems.
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INTRODUCTION
Quantum computing offers exponential speeds-ups in solving
certain computational problems, with wide-ranging consequences
for information processing, information security, fundamental
physics and chemistry, and more. Impressive progress has been
achieved towards realizing quantum computing, including recent
experimental demonstration of a quantum advantage over
classical computation1. However, real devices are subject to noise
and imperfections. As computations grow in size and complexity,
errors accumulate and eventually destroy any quantum advantage
unless mitigated. Achieving fault tolerance, where errors are
corrected sufficiently fast to allow scalable computation, is a
central challenge to making universal quantum computing
practical.
Quantum error correction (QEC) enables large-scale quantum

computing in the presence of noise by redundantly encoding
logical qubits into a larger Hilbert space. In traditional discrete-
variable QEC, many physical qubits make up a single logical qubit.
However, in 2001, Gottesman, Kitaev, and Preskill (GKP) proposed
encoding a logical qubit into the infinite-dimensional Hilbert
space spanned by the continuous variables of a single bosonic
mode2. With this encoding, small displacement errors of the
bosonic mode can be detected and corrected using only simple
Gaussian operations. Furthermore, recent results have shown that
the GKP code also performs very well against boson loss3, in many
cases outperforming other bosonic codes designed specifically
against loss such as cat codes4,5 and binomial codes6,7. In fact,
numerical optimization suggests that the hexagonal GKP code
might be the optimal loss-resistant code among all bosonic
codes8. In addition, GKP codes have recently been shown to have
applications within continuous-variable QEC9 and quantum
metrology10.
An ideal GKP code is embedded in an idealized grid state, which

forms a lattice structure, consisting of an infinite superposition of
position eigenstates. Such states require infinite energy and are
hence unphysical. Importantly, however, it is possible to use

approximate grid states with finite energy, composed of finitely
squeezed states to achieve fault tolerance by concatenating the
GKP code with discrete-variable error-correcting codes, provided
that the grid states are sufficiently quadrature-squeezed. In 2014, a
conservative threshold for fault tolerance of 20.5 dB squeezing
was derived for a measurement-based quantum computing
approach11. Later, this threshold was significantly reduced to
<10 dB squeezing by exploiting the analog information contained
in the syndrome measurements12,13. Other approaches such as
concatenating the GKP code with the surface code14, the toric
code15,16, and Knill’s C4/C6 code17 have recently been proposed.
For any of these proposals, the squeezing threshold will depend
not only on the involved codes, but also on the type and
magnitude of the noise and experimental errors of the given
system. It is therefore crucial to test the feasibility of these
approaches with high-quality grid states experimentally. In
addition, as with any quantum error-correcting code, one would
ideally use grid states with squeezing levels well above the
threshold to avoid impractical resource overheads associated with
the repeated concatenation of the codes.
The preparation of grid states have, however, proven to be

highly challenging. Recently, such states were prepared for the
first time in ground-breaking experiments in the motional state of
a trapped ion18 and in a microwave cavity field coupled to a
superconducting circuit19. The states realized in these experiments
clearly exhibit the required grid structure in phase space.
However, the quality of the states needs to be improved for
implementation with fault-tolerant schemes. The main experi-
mental limitation is that during the preparation protocol, the
states accumulate noise, e.g. from boson dephasing and losses,
rendering the produced grid states noisy. To minimize this noise
one has to increase the speed of the preparation protocol. The
state-preparation protocols currently implemented in the experi-
ments use oscillator-qubit couplings and rely on repeated
measurements of the ancilla qubit. These measurements and
their associated processing times constitute about half of the total
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preparation time. Therefore, to improve the quality of the GKP
codes, it is crucial to replace the slow measurement-based
approach with a faster approach.
It has previously been theoretically and experimentally estab-

