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Optimizing a polynomial function on a quantum processor
Keren Li 1,2,9, Shijie Wei1,3,9, Pan Gao1, Feihao Zhang1, Zengrong Zhou1, Tao Xin4, Xiaoting Wang5✉, Patrick Rebentrost6✉ and
Guilu Long 1,3,7,8✉

The gradient descent method is central to numerical optimization and is the key ingredient in many machine learning algorithms. It
promises to find a local minimum of a function by iteratively moving along the direction of the steepest descent. Since for high-
dimensional problems the required computational resources can be prohibitive, it is desirable to investigate quantum versions of
the gradient descent, such as the recently proposed (Rebentrost et al.1). Here, we develop this protocol and implement it on a
quantum processor with limited resources. A prototypical experiment is shown with a four-qubit nuclear magnetic resonance
quantum processor, which demonstrates the iterative optimization process. Experimentally, the final point converged to the local
minimum with a fidelity >94%, quantified via full-state tomography. Moreover, our method can be employed to a multidimensional
scaling problem, showing the potential to outperform its classical counterparts. Considering the ongoing efforts in quantum
information and data science, our work may provide a faster approach to solving high-dimensional optimization problems and a
subroutine for future practical quantum computers.
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INTRODUCTION
A basic situation in optimization is the minimization or maximiza-
tion of a polynomial subject to some constraints. As polynomials
are in general non-convex and optimization is NP-hard, these
problems cannot be solved accurately with efficient resource
consumption2. As a special case for approximation algorithms,
homogeneous polynomial optimization has wide applications, for
examples, signal processing, magnetic resonance imaging3, data
training4, approximation theory5, and material science6. These
scientific and technological problems are especially demanding in
the present-day era of big data7. The gradient algorithm, serving
as one of the most fundamental solutions to non-convex
optimization problems, lies at the heart of many machine learning
methods, such as regression, support vector machines, and deep
neural networks8–12. However, when dealing with large data sets,
the gradient algorithm consumes tremendous resources and often
pushes the current computational resources to their limits.
Quantum computing promises ultrafast computational capabil-

ities by information processing via the laws of quantum
mechanics13–15. With the intrinsic advantages in executing certain
matrix multiplication operations, quantum algorithms are pro-
posed to enhance data analysis techniques under some circum-
stances. For example, phase estimation, quantum principal
component analysis, and the solver for linear system of equations
can provide quantum advantages if the state preparation and
readout procedure can be efficiently realized13,16. As for the
optimization with gradients, which is the central issue in this
article, several works focusing on developing quantum ver-
sions1,17–21 have been done.
Optimization, i.e., maximization or minimization, of a cost

function can be attempted by the prototypical gradient algorithm
iteratively. Let the cost function be a map f : RN ! R. Set an

initial guess xð0Þ 2 RN , then move it along the direction of the
gradient

xðtþ1Þ ¼ xðtÞ ± η ∇f ðxðtÞÞ; (1)

where x ¼ ðx1; ¼ ; xNÞT 2 RN and η is the learning rate. As the
first experimental endeavor in this field and for the wide academic
and industrial applications, in this work, an order-2p homo-
geneous polynomial optimization with the spherical constraintsP

ijjx2i jj ¼ 1 is investigated, whose cost function is expressed as

f ðxÞ ¼
XN

i1;¼ ;i2p¼1

ai1 ¼ i2p xi1 ¼ xi2p : (2)

The coefficients ai1 ¼ i2p 2 R can be reshaped to a Np × Np matrix
A. And f(x) can be rewritten as 1

2 x
T � :::� xTAx� :::� x.

Simultaneously, A is the linear summation of tensor product of
N × N unitary matrix Aα

i , which represents as
PK

α¼1 A
α
1 � :::� Aα

p . K
is the number of decomposition terms required to specify A and p
is half the order of the cost function. Therefore, in light of the
previous work, the gradient at x can be mapped into a matrix
summation1

∇f ðxÞ ¼
XK
α¼1

Xp
j¼1

Yp
i¼1

i≠j

xTAα
i x

0
BBBBB@

1
CCCCCAAα

j x: (3)

With the amplitude encoding method, which encodes x as
xj i ¼PN�1

i¼0 xi ij i, the iterative equation Eq. (1) is interpreted as an
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evolution of xj i with an operation of D,

xðtþ1Þ�� � ¼ xðtÞ
�� �

±D xðtÞ
�� �

;

D ¼ PK
α¼1

Pp
j¼1

Qp
i¼1;i≠j

xðtÞ
� ��Aα

i xðtÞ
�� � !

