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Twin-field (TF) quantum key distribution (QKD) is highly attractive because it can beat the fundamental limit of secret key rate for
point-to-point QKD without quantum repeaters. Many theoretical and experimental studies have shown the superiority of TFQKD in
long-distance communication. All previous experimental implementations of TFQKD have been done over optical channels with
symmetric losses. But in reality, especially in a network setting, the distances between users and the middle node could be very
different. In this paper, we perform a proof-of-principle experimental demonstration of TFQKD over optical channels with
asymmetric losses. We compare two compensation strategies, that are (1) applying asymmetric signal intensities and (2) adding
extra losses, and verify that strategy (1) provides much better key rate. Moreover, the higher the loss, the more key rate
enhancement it can achieve. By applying asymmetric signal intensities, TFQKD with asymmetric channel losses not only surpasses
the fundamental limit of key rate of point-to-point QKD for 50 dB overall loss, but also has key rate as high as 2.918 x 10~ for 56 dB
overall loss. Whereas no keys are obtained with strategy (2) for 56 dB loss. The increased key rate and enlarged distance coverage of
TFQKD with asymmetric channel losses guarantee its superiority in long-distance quantum networks.
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INTRODUCTION

Quantum key distribution (QKD) enables remote users to share
secret keys with information-theoretic security'?. However, due
to the unavoidable losses of optical channels, there exists a
fundamental limit on the achievable secret key rate of long-
distance QKD. Without using quantum repeaters, the upper bound
(also called repeaterless bound in this paper) of the secret key rate
of QKD scales linearly with the channel transmittance n*“.
Remarkably, a new type of QKD, called twin-field (TF) QKD, has
been proposed® and can practically overcome the repeaterless
bound. In TFQKD, like in the measurement-device-independent
(MDI) QKD®, two users (Alice and Bob) send two coherent states to
an un-trusted intermediate node, i.e. Charlie, who performs the
measurement. Because TFQKD employs single-photon interfer-
ence, rather than two-photon interference in MDIQKD, the secret
key rate of TFQKD scales as /i, allowing for unprecedented
distance coverage. Plenty of variations and security analysis of
TFQKD’™'? have been studied, followed by multiple experimental
demonstrations'>™'®. More recently, TFQKD has been successfully
implemented over more than 500km fibers'’'®. It has been
shown that TFQKD is one of the most promising and practical
solutions to long-distance QKD.

However, all the above-mentioned studies only consider TFQKD
over optical channels with symmetric losses between each of the
users and intermediate node, and let Alice and Bob use identical
sets of operations in preparing their signals. However, this
assumption on channel symmetry is seldom true in reality. TFQKD
over asymmetric channels is important not only for practical
point-to-point implementations, but also in a network setting
where the optical distances between users and the middle node

can be significantly different. For instance, as shown in Fig. 1, if we
consider a Sagnac-loop set-up, multiple users can be placed on
the same loop, where they share a common relay, to implement a
TFQKD network. However, the users on the loop naturally will have
different distances to the relay, thus making asymmetric channels
a major characteristic for such a TFQKD network set-up. Similar
problems also exist for star-shaped networks where users are
placed arbitrary distances away from a central relay.

Unfortunately, because TFQKD depends on a good visibility of
single-photon interference, it requires the two channels to have
similar levels of loss. This means that current implementations of
TFQKD will have sub-optimal or even zero key rate if channels are
asymmetric. One intuitive solution is to deliberately add fibers/
losses to compensate for the shorter distance'®. But this solution is
not the optimal strategy, because it would increase signal loss and
thus lower the secret key rate.

Several recent papers have theoretically studied TFQKD with
asymmetric channels®® 2%, Instead of physically adding fibers/
losses, refs. 2'™2* study the use of asymmetric intensities between
Alice and Bob to compensate for channel asymmetry and obtain
optimal secret key rate. The limitation of symmetric optical
channels has been first observed and investigated for MDIQKD,
whose visibility also requires symmetry between optical chan-
nels® %’ For TFQKD, refs. 2'** are based on an asymmetric-
intensity version of the “Sending-or-not-Sending (SNS)” Protocol®,
while refs. 22* are based on the protocol proposed in ref. '" by
Curty, Azuma, Lo (for simplicity, let us call the protocol “CAL19”
protocol here).