lished that arbitrary bosonic states can be deterministically
prepared using a qubit coupling via the Jaynes-Cummings
Hamiltonian20–23. These methods build up the state in the Fock
basis and require a number of steps proportional to the number of
Fock states supporting the target state. However, since noise such
as qubit dephasing and boson loss is built up during each step23,
such methods are ineffective for preparing large useful grid states,
which require support on at least 25–100 photons to achieve
10–16 dB of effective squeezing.
In this work, we present a measurement-free grid state-

preparation protocol, which is significantly faster than known
methods, without introducing additional resources. The key
interaction of our protocol is the Rabi interaction Hamiltonian
between an oscillator and a two-level system24,25, which can be
effectively simulated in trapped-ion and microwave systems. This
interaction is also used in the experiments of refs. 18,19. Such
interactions were recently shown to enable deterministic, non-
Gaussian operations by using many weak interactions26,27. Here,
we instead use only a few, but stronger interactions, to generate
the highly non-Gaussian grid states. Our work thus provides
further demonstration of Rabi interactions as a powerful and
versatile non-Gaussian resource in trapped-ion and
superconducting-circuit platforms.
The speed-up obtained with our approach is large enough to

prepare grid states with >10 dB of effective squeezing in practical
systems that are readily available in both trapped-ion and
microwave cavity platforms. Compared with current experiments
this is an improvement of 3–6 dB under the same amounts of
physical noise. With a further reduction of noise levels in future
experiments, our protocol enables the generation of grid states
with squeezing levels well above the fault-tolerance threshold
levels, thus facilitating scalable quantum computing.

RESULTS
Preliminaries
In this section, we review the basic structure of grid states and the
figures of merit used in this article. For a more extensive review,
see e.g. ref. 28.
Bosonic modes of harmonic oscillators are associated with the

creation and annihilation operators â and ây and the correspond-
ing dimensionless quadrature operators X̂ ¼ 1ffiffi

2
p ðâþ âyÞ and P̂ ¼

1ffiffi
2

p
i
ðâ� âyÞ satisfying ½X̂; P̂� ¼ i. The two-dimensional code space

of the GKP code is defined in the common +1 eigenspace of the
stabilizer operators

Ŝz ¼ D̂ðαÞ and Ŝx ¼ D̂ðβÞ: (1)

Here, D̂ðxÞ ¼ exâ
y�x�â ¼ ei

ffiffi
2

p ð�ReðxÞP̂þImðxÞX̂Þ is the displacement
operator with displacement amplitude x, satisfying the commu-
tation relation

½D̂ðαÞ; D̂ðβÞ� ¼ 2i sinðImðαβ�ÞÞD̂ðαþ βÞ: (2)

By choosing Im(αβ*)= 2π, we ensure that the stabilizers commute,
which enables the existence of simultaneous eigenstates.
Furthermore, we can define logical operators

ẐL ¼ D̂
α

2

� �
; X̂L ¼ D̂

β

2

� �
; and ŶL ¼ D̂

αþ β

2

� �
; (3)

which commute with the stabilizers and anti-commute with each
other. The logical GKP qubit states, 0j iGKP and 1j iGKP, are then
defined as the ±1 eigenstates of ẐL. These satisfy the expected
logic X̂L 0j iGKP ¼ 1j iGKP and X̂L 1j iGKP ¼ 0j iGKP.

The relative directions and magnitudes of α and β determine
the lattice of the corresponding grid states. For example,
rectangular grid states are generated by α= i2π/β*. Further
choosing β ¼ ffiffiffiffiffiffi

2π
p

yields the square grid states for which the
code space is symmetric with respect to X and P. Alternatively,
choosing α ¼ i

ffiffiffiffiffiffiffiffi
4ffiffi
3

p π
q

and β ¼ e�iπ3α yields the hexagonal grid
states. In the following, we will consider only the square grid,
returning to the case of rectangular and hexagonals grids
afterwards. The (unnormalizable) ideal square grid states can be
written as:

0j iGKP ¼ P
s2Z

D̂ s
ffiffiffiffiffiffi
2π

p� �
X ¼ 0j i

1j iGKP ¼ P
s2Z

D̂ sþ 1
2

� � ffiffiffiffiffiffi
2π

p� �
X ¼ 0j i

(4)

where X ¼ 0j i denotes the eigenstate of X̂ with eigenvalue 0 and
Z denotes the set of integers. The ideal grid states are thus infinite
superpositions of equidistant position eigenstates and their
Wigner functions are an infinite grid of two-dimensional delta-
functions (see Fig. 2b). Ideal grid states can be approximated by
finite energy states in several ways. The most commonly used
representation for deriving fault tolerance thresholds is a super-
position of finitely squeezed states of width e−r under a Gaussian
envelope of width κ−1:

~0
		 


GKP /
P
s2Z

e�
2
ffiffi
π

p
sð Þ2

2κ�2 D̂ s
ffiffiffiffiffiffi
2π

p� �
Ŝr vacj i

~1
		 


GKP /
P
s2Z

e�
2
ffiffi
π

p
sþ1

2ð Þð Þ2
2κ�2 D̂ sþ 1

2

� � ffiffiffiffiffiffi
2π

p� �
Ŝr vacj i;

(5)

where Ŝr ¼ e�
1
2rðâ2�ây2Þ is the squeezing operator (not to be

confused with the stabilizers Ŝx and Ŝz). The squeezing parameter r
and envelope κ characterizes the quality of the states in the X- and
P-quadratures, respectively, and in the limit (e−r, κ)→ (0, 0) the
approximate states converge to the exact states of equation (4).
For κ= e−r the states can correct noise equally well in X and P.
However, physical grid states will never exactly be of the form

given in equation (5). First, physical states are not pure and are
generally described by a density matrix ρ̂. Second, the exact
Gaussian envelope can be difficult to obtain and most preparation
protocols yield a finite sum of squeezed states. Therefore, the
parameters r and κ are not well defined for practically realizable
states. Instead, more generic figures of merit, the effective
squeezing parameters, have been suggested in ref. 10. They
quantify the effective degree of squeezing in each quadrature of
the peaks constituting the grid state and are defined as:

ΔX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2π

ln
1

jhD̂ði ffiffiffiffiffiffi2π
p Þij2

 !vuut (6)

ΔP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2π

ln
1

jhD̂ð ffiffiffiffiffiffi
2π

p Þij2
 !vuut ; (7)

where the effective squeezing levels in units of dB are given by
ΔdB ¼ �10log 10ðΔ2Þ. The expectation values in these definitions
are exactly the expectation values of the stabilizers Ŝz and Ŝx for
square GKP states. High-quality grid states should therefore have
jhŜz=xij � 1, in which case ΔX/P→∞ dB. These definitions also have
the nice property that for squeezed states they reproduce the
squeezing parameter, i.e., ΔXðŜr vacj iÞ ¼ e�r and ΔPðŜr vacj iÞ ¼ er .
Furthermore, for the approximate square lattice grid states of Eq.
(5) we extract the parameters ΔXð ~0

		 

GKPÞ ¼ e�r and

ΔPð ~0
		 


GKPÞ � κ. The last approximation is very accurate for e−r, κ
> 10 dB. Thus, if the state resembles a grid state consisting of a
grid of squeezed peaks in phase space, the effective squeezing
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parameters approximately quantify the squeezing of these peaks
in each quadrature direction.
However, it is important to note that effective squeezing is not

directly related to the fault-tolerance thresholds. Most GKP-based
fault-tolerance thresholds are derived based on the specific,
approximate states given in Eq. (5) and refer to r and κ. Any other
state can therefore in general not be guaranteed to enable fault-
tolerant computations, even when the effective squeezing parameters
are both above these thresholds. Moreover, the effective squeezing
parameters say nothing about the logic state of the GKP qubit, e.g., a
mixed code state might be strongly squeezed, but might not
necessarily be useful for quantum computing.
Nevertheless, it is reasonable to assume that states with a high