Aα
j

; (4)

where D is a parameter-dependent gradient operator, which in
general is non-unitary. Note that two methods to decompose A
are shown in Supplementary Note I(D) (theory and experiment)
and the subscripts (t) will be omitted in the remainder.
In this work, we develop the gradient algorithm and propose an

experimental protocol to perform the gradient descent iterations,
with a prototypical experiment to demonstrate the process to
optimize polynomials on a quantum simulator. The gradient
algorithm in ref. 1 involves phase estimation, which requires
substantial circuit depth for currently available circuits, giving
logarithmic error and polynomial gate scaling. Hence, the
algorithm is difficult to implement with current techniques on a
quantum platform. Instead of phase estimation, our method uses
the linear combination of unitaries to realize the gradient descent
iterations. It provides a gate-based circuit only comprising of
standard quantum gates, which is experimental friendly and
implementable in current quantum techniques. Our protocol
needs two copies of a quantum state xj i to produce the next
quantum state at each iterative step, instead of multiple copies
which is linearly depending on the order of objective function in
the previous algorithm1. The product of decomposition terms K
and the order p is an important indicator to determine the
efficiency of our protocol. The protocol can be especially beneficial
in cases when there is an explicit decomposition of A with
comparably small Kp and Aα

i is Pauli product matrix, calculating
the gradient with the OðKp ´ log ðNÞÞ depth circuits. Moreover, the
experiment benefits from the protocol as only two copies are
required for optimization of each iteration. Therefore, given the
unrivaled degree of nuclear magnetic resonance (NMR) quantum
control techniques22,23, this homogeneous polynomial optimiza-
tion is conducted with a four-qubit system encoded in a molecule
of crotonic acid and a quantum state in the vicinity of the local
minimum is iteratively obtained with high fidelity. Finally, multi-
dimensional scaling (MDS) problems are introduced as a potential
application of this protocol.

RESULTS
Experimental protocol
For the convenience to implement the evolution of the gradient
operation, D (shown in Eq. (4)) is rewritten as

D ¼
XK
α¼1

Xp
j¼1

Mα
Aα
j

bαj
¼
XKp�1

m¼0

cmAm; (5)

where Am and Aα
j are the same if m= p(α− 1)+ j− 1. In addition,

bαj ¼ xh jAα
j xj i and Mα ¼Qp

i¼1 b
α
i .

As shown in Fig. 1, to implement the quantum gradient
algorithm, two specified circuits are involved. Parameters such as
cm(m= 0...Kp− 1) can be obtained by the parameter circuits in Fig.
1a. This circuit evolves the system

0j is 0j iT1d xj i ! 1ffiffiffi
2

p 0j is 0j iT1d xj i þ
X2T1�1

m¼0

1ffiffiffiffiffiffiffi
2T1

p 1j is mj idAm xj i
 !

;

(6)

where T1 is the integer that satisfies 2T1 ¼ Kp. When the ancillary
system d is in state mj i, where m= p(α− 1)+ j− 1, bαj can be
obtained on the ancillary system s with σx basis. Thus M

α (α= 1...
K), as well as cm can be calculated once the m traverses [0, Kp− 1].
The iteration circuit, which is shown in Fig. 1b, is to generate the

iterative state with D. The ancillary system s is the first ancillary

system which is for the linear combination of two terms in Eq. (4),
and d is second one which is for the implementing D with linear
combination of operators. In our protocol, the first thing is to
involve the minus signs in cm in the unitary operator Am to make
cm positive. After dealing with the minus signs in Eq. (4), the
iterative equation is rewritten as

x0j i ¼ xj i þ
XKp�1

m¼0

cmAm xj i
 !