In this paper, we have implemented the protocol in ref. *. The
key point of the protocol is that Alice and Bob can adjust their
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Fig. 1 Illustration of a Sagnac-loop-based twin-field quantum key
distribution (TFQKD) network. Multiple users can be placed on the
same loop to communicate via a single relay. As can be seen here,
arbitrary pairs of users can have very different distances (channel
losses) from the relay, which necessitate a TFQKD protocol that
maintains good performance even in the presence of channel
asymmetry. In this work, we present the experimental implementa-
tion of an asymmetric-intensity TFQKD protocol that maintains high
rate through asymmetric channels, thus demonstrating the feasi-
bility of such a Sagnac-loop-based TFQKD network.

signal intensities independently, to effectively compensate for
channel asymmetry. We choose CAL19 protocol because it
provides higher key rate than SNS protocol except for extremely
long distances. Also, while refs. >* are both based on the CAL19
protocol, ref. ** provides the additional convenience of only
requiring signal states (and not decoy states) to be asymmetric. In
this work, we for the first time experimentally demonstrate TFQKD
over optical channels with asymmetric losses, and show that the
new protocol provides much higher key rate and longer distance
than previous strategies (adding extra loss or using no compensa-
tion at all). Importantly, this also shows the feasibility of a TFQKD-
based quantum network. Note that for the CAL19 protocol we
have implemented, the coding basis depends on interference
visibility (which affects bit error rate and error-correction) but
the decoy basis does not; for SNS protocol, the decoy basis
depends on interference visibility (which affects bound on phase
error rate and privacy amplification), while the coding basis does
not. Therefore, overall, SNS protocol is similarly affected by
channel asymmetry, and will benefit from asymmetric source
intensities®'*. In principle, the technique we have demonstrated
here is applicable to SNS protocol too.

RESULTS

Protocol

The key steps of the asymmetric-intensity TFQKD protocol®*
demonstrated in this paper are summarized as follows. Alice and
Bob prepare weak coherent states and randomly choose X and Z
bases. For signal states in X basis, Alice and Bob randomly add a 0
or m phase and set the intensities of states to s and sg,
respectively. For decoy states in Z basis, a random phase is added
and the intensities are randomly chosen from {u,v,w}. The
important difference from the CAL19 protocol in refs. """ is that,
signal intensities s, and sg can be set to different values, while the
intensities of Alice’s and Bob’s decoy states are still kept
symmetric. Such a choice of intensities is because, as explained
in ref. 2%, the X basis requires intensities arriving at Charles to be
symmetric for a good interference visibility (hence s,, sg should be
different, to compensate for channel asymmetry), while the Z
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Fig. 2 Schematic set-up of twin-field quantum key distribution
(TFQKD) over optical channels with asymmetric losses. Charlie
produces un-modulated weak coherent pulses through his intensity
modulator (IMc) and variable optical attenuator (VOAc) and
distributes the pulses to Alice and Bob. The pulses enter the Sagnac
loop through a circulator and a 50:50 beam splitter (BS) where they
split into clockwise and counter-clockwise traveling pulses. The
clockwise traveling pulses first pass through the attenuator VOA,
and Alice’s station without being modulated. Then they go
through a 7-km fiber spool and arrive at Bob's station. Based on
the bases Bob chooses (signal basis or decoy basis), he modulates
the phases and intensities of the pulses by his phase modulator and
intensity modulator. Then Bob forwards the modulated pulses back
to Charlie’s BS though the attenuator VOAg. The same process
applies to the counter-clockwise traveling pluses, except that only
Alice would modulate the phases and intensities of the counter-
clockwise traveling pulses. The modulated pulses from Alice and
Bob interfere with each other at Charlie’s BS and are detected by
Charlie’s two single-photon detectors D, and D;.

basis does not have such a requirement (hence decoy states can
simply be set to symmetric to simplify implementation). The latter
is because the estimation of phase error rate is based on photon-
number yields in the Z basis, which is little affected by asymmetry
of intensities arriving at Charles. Then Alice and Bob send their
states to the middle node Charlie, who measures the interference
of the coming states and announces the results.