degree of effective squeezing can be used for fault tolerance if they
otherwise closely resemble the approximate pure grid states of Eq. (5),
e.g., in terms of their fidelity with the approximate states. In further
analysis, we therefore compliment the effective squeezing parameters
with the fidelity to verify the appropriateness of using the effective

squeezing parameters as quantifiers of the protocol performance.
Moreover, we also verify that the produced states have the expected
grid structure in terms of their Wigner function. Another alternative
figure of merit is the effective shift error29, which is discussed and
calculated in Supplementary Note 1.

Preparation protocol
Several proposals exist for the preparation of approximate grid
states2,19,30–38. The original GKP paper2 includes a proposal based
on a radiation-pressure-like interaction between two bosonic
modes under the Hamiltonian X̂1â

y
2â2 in the quantum nonlinear

regime. However, experimental realization of the required strongly
nonlinear coupling has proven highly challenging and has not yet
been achieved.
In ref. 30, a preparation protocol based on the Rabi interaction

Hamiltonian P̂σ̂x (where σ̂x is the Pauli-x matrix), between the
bosonic mode and a two-level system was proposed. Such an
interaction can be realized in trapped ions39 and microwave

Fig. 1 Overview of the grid state-preparation protocol. a Circuit diagram of the measurement-free grid state generation protocol. The
bosonic mode interacts with the qubit through a sequence of Rabi gates with interaction Hamiltonians of the form P̂σ̂x and X̂σ̂y to produce an
approximate GKP 1 logic state without measurements. b The Rabi gates can be viewed either as conditional displacements on the bosonic
mode depending on the qubit state or conditional rotations of the qubit depending on the bosonic state. c Illustration of the protocol for N=
3 for an infinitely squeezed input state. The ket above each peak in the wave function represents the state of the qubit entangled with the
given peak. The displacement gates V̂ split each peak in two, creating an entangled state. The disentangling gates Ŵ then rotate the qubit
depending on the boson state to remove the entanglement. The preparation gates Û rotate the qubit before the displacement gates to
control the envelope of the resulting state.
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cavities19. This protocol, however, has three main drawbacks: first
it is probabilistic, with a success probability inversely proportional
to the mean photon number of the generated state. Second, the
output states have a box-shaped envelope rather than the
Gaussian envelope of equation (5). This means that the effective
squeezing parameters are suboptimal given the number of steps
required to prepare the states. Hence, excessively large states
need to be generated to obtain useful effective squeezing. Finally,
the protocol requires qubit measurements, which in realistic
systems will constitute a significant contribution to the total
preparation time during which the state decoheres.
The two first issues were solved by Terhal and Weigand in

ref. 31: by adding a single measurement-based feed-forward
displacement operation as well as suitable qubit rotations, the
protocol is made deterministic. Furthermore, by using a different
strength of the Rabi interactions, the envelope of the output state
is made nearly Gaussian, making the protocol much more
efficient. However, their protocol still relies on qubit measure-
ments, which limits the quality of the states that can be
realistically generated in the laboratory today.
Our protocol addresses all the above-mentioned problems by

adding additional short Rabi interactions of the form X̂σ̂y , which
effectively act as "deterministic measurements” by disentangling
the bosonic mode and the qubit and further enable us to shape
the envelope of the state. This interaction can be obtained from
the P̂σ̂x Hamiltonian by simple rotations of the qubit and the
bosonic mode, i.e., σ̂y ¼ e�iπ=4σ̂z σ̂xeiπ=4σ̂z and X̂ ¼ e�iπ=2n̂P̂eiπ=2n̂.
Similarly, both interaction types can be obtained from the more
commonly considered Rabi Hamiltonian X̂σ̂x . Fig. 1a shows a
circuit diagram of the protocol. It consists of N groups of
interactions, each consisting of three gates:

● a preparation gate, Ûk ¼ eiuk X̂σ̂y .
● a displacement gate, V̂k ¼ eivk P̂σ̂x .
● a disentangling gate, Ŵk ¼ eiwk X̂σ̂y .