; (7)

where x0j i is the state for the next step. The entire iteration circuit
to x0j i can be implemented via following four steps:
Step 1: for the work register, the amplitude encoding state xj i

should be efficiently prepared. In general, for the first iteration,
some easy access states can be our initial states, such as tensor
product states. For the following iterations, the output of the last
iteration can generate what we want. Hence in this situation, time
complexity can be ignored. In the case of preparing a particular
log ðNÞ-qubit input xj i ¼Pkck kj i, we employ the amplitude
encoding method in ref. 24,25. It shows that if ck and Pk= ∑k∣ck∣2
can be efficiently calculated by a classical algorithm, constructing
this particular state takes O½poly log ðNÞð � steps. Alternatively, we
can resort to quantum random (RAM) access memory26–28 or
Hamiltonian simulation method29. Quantum RAM (qRAM) is an
efficient method to do state preparation, whose complexity is
Oðlog ðNÞÞ after the quantum memory cell was established.
As for the entire system, with the ancillary register s, d being in a

specific superposition state by V0 and controlled-V, it is driven into

ψ1j i ¼ 1ffiffiffi
β

p 0j is 0j iT1d þ
XKp�1

m¼0

ffiffiffiffiffiffi
cm

p
1j is mj id

 !
xj i; (8)

with β= 1+ ∑cm and unitary matrixes V, V0

V ¼

ffiffiffiffiffi
c0

p
v0;1 � � � v0;Kp�1

..

. ..
. . .

. ..
.

ffiffiffiffiffiffiffiffiffiffiffi
cKp�1

p
vKp�1;1 � � � vKp�1;Kp�1

0
BB@

1
CCA; (9)

V0 ¼
1ffiffi
β

p
ffiffiffiffiffiffiffi
β�1

p ffiffi
β

pffiffiffiffiffiffiffi
β�1

p ffiffi
β

p � 1ffiffi
β

p

0
BB@

1
CCA: (10)

Fig. 1 Circuits for implementing the quantum gradient algorithm.
xj i denotes the input state of the work system, and ancillary systems
are T1+ 1 qubits in the 0j i 0j i�T1 state, where T1 ¼ log 2ðKpÞ. The
squares represent unitary operations and the circles represent the
state of the controlling qubit. a Parameter circuit. bαj can be
obtained with 〈σx〉 on register s, when register d is on
m ¼ pðα� 1Þ þ jj i. b Iteration circuit includes three steps: initializa-
tion, D application, and combination.
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Remarkably, ci should be rescaled with ci=
ffiffiffiffiffiffiffiffiffiffiffi
β� 1

p
to the unitary

condition. While all other elements {V0,1, V0,2, ⋯, VKp−1,Kp−1} are
arbitrary as long as V is unitary.
Step 2: to apply the gradient operation, D, on the system, the

methods of linear combination of the unitary operations are
employed30–36. A0, A1...AKp, tensor decompositions of A, are
applied to the work system conditionally on the register d which is
on 0j i, 1j i... Kp� 1j i, correspondingly. In this way, the work system
would feel an effective operation as

PKp
i¼0 Ai when registers s, d

are delicately decoupled. However, A0 would be applied to the
work system in both 0j is 0j id and 1j is 0j id subspaces. Thus, an
additional Ay

0 is required for the compensation and the final state
is

ψ2j i ¼ 1ffiffiffi
β

p 0j is 0j iT1d xj i þ
XKp�1

m¼0

ffiffiffiffiffiffi
cm

p
1j is mj idAm xj i

 !
: (11)

Step 3: combination is implemented to combine the informa-
tion in different subspaces of the ancillary system and generate
the formalized D on the work space. Controlled-W and W0, which
are the inverse operations of V and V0, are applied in this step,
which produces

ψ3j i ¼ 1
β 0j is 0j iT1d ð xj i þ PKp�1

m¼0
cmAm xj iÞ

þ 1j is 0j iT1d ð
ffiffiffiffiffiffiffi
β�1

p
β xj i � 1

β
ffiffiffiffiffiffiffi
β�1

p PKp�1

m¼0
cmAm xj iÞ

þð
ffiffiffiffiffiffiffi
β�1

p
β 0j is � 1

β 1j isÞ
PKp�1

l¼1
lj id
PKp�1

m¼0
vm;l

ffiffiffiffiffiffi
cm

p
Am xj i

: (12)