Experimental set-up

The experimental set-up used in our previous work of TFQKD over
symmetric optical channels in ref. '* can be simply adopted to
implement the asymmetric-intensity TFQKD protocol, as shown in
Fig. 2. As a proof-of-principle demonstration, we only use the
optical variable attenuators (VOA, and VOAg) to simulate the
optical channel losses between Alice/Bob and Charlie. The only
difference from the set-up in ref. '* is that VOA, and VOAg have
different attenuation to mimic the asymmetric channel losses. As
indicated in ref. ', a two-way QKD system consisting of a Sagnac
interferometer is applied to overcome the main challenge of
implementing TFQKD, namely, the phase stabilization. The
common-path nature of the Sagnac loop automatically compen-
sates for phase fluctuations, thus maintaining long-term phase
stability between the weak coherent states sent from Alice and
Bob. Moreover, the laser located on Charlie’s station is shared by
Alice and Bob, to guarantee the matched global phase. The
Sagnac?® or Sagnac-like®® interferometers have been exploited in
QKD systems previously. It is similar to the “plug-and-play” system
that has been widely used in QKD3**3" in which photons travel
bidirectionally, though information is carried only in one direction.
Security proofs for such “plug-and-play” QKD systems have been
developed in refs. 3233, To prevent possible attacks from
eavesdroppers, more hardware is required. For example, in Alice’s
and Bob's stations, taps, photodiodes, and attenuators can be
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added for them to monitor and limit the strong optical injections
from the outside. Bandpass filters are also needed for Alice and
Bob to filter out any side channels, so as to prevent eavesdropper
from probing the sources. Note that the main goal of this work is
to show the optimal compensation strategy for TFQKD with
asymmetric channel losses. Therefore, we did not implement the
above-mentioned elements, but they can be easily added to our
current experimental set-up without invalidating any of the
experimental results we have obtained.

Charlie uses his intensity modulator (IMc) and VOAc to create
weak coherent pulses (10 MHz, 900 ps) from a continuous wave
source and sends the pulses to Alice and Bob. The pulses go
through an optical circulator and enter the Sagnac loop through a
50:50 beam splitter (BS), where the pulses split into clockwise
traveling and counter-clockwise traveling pluses. Clockwise (coun-
ter-clockwise) pulses first go through VOA, (VOAg) and Alice’s
(Bob’s) station without being modulated. Then the clockwise
(counter-clockwise) pulses pass a 7-km fiber spool (with loss of
about 7 dB) before reaching Bob's (Alice’s) station. Note that no
information is transmitted over the channel between Alice and
Bob. On Bob’s (Alice’s) station, the pulses are modulated by a phase
modulator PMg (PM,) and an intensity modulator IMg (IM,). Based
on different bases Alice and Bob choose, the phases and intensities
of the pulses are modulated accordingly. All the modulators in the
set-up are driven and synchronized by a high-speed arbitrary
waveform generator (AWG, Keysight M8195). The modulated
pulses from Alice and Bob travel through the attenuators VOAg
and VOA, and interfere at Charlie’s BS. One output of the BS is
directed to a single-photon detector (SPD) D, via the circulator, and
the other output is followed directly by another SPD, D,. Charlie
then uses D, and D; to record the interference and publicly
announces the results. The SPDs used in the set-up are the
commercial free-run avalanche photodiodes (ID220), the dark
count probability of which is about 7x 1077,

It is very important to ensure that Alice and Bob only modulate
the pulses traveling in designed directions. That is to say, the
clockwise and counter-clockwise traveling pulses should never
overlap with each other at any of Alice’s and Bob’s modulators.
Therefore, the fiber lengths among the users and middle node are
carefully calibrated to avoid the overlap of the arriving time at any
modulators between the clockwise and counter-clockwise travel-
ing pulses. Another challenge in our experiment is that the limited
extinction ratio of a single intensity modulator is not sufficient to
generate the vacuum state (w), especially on Alice’s station where
the power of the injected pulse (that should be modulated) is
always 10dB higher than that on Bob’s station. To create the
vacuum state, we use two intensity modulators to achieve more
than 65 dB extinction ratio. The resulting pulse is suppressed below
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the dark count noise of the detectors. Multiple polarization
controllers are used for the initial polarization alignment but no
active polarization control is needed. Because of the auto
compensation of phase fluctuation of Sagnac interferometer, our
system is stable and the interference visibility is kept as high as
99.8%. In this paper, the main objective is to study the optimal
compensation strategy for TFQKD over asymmetric channels.
Therefore, variable optical attenuators are used instead of real
fibers. Since the ability of Sagnac loop withstanding phase
fluctuations is a function of its total length and the characteristic
frequencies of the fluctuations, when hundred of kilometers of real
fibers are inserted into the loop to replace VOAs, the phase stability
and polarization stability of the current system would be affected.
However, previous study in ref. '* has found that a Sagnac loop
with 300 km loop length, corresponding to 60dB of loss, is
adequate in maintaining phase stability required for TFQKD.