These interactions can be interpreted as either conditional
displacements of the bosonic mode or conditional rotations of
the qubit, as illustrated in Fig. 1b. As the preparation and
disentangling gates are of the same type, i.e., X̂σ̂y , the preparation
gate of round k can be combined with the disentangling gate of
round k− 1 into a single gate. The interaction strengths of the
displacement and disentangling gates are given by

vk ¼ � ffiffiffi
π

p
2N�1; if k ¼ 1;ffiffiffi

π
p

2N�k if k>1
:

(
(8)

wk ¼
�
ffiffi
π

p
4 2�ðN�kÞ; if k;ffiffi

π
p
4 if k ¼ N

:

(
(9)

while the interaction strengths of the preparation gates, uk, are
found numerically (see Supplementary Note 2). In the first round,
the optimal preparation gate strength is u1= 0, i.e., Û1 ¼ 1 so Û1
is thus ignored in Fig. 1a. The input state is a squeezed vacuum
state Ŝr vacj i and the output state is an approximation to the state
1j iGKP, which can subsequently be transformed into an arbitrary
grid state, as will be discussed later. Note that all gates commute
with D̂ði ffiffiffiffiffiffi2π

p Þ ¼ ei2
ffiffi
π

p
X̂ . Therefore, ΔX is left invariant under the

protocol, i.e. the effective squeezing of the output state in the X-
quadrature is ΔX= e−r. The effect of the protocol is thus to create a
superposition of 2N squeezed states and thereby improve ΔP. The
effect of each gate is illustrated in Fig. 1c for the case of N= 3, but
the procedure can be extended for arbitrary N.

Infinitely squeezed input states
To illustrate the functionality of the gates, we first consider an
infinitely squeezed input state, X ¼ 0j i. For brevity, we will use the
notation X ¼ x0j i ¼ x0j ix in the following. The first operation is

the displacement gate V̂1, which creates an entangled boson-
qubit state:

V̂1 0j ix 0j i ¼ 1ffiffiffi
2

p 2N�1 ffiffiffi
π

p		 

x
þj i þ �2N�1 ffiffiffi

π
p		 


x
�j i

� �
; (10)

where ±j i ¼ ð 0j i± 1j iÞ= ffiffiffi
2

p
. The disentangling gate then rotates

the qubit to erase the entanglement:

Ŵ1V̂1 0j ix 0j i ¼ 1ffiffiffi
2

p 2N�1 ffiffiffi
π

p		 

x
� �2N�1 ffiffiffi

π
p		 


x

� �
1j i: (11)

We have thus created a superposition between two squeezed
states. The second round splits each of these peaks in two,
creating a total of four peaks:

ðŴ2V̂2Û2ÞðŴ1V̂1Þ 0j ix 0j i
¼ 1ffiffi

2
p ð � b1 �3 � 2N�2 ffiffiffi

π
p		 


x
þ a1 �2N�2 ffiffiffi

π
p		 


x

�a1 2N�2 ffiffiffi
π

p		 

x þ b1 3 � 2N�2 ffiffiffi

π
p		 


xÞ 1j i:
(12)

The coefficients are controlled by the preparation gate
and are given by a1 ¼ sinðπ=4þ 2N�1 ffiffiffi

π
p

u2Þ and
b1 ¼ cosðπ=4þ 2N�1 ffiffiffi

π
p

u2Þ. The third round creates eight peaks
and so on for a total of 2N peaks after N rounds. Thus, the resulting
state is

1ffiffiffi
2

p
X2N
k¼1

ck 2k � 2N � 1
� � ffiffiffi

π
p		 


x

 !
0j i; (13)

where the coefficients ck can be optimized by tuning the strengths
of the preparation gates (see Supplementary Note 2). For these
infinitely squeezed input states, we can obtain ΔP= {6.6, 11.6,
16.6, 20.6} dB, for N= {1, 2, 3, 4}, and ΔX=∞ dB as ΔX is
determined solely by the initial squeezing of the input state.