The last two terms are orthogonal to the first term, and can be
regarded as rubbish terms. When the ancillary system is in state
0j is 0j iT1d , the iterative state, x0j i(shown in Eq. (7)) is obtained from
the work system.
Finally, the result state x0j i could either be the answer state,

which satisfies the previous setup convergence condition or be
the next input for both parameter and iteration circuits. More
details on the protocol can be found in Supplementary Note I(A)
and (B) (theory and experiment).
Algorithm complexity is concerned with the computing

resources required to process a quantum information task.
Particularly, the gate complexity quantifies the amount of the
basic quantum operations taken to run as a function of size of
input. Similarly, the memory complexity quantifies the amount of
space or memory taken.
Kp is an important indicator to characterize the complexity of

the protocol, where K is the number of decomposition terms
required to specify A and p is half the order of the cost function. It
determines both the size of the ancillary system and the depth of
both parameter and iteration circuits.
For the size of the circuits which does not include state

preparation, OðT1 þ log ðNÞÞ qubits are required for both para-
meter and iteration circuits, where T1 is the integer that satisfies
2T1 ¼ Kp. And two copies of the iterative state are needed for each

iteration. If the number of iterations is r, the total memory
consumption is Oð2r log ðNÞ þ 2T1Þ.
For the depth of the circuits which already has the encoded

states, OðKpÞ conditional-Ams are required. In addition, the gates
complexity is provided under the assumption of Pauli product
form of Am. As a log ðKpÞ-qubit-controlled gate can be imple-
mented with Oðlog ðKpÞ2 ´ log ðNÞÞ basic quantum gates, which is
included in Supplementary Note I(C) (theory and experiment)37,
OðKp ´ log ðKpÞ2 ´ log ðNÞ ´ rÞ basic quantum gates are required
for both circuits for r iterations.
As for the the state preparation step, the amplitude encoding

method would consume Oðlog ðNÞÞ more qubit with
Oðpoly log ðNÞÞ steps. If the qRAM is adopted in the state
preparation, the spatial cost is not just Oðlog ðNÞÞ qubits, one
also needs OðNÞ qutrits to establish quantum memory cell.
The protocol relies on the tensor decomposition of A, which is in

general hard, especially as Kp grows. This protocol is theoretically
efficient when there is an explicit decomposition of A with a
limited Kp. However, there are some benefits when adopting this
experimental protocol. The experiments are comparably easier
since only two copies are required for each iteration optimization.
Success probability, for the parameter circuit, the probability of

obtaining the required bαj is related to the size of the second
ancillary resister, T1, which is proportional to 1/Kp. For the iteration
circuit, the ancillary register finally stay on 0j is 0j iT1d and the output
is determined to be the iterative state with the probability
Ps ¼k xðtÞ

�� �
±D xðtÞ
�� �k2=ðPKp�1

m¼0 cm þ 1Þ2.

Apparatus
All experiments were carried out on a Bruker DRX 400MHz NMR
spectrometer at room temperature. As it is shown in Fig. 2a, a
four-qubit system is required, represented by the liquid 13C-
labeled crotonic acid sample dissolved in d-chloroform. Four
carbon-13 nuclei spins (13C) are denoted as four qubits, C1 as the
register s, C2,3 as the register d, and C4 being the work system. The
free evolution of this four-qubit system is dominated by the
internal Hamiltonian,

Hint ¼
X4
j¼1

πνjσ
j
z þ

X4
j < k;¼1

π

2
Jjkσ

j
zσ

k
z ; (13)

where νj and Jjk are the resonance frequency of the jth spin, and
the J-coupling strength between spins j and k, respectively. Values
of all parameters can be found in the the experimental
Hamiltonian of Supplementary Note II(A) (theory and experiment).
In order to master the evolution of the system, the transverse
radio frequency (r.f.) pulses are introduced as the control field,

Hr:f: ¼ � 1
2
ω1

X4
i¼1

ðcosðωr:f:t þ ϕÞσi
x þ sinðωr:f:t þ ϕÞσiyÞ: (14)

By tuning the parameters in r.f. field (Eq. (14)), such as intensity ω1,
phase ϕ, and frequency ωr.f. and duration, the four-qubit universal
quantum gates are theoretically achievable with the combination
of internal system (Eq. (13))38,39.