Experimental results

The experiment has been performed over three overall channel
losses between Alice and Bob, 40dB, 50dB, and 56 dB. The
channel losses between Alice and charlie are always 10 dB higher
than the losses between Bob and Charlie, i.e, ng =nax10. The
detector efficiency (11.7%) is included in the overall loss. To test
the asymmetric-intensity strategy, we allow Alice and Bob to
choose asymmetric signal intensities s, and sg, but keep their
decoy intensities symmetric. We have also tested the strategy
where all the intensities are symmetric but another 10dB
attenuation is added on Bob’s side to compensate the channel
asymmetry. Additionally, at the overall loss of 40dB, we have
conducted the experiment where Alice and Bob use identical sets
of operations as they do for TFQKD with symmetric channels (no
compensation at all). All the signal intensities sag and decoy
intensities uamp, Vag Used in the experiment are close to the
optimal values and are listed in Table 1. (w is the vacuum state and
therefore is not listed.) Note that when Alice and Bob test the
asymmetric-intensity strategy, the intuitive way is to set sp/sg = ng/
na = 10. However, as indicated in Table 1, the ratio of the optimal
sa to sg slightly deviates from 10. This is because, as described in
ref. 2%, although the interference visibility (which affects X basis
QBER) favors sa/sg = ne/na, there are other factors affecting sa, ss—
namely, a tight estimation of the phase error rate favors small
values of both s, and sg (which determine the cat state
coefficients) and makes optimal sa/sg deviate from exactly ng/na.
As for the experimental implementation, we would like to point
out that it is more convenient to use the intensities that fulfill sa/
sg = Ne/Na, especially for the Sagnac-loop-based system which
automatically provides such intensity compensation. Considering

Table 1. List of intensity sets and experimental secret key rates for the overall system losses of 40 dB, 50 dB, and 56 dB.
Overall loss Strategy Intensity Key rate

SA Ua Va Sg Us Vg Infinite data Finite data
25+15dB Asym. 0.0448 0.300 0.120 0.00529 0.300 0.120 1.017x10™* 5013x10°
25+ 15dB Adding loss 0.0213 0.481 0.146 0.0213 0.481 0.146 3.727x107° 1.688x 107>
25+ 15dB No comp. 0.0036 0.247 0.0923 0.0036 0.247 0.0923 7.163x10°° 0
30+20dB Asym. 0.030 0.514 0.108 0.00373 0.514 0.108 1.666 x 10> 6.971x10°°
30+20dB Adding loss 0.0147 0.444 0.133 0.0147 0.444 0.133 2.382x107° 2677 x1077
33+23dB Asym. 0.0274 0.401 0.120 0.0035 0.401 0.120 2918x10°° 3.174x1077
The loss between Alice and Charlie is always 10 dB higher than the loss between Bob and Charlie; sa/5 is Alice’s/Bob’s signal intensity; tas and vas are the
decoy intensities. The vacuum state w is not listed here. The secret key rate is calculated based on the observed gains and quantum bit error rates. The size of
the total data sent to Charlie is 3 x 10'°. Both infinite-data case and finite-data case are considered. For each loss, the first row shows intensities and key rates
with asymmetric signal intensities; the second row (if exists) gives the intensities and key rates with adding extra losses; the third row (if exists) is the case
where no compensation is applied.
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Fig. 3 Secret key rate (bit per pulse) in logarithmic scale as a function of the overall loss between Alice and Bob. The secret key rate is
calculated for two cases, i.e., a the case where infinite data size is assumed and b the case where the data size is 3 x 10'° and finite size effects
are considered. The solid black line represents one representative of the repeaterless bound (PLOB bound). The blue solid curve is the
simulated key rate with asymmetric signal intensities; the red dash curve is the simulated key rate with adding extra losses; the purple dash-
dotted curve is the simulated key rate with no compensation. All the scattered points are the experimental secret key rates. The blue rhombi
represent the case with asymmetric signal intensities; the red circles represent the case where extra 10 dB attenuation is added on Bob's side;
the purple hexagon is the key rate obtained when no compensation is applied. As observed, the strategy of applying asymmetric signal
intensities always provides better key rates than the other two strategies.

the experimental fluctuations, the tested key rate with the exact
ratio sa/sg =10 can be even higher than the rate with optimal
ratio. The size of the total data that Alice and Bob send to Charlie
in each run is 3x10'°. Due to the limit of the available AWG
channels, the signal state and decoy state are not randomly
switched in our experiment. But this random switch can be easily
accomplished with more resources. As a proof-of-principle
demonstration, our current implementation is feasible to study
the optimal compensation strategies for TFQKD with asymmetric
channel losses.