Finitely squeezed input states
For a finitely squeezed input state, the protocol outlined above is
not exact, and in particular, the disentangling operation is not
exact. Thus, after tracing out the qubit the resulting state is mixed,
but the effect on ΔP of the output state is very small. This can be
seen in Fig. 2a, which shows ΔP as a function of the input
squeezing. As ΔX= e−r is preserved during the protocol, high
effective squeezing can be obtained simultaneously in both
quadratures even with finitely squeezed input states.
Note that, as seen from Fig. 2, even with vacuum input a

significant amount of effective squeezing can be obtained. By
applying the protocol twice, once in each quadrature direction, we
can therefore generate grid-like states with high degrees of
effective squeezing in both quadratures. However, a careful
analysis (presented in Supplementary Note 3) shows that these
states are not well-defined pure states in the GKP basis, and
therefore, seemingly, unsuitable for GKP-based computations.
In Fig. 2b, (left) we present the Wigner functions of the

generated states for N= 2 and N= 3 with input squeezing of
11.5 dB and 16.6 dB respectively, in which case equal effective
squeezing in X and P is obtained. For comparison, we also plot the
Wigner functions of the corresponding target approximate grid
states given by equation (5) with the same amount of squeezing
(right plots in Fig. 2b). For N= 2, we observe very small differences
in the edges of the states, which are caused by the cutoff in the
number of squeezed states in the superposition of the generated
state. Despite these differences, the resulting fidelity is already
93.5%. For N= 3, the differences become much less pronounced
and the fidelity increases to 99.3%. Thus, very few rounds of
operations are required to make grid states with high effective
squeezing and near unity fidelity to the commonly considered
approximate grid states of equation (5).
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Preparation of arbitrary logical states
The state generated so far is the logical 1j i state of the square GKP
code. It is, however, important to be able to generate an arbitrary
logical grid state, i.e., of the form c0 0j iGKP þ c1 1j iGKP. In particular,
magic states, such as Hj i ¼ cosðπ=8Þ 0j iGKP þ sinðπ=8Þ 1j iGKP are
highly important as they serve as resources for performing non-
Clifford operations via gate teleportation40.
Furthermore, non-square rectangular grid states–which are

equivalent to squeezed square grid states–are also a useful resource,
as they remove the need for in-line squeezing using a newly
developed modified Glancy and Knill error recovery scheme41. In the
following, we thus discuss how to generate the arbitrary logical grid
state with both rectangular and hexagonal lattices.
We first note that rectangular lattices map onto square lattices

simply by scaling the quadratures, i.e., X̂ ! CX̂ and P̂ ! C�1P̂,
where C is the scale factor. These scalings can consequently be
straightforwardly implemented by appropriate scaling of the
interaction parameters, i.e., u→ Cu, v→ C−1v, and w→ Cw. To
generate hexagonal states we utilize the fact that the hexagonal
logical 1j i state is identical to the logical 1j i state of the

rectangular lattice with α ¼ i
ffiffiffiffiffiffiffiffi
4ffiffi
3

p π
q

and β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

p
π

p
. We can thus

also initialize the logical 1j i state of the hexagonal lattice.

The circuit diagram shown in Fig. 3a shows how to map the
logical 1j i state into arbitrary logic states using three Rabi
interactions û, v̂, and ŵ. The idea is to proceed with the scheme
for generating the logical 1j i state, but exploiting the linearity of

Fig. 2 Quality of states generated with finite squeezing. a
Effective squeezing in the P quadrature, ΔP, as a function of
squeezing in the X-quadrature of the input state after N rounds. ΔX is
invariant under the protocol. The dashed line is ΔP=ΔX= e−r. b
Left: Wigner functions of the generated states for N= 2 and N= 3
with 11.5 dB and 16.6 dB input squeezing respectively. The plotted
states are marked with (i) and (ii) in (a). Right: Wigner functions of
the target approximate GKP states given by equation (5).