Fig. 2 Molecule and quantum circuit. a Molecule structure of four-qubit sample : crotonic acid. b Quantum circuit for an iteration to realize
gradient descent algorithm. xj i denotes the initial state of work system, and ancillary system are T1+ 1 qubits in the 0j i 0j iT1 state, where T1= 2.
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Experimental implementation
A bivariate quartic polynomial (Eq. (15)), serving as the cost
function, is shown to be minimized by our experimental protocol
iteratively. The problem is depicted as

min f ðxÞ ¼ 1
2
xT � xTAx� x: (15)

with ∣x∣= 1, where x ¼ ðx1; x2ÞT is a 2-d real vector. Though the
number of independent variable is 1 for the normalization
constrain, as the growth of the size of problem, a surge of
information processing would be included. A, the coefficient
matrix, has another representation by tensor products A=−σI⊗
σx+ σx⊗ σz, where σi(i= I, x, y, z) denotes the Pauli matrices.
With the amplitude encoding method(x ! xj i), the experi-

mental demonstration for updating x0j i consists of both acquiring
parameters and proceeding iterations. The iteration circuit, from
the 0j is 00j id xj i to the output 0j is 00j id x0j i, is implemented with
three steps, to ψ1j i, ψ2j i, ψ3j i and measurement, sequentially. As
for acquiring parameters, for the hermitian of Aα

j , cm can be
obtained as a measurement of Aα

j on xj i xh j, instead of the
parameter circuits. For accuracy and limitation of the molecule
sample, this conversion is adopted and we concentrate on the
iteration part, where T1= 2, Kp= 4.
In the experiment, two sets of experiment s1 and s2 are

conducted, with different initial guess, xs10 (−0.38, 0.92) and xs20
(0.86, 0.50). The realization of the iteration circuit is depicted as
follows:
Initialization—at room temperature, the four-qubit quantum

system is in the thermal equilibrium state. This thermal
equilibrium system can be driven to a pseudo-pure state (PPS)
with spatial average method40. Then, 0j is 00j id xj i was prepared
from this PPS, with simply a single-qubit rotation on C4, where x is
either initial guess xs10 , x

s2
0 or the output of last iteration. In this

step, preparation of the PPS and individual control operations are
the mature technology in NMR quantum control and can be found
in Supplementary Note II(B) (theory and experiment).
Iteration circuit—the circuit consists of three steps and thus we

pack our control pulses into three groups. They are shown in Fig.
2b: (1) a combination of single-qubit rotation V0 and control-V
gate realizes the transformation to ψ1j i. (2) Conditional operations
of decompositions of A implement the ψ2j i. (3) W0 and control-W
achieve the disentanglement to ψ3j i. Remarkably, parameters cm
in local operations, such as V and W are obtained by measuring
the iterative state xj i. Gradient ascent pulse engineering was
employed to generate three packages of optimized pulses to
implement the operations listed above, with the simulated fidelity
all over 99.9% and the time-length being 20, 30, and 20ms,
respectively41. Hence, in experiment, we got ρ1, ρ2, and ρ3
correspondingly.
Measurement—since only the state in subspace of 0j is 00j id is

necessary for obtaining the output, x0j i, a full tomography in such
subspace was employed. All readout pulses are 0.9 ms with 99.8%
simulated fidelity. For the sake of experimental errors, mixed
states were led in our results, however, the two-dimension vector
x0j i should be a pure real state. Hence, a purification step was
added to search a closest pure state after this measurement and it
is realized with the method of maximum likelihood42. As the
consequence of the output x0j i, ϕs1

i

�� �
, and ϕs2

i

�� �
(i= 1...4) were

found to be the closest to our experimental density matrices for
two different cases s1 and s2.
According to preset threshold, the output x0j i can be labeled as

the updated input xj i to run the next iterative circuit, or be the
final result and the iteration thus terminates.
The results are shown in Fig. 3. For the cases s1 and s2, we could

see the trend of convergence at xopt (0.50, 0.86) after four times
iterations with the initial points, xs10 and xs20 . ϕs1

i

�� �
and ϕs2

i

�� �
(i=

1...4) are outputs of iteration circuit at ith iteration, which are
plotted in the sub-figures (a) and (b). For comparison, theoretical

simulation is provided, whose inputs were chosen as the output of
the last experimental iteration.
In addition, by substituting x1= cosðθÞ and x2 ¼ sinðθÞ, the cost

function is rewritten as f ðxÞ ¼ �2sin3θ cos θ. Thus the problem is
reduced to a one-dimensional unconstrained optimization pro-
blem, where the extreme points lie at θ= 0, π/3. Among them, θ
= 0 is unstable, while π/3 is the stable local minimum. To show
this results explicitly, both iteration outputs and the value of the
cost function are shown in Fig. 3c. In this situation, the initial
guesses are cosðθÞ ¼ �0:38 (s1 and colored red) and cosðθÞ ¼
�0:86 (s2 and colored blue), respectively. As with the growth of
the number of the iteration, the value of the cost function gets
lower and lower, until slipping into the neighbor of the local
minimum.
As another aspect to show this convergence, in Fig. 3d, relations

between the number of iterations and overlaps were given. The
value of vertical axis was defined as the overlaps between the
optimal state and the output state after each iteration: jhϕoptjϕ j

i ij
(i= 0, 1...4. j= s1, s2). The horizontal axis is the number of
iterations. It shows that the overlaps converges to 1 weather the
initial guess is chosen as xs10 or xs20 . For more information of the
different seeds and investigation of unstable point, numerical
simulations were carried out and some results are shown in
Supplementary Note III (theory and experiment).
Furthermore, to check the performance of the circuits

experimentally implemented, a four-qubit tomography was
implemented at two points, after PPS preparation and after the
iteration circuit. Thus four-qubit states ρpps and ρ3 were obtained.
For the PPS, we got a fidelity ~99.01%, and for those four-qubit
states ρ3, they have an average of 94% fidelity. Detailed
information is shown in the experimental part, Supplementary
Note II(C) and (D) (theory and experiment).

Application
For the further applications, MDS is a technique, providing a visual
representation of the pattern of proximities in a dataset. It is a
common method of statistical analysis in sociology, quantitative
psychology, marketing, and so on. We apply our method to
quantize an algorithm for fitting the simplest of MDS models in
major applications in the method.
Given a matrix A= δij, which is nonnegative symmetric with

zero diagonal. A set of number δij is the data collected in a
classical MDS problem, and δij is the dissimilarity between objects i
and j. Representing n objects as n points via ignoring the objects
size, the dissimilarity of objects i and j is approximately equal to
the distance between points i and j. The goal is to find n points in
m dimensions, denoted by x1, x2, ⋅, xn to form a configuration with
coordinates in an n ×m matrix X.
When m= 3, it is reduced to a molecular conformation

problem43, which plays an important role in chemical and
biological fields. Let dij(X) denotes the Euclidean distances
between the points xi and xj. It follows that

d2ijðXÞ ¼ ðxi � xjÞT ðxi � xjÞ: (16)

We minimize the loss function, defined as

f ðXÞ ¼ 1=2
X
i

X
j

wijðdijðXÞ � δijÞ2; (17)

where W=wij is a symmetric weight matrix that can be used to
code various Supplementary Information. The purpose of this
algorithm is to find the most suitable information visualization
configuration. Now, we map it to a quantum version. First, the loss
function is rewritten as44

f ðXÞ ¼ 1=2
X
i

X
j

wijδ
2
ij � 2gðXÞ þ h2ðXÞ; (18)
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where

gðXÞ ¼ 1=2
X
i

X
j

wijδijdijðXÞ; (19)

and

h2ðXÞ ¼ 1=2
X
i

X
j

wijd
2
ijðXÞ: (20)

Thus, we only need to minimize f 0ðXÞ ¼ �2gðXÞ þ h2ðXÞ. g(X) and
h2(X) can be further expressed as a trace of some matrixes
muiltiproduction. We have gðXÞ ¼ TrðXTBðXÞXÞ with B(X)= 1/
2∑i∑jwijAijkij(X), where

kijðXÞ ¼ 1=dijðXÞ; dijðXÞ≠0
kijðXÞ ¼ 0; otherwise:

(21)

Similarly, hðXÞ2 ¼ TrðXTCðXÞXÞ with C(X)= 1/2∑i∑jwijAij. Then, we
have

f 0ðXÞ ¼ TrðXTDðXÞXÞ; (22)

where D(X)= C(X)− 2B(X). It should be noticed that here X is a
n ×m matrix. In order to represent X as quantum states, we map it
to a sum of m column vectors Xv of X. Now, we can apply our
quantum gradient algorithm to minimize the objective function

f 0ðXÞ ¼
X
m

TrðXT
vDðXÞXvÞ: (23)

In this special case, the function order p= 1 and D(x) is a
symmetric matrix which is likely to be decomposed efficiently. It
potentially yields an exponential speedup over the classical
algorithm in MDS problems.
This protocol also provides potential applications in quantum

control technology. For example, the cost function could be
reduced to a quadratic optimization problem in the form of
f ðxÞ ¼ xh jA xj i. If the coefficient matrix A is restricted to a density
matrix, the objective function represents the overlap between A
and xj i xh j. Thus, we can product a state xj i closely enough to a
density matrix A by finding the maximum of f(x). It can be used as
a quantum method to prepare the specific state.

Fig. 3 Theoretical simulation and experimental results. a, b The output x0j i in the iteration process with their orthogonal basis, i.e., ϕs1
i

�� �
and

ϕs2
i

�� �
(i= 1...4). Green triangles are theoretical simulation results, while red squares are experimental measured outputs. They both begin with

a same initial point. In addition, the moving directions are also labeled by the dashed arrows colored green or red. c The 1-d depiction.
Beginning with two initial points, for s1 (colored red) and s2 (colored blue), the iteration outputs become lower and lower, until slipping into
the neighbor of the local minimum. The dashed arrows show the moving direction for each iteration and in the zoom-in figure, it shows they
gradually converging to the optimal minimum point were x1 (or cos θ)= 0.5. d The relations between the number of iterations and the
overlaps between the iterative states and the target.
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DISCUSSION
In this article, an experiment-friendly protocol is proposed to
implement the gradient algorithm. The protocol provides a
quantum circuit only comprised of standard quantum gates,
hence it can in principle be realized in current technologies. The
experimental implementation required only two copies of
quantum states for the parameter and iteration circuits. Moreover,
if there is an explicit decomposition of A in terms of Pauli product
matrix, OðKpÞ ´ log ðNÞ depth circuits (OðKp ´ log ðKpÞ2 ´ log ðNÞÞ
basic quantum gates) are enough to calculate the gradient within
with OðT1 þ log ðNÞÞ qubits.
With a four-qubit NMR quantum system, we demonstrated an

optimization of a homogeneous polynomial optimization and
iteratively obtained the vicinity of the local minimum. The result is
iteratively implemented with the iteration circuit in Fig. 2, while
the parameters cm are measured with iterative states instead of
the parameter circuit. With the initial guess either xs10 or xs20 , the
demonstration shows the feasibility in near-future quantum
devices for this shallow circuit. For the advanced control
techniques of spin systems22,45, they are applied as the first trail
to demonstrate the effectiveness of the more and more protocols.
In addition, MDS problems are introduced as a potential
application of this experimental protocol.
Polynomials, subject to some constraints, are basic models in

the area of optimization. Furthermore, the gradient algorithm is
considered as one of the most fundamental solutions to those
non-convex optimization problems. Our protocol, which gives
another implementation of the gradient algorithm using quantum
mechanics, is applicable to homogeneous polynomials optimiza-
tion with spherical constrains. When there is a simple and explicit
decomposition of coefficients matrix, the protocol could provide
an speedup with poly-logarithmic operations of the size of
problem to calculate the gradient, which has potential to be used
in near-future quantum machine learning. Our approach could be
exceptionally useful for high-dimensional optimization problems,
and the gate-based circuit makes it readily transferable to other
systems, such as superconducting circuits and trapped ion
quantum system, being an subroutine for future practical large-
scale quantum computers.
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