Fig. 3 Preparation of arbitrary logical GKP state. a Circuit diagram
for preparing arbitrary logical GKP states. b Wigner functions for
various logical square grid states numerically generated using our
scheme with N= 3 and 16.6 dB input squeezing. cWigner functions for
various logical hexagonal grid states generated using N= 3 and 15 dB
input squeezing. The arrows in the top plot of (b) and (c) show the
directions and magnitude of the stabilizer displacements Ŝz and Ŝx .
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the protocol and the fact that the effect of the displacement gate
depends on the state of the qubit. Therefore, by initializing the
qubit in the state c0 �j i � c1 þj i, we effectively transfer the
coefficients of the qubit onto the grid state, leaving the qubit in
the 0j i state. The additional two, unconditional, displacement
operations ensure that the resulting state is on the lattice. The first
operation D̂ðα=4Þ can be effectively implemented during the
preparation protocol by inverting the sign of wN, whereas the
second unconditional operation D̂ðβ=4Þ simply shifts the lattice for
all states and can therefore be virtually implemented by a shift of
reference frame. The strength of the first conditional operation u0,

and the qubit-dependence ϕ of the preparation gate û depends
on the target logical state and are found by numerical
optimization (σ̂ϕ ¼ cosðϕÞσ̂x þ sinðϕÞσ̂y represents a generalized
Pauli operator in the x–z plane). The gate û is not crucial for the
scheme, but only improves the quality of the output states by
allowing a degree of control over the envelope of the output state.
The strength of the disentangling gate ŵ is w0 ¼ �π=ð ffiffiffi

2
p

ReðβÞÞ.
Figure 3b, c show the Wigner functions of various logical states

with square and hexagonal lattices, respectively, numerically
generated using this protocol, showing clear, well-defined grid
structures.

Fig. 4 Effects of physical noise sources. Effective squeezing in X and P for a square grid state as a function of noise rate for different noise
sources during the preparation protocol. γ is the noise rate and T is the time required to implement eiX̂ σ̂y and eiP̂σ̂x .
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Effects of noise
We now consider the effect of relevant noise sources on our
protocol. To include noise effects in our model, we consider each
gate as being implemented with a specific Hamiltonian for a set
duration, e.g., the gate eicX̂σ̂y is implemented via the Hamiltonian
Ĥ ¼ 1

T X̂σ̂y within the time t= cT. To simulate the added noise, we
use a master equation approach in which noise is included in the
Lindblad terms L̂:

dρ
dt

¼ � i
_
½Ĥ; ρ� þ L̂ρL̂

y � 1
2

L̂
y
L̂ρþ ρL̂

y
L̂

� �
; (14)

where ρ is the density matrix of the composite boson-qubit
system. We consider four common noise channels:

● Boson loss: L̂ ¼ ffiffiffi
γ

p
â

● Boson dephasing: L̂ ¼ ffiffiffi
γ

p ðâây þ âyâÞ
● Boson heating: L̂1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γcðnþ 1Þp

â; L̂2 ¼
ffiffiffiffiffiffiffi
γcn

p
ây

● Qubit dephasing: L̂ ¼ ffiffiffi
γ

p
σ̂z

● Qubit decay: L̂ ¼ ffiffiffi
γ

p ðσ̂x þ iσ̂yÞ=2
For the boson heating, Lindbladian n is the mean occupation
of the environment which couples to the system with rate γc.
Here we consider the case of large n, such thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γcðnþ 1Þp � ffiffiffiffiffiffiffi

γcn
p � γ, such that the heating rate of the system

is constant. The effect of these noise sources on the effective
squeezing of the output states is shown by the solid lines in Fig. 4.
For each noise source, we consider N= 2 and N= 3 rounds with
11.5 dB and 16.6 dB squeezed input states, respectively. It is clear
that our protocol is sensitive to all types of noise. By increasing N,
we also increase the implementation time of the protocol, thus
increasing the effect of noise. Therefore, there exists an optimal
number of rounds that depends on the magnitude and type of
noise. For example, for large noise contributions, two rounds (N=
2) of the scheme produces states with higher effective squeezing
degrees than three rounds (N= 3), and this is simply a result of the
extended time over which noise can accumulate. This clearly
illustrates the importance of a fast preparation protocol.
Even though the quality of the generated states is limited by

qubit and bosonic errors, the effect of qubit errors can be
significantly suppressed by adding a few qubit measurements,
after each of the disentangling gates Ŵ . In the noiseless case, the
qubit should be in a known state, disentangled from the bosonic
mode at these points, as illustrated in the rightmost windows of
Fig. 1c. Therefore, if we measure the qubit in a different state, we
know that an error has occurred, and the realization should be
discarded and the protocol restarted. The result of such a
postselection strategy is shown by the dashed lines in Fig. 4,
demonstrating that we can improve the effective squeezing of the
output state by several dB. Bosonic errors, on the other hand, are
largely unaffected by the postselection strategy. Thus, when these
errors are dominating the only way to improve the output states is
to increase the interaction speed or reduce the rate of the noise.
For the calculation of Fig. 4, we assumed instantaneous
measurements to isolate the effect of qubit projections. In real
systems the measurements will take time, during which noise
accumulates thus resulting in lower effective squeezing para-
meters. However, compared with the measurement-based
schemes, e.g., phase-estimation31, we require exponentially fewer
measurements and therefore still attain a significant speed-up.
Using realistic noise parameters and operation speeds from

recent experiments with trapped ions18 and microwave cavities19,
we find that grid states with effective squeezing parameters above
10 dB in both quadratures can be realistically generated in both
platforms using input states squeezed by 11 dB (see Supplemen-
tary Note 4). Squeezing levels of 12.6 dB in trapped ions42 and
10 dB in microwave cavities43 have been experimentally gener-
ated. The method used for generating squeezed states in trapped
ions has been experimentally demonstrated to be compatible
with further manipulation using Rabi gates18, whereas the method

used in the microwave regime requires specialized structures,
which could compromise the quality of subsequent gates.
However, it has recently been shown that Rabi gates can be used
to deterministically generate the required squeezed vacuum
states starting from vacuum44. Thus the protocol presented in this
work can readily be implemented in any qubit-oscillator system
where Rabi interactions can be efficiently implemented.

DISCUSSION
In conclusion, we have presented a measurement-free protocol to
deterministically prepare GKP states using only few interactions of
the type X̂σ̂y and P̂σ̂x , which are readily available in trapped-ion
and microwave-cavity platforms. Our protocol requires no
measurements, resulting in a speed-up over previous methods,
which enables the generation of grid states with high effective
squeezing levels. Furthermore, by adding a few measurements, we
can partly detect qubit errors, thus making the protocol robust
against qubit noise. Although the exact requirements for general
CV states (i.e., states not exactly on the form of Eq. (5)) to enable
fault-tolerance with the GKP encoding are yet unknown, it seems
reasonable that states generated using this protocol suffice, due
to their high fidelity with the commonly considered approximate
grid states of Eq. (5).
Finally, our protocol exemplifies the versatility of sequential

applications of non-commuting Rabi Hamiltonians, e.g., P̂σ̂x and
X̂σ̂y , demonstrating that highly non-Gaussian states can be
deterministically engineered with only a few of these interactions.
The full power of such repeated combination of Rabi interactions
still remains relatively unexplored, but we expect that many other
interesting applications are possible using this technique.
During the publication of this manuscript, the protocol was

experimentally implemented in a trapped-ion system45.
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