The secret key rate is calculated based on the observed gains
and quantum bit error rates. Both infinite-data case and finite-data
case are considered and the experimental results are depicted in
Fig. 3, which shows the secret key rate (bit per pulse) in
logarithmic scale as a function of the overall loss between Alice
and Bob. The blue rhombi are the experimental key rates obtained
with asymmetric signal intensities; the red circles are the key rates
of the case where extra 10 dB attenuation is added on Bob’s side;
the purple hexagon is the key rate obtained when no compensa-
tion is applied. The corresponding simulated secret key rates of
the above three cases are also shown in Fig. 3, represented by
blue solid curve, red dash curve, and purple dash-dotted curve,
respectively. Additionally, we use the solid black line in the figure
to show the repeaterless bound®. As shown in Fig. 3a where the
infinite-data case is considered, applying asymmetric signal
intensities can always help generate positive key rates for all
tested losses. Moreover, at the total loss of 50 dB, the experimental
key rate with asymmetric signal intensities is as high as 1.67 x
10>, even beating the repeaterless bound. However, the key rates
of the other two strategies are always lower than the bound. Even
worse, no secret keys can be extracted at 56 dB total loss in the
adding-loss scenario. If no compensation is applied, there exists
positive key rate only when the total loss is 40 dB. In the finite-data
case, as shown in Fig. 3b, again, the key rates with asymmetric
signal intensities are always higher than the key rates with adding
extra losses or applying no compensation. At the total loss of
56 dB, the experimental key rate with asymmetric signal intensities
is 3.17 x 107 while no keys can be generated with the other two
strategies. At 50 dB, the experimental key rate with asymmetric
intensities is 6.97 x 10°, about 30 times of the key rate in the
adding-loss scenario. At 40 dB, the key rate with no compensation
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is still positive but very small in simulation. However, due to
fluctuations in experiment, we could not obtain any keys in the
finite-data scenario if no compensation is applied. Note that in
Fig. 3a, the experiment key rates are always lower than the
simulations (except at 40 dB loss). This is due to the fact that all
the experimental intensities are optimized based on finite-data
scenario, while the simulations take the intensities optimized for
infinite-data scenario.

DISCUSSION

Overall, the experimental results are consistent with the simula-
tions. As indicated in Fig. 3, the distance coverage of TFQKD over
optical channels with asymmetric losses is significantly diminished
if no compensation is made. Deliberately adding extra losses to
compensate the asymmetry could help increase the key rate to
some extent, but is not comparable to the strategy of using
asymmetric signal intensities. This is because with extra losses
added, Alice and Bob pessimistically assume that the losses can be
controlled by Eve, while in practice this part of the loss (e.g. from a
tailored length of fiber or an attenuator) is securely inside Bob's
lab. This is not a limitation with the asymmetric-intensity strategy,
which accounts for the asymmetry of source intensities and
channels. Therefore, despite that, observable-wise, the arriving
intensities at Charles are similar in the two cases, the adding-loss
case actually has a more pessimistic assumption (that the added
loss is controlled by Eve) in its security analysis, hence resulting in
lower key rate. While by allowing Alice and Bob to set asymmetric
intensities, the secure key rate of TFQKD with asymmetric channel
losses can be dramatically increased. The higher the loss, the more
key rate enhancement the asymmetric-intensity strategy can
achieve. Besides the advantage of providing higher key rate,
the asymmetric-intensity strategy is also more convenient and
efficient to implement. Especially in a network setting, the adding-
loss strategy requires that every user should prepare different
compensation losses inside his/her station for different connec-
tions. While for the asymmetric-intensity strategy, the users only
have to adjust their signal intensities for all different connections.
Even when new users join the network, no system modifications
are required for the old users. Therefore, a straightforward
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application of our demonstration in this work can be the study of
Sagnac-loop-based QKD network.

As a proof-of-principle demonstration, the primary goal of this
work is to find out the optimal compensation strategy for TFQKD
with asymmetric channels, rather than implementing a complete
TFQKD system. The current limitations in our experimental set-up
can be potentially removed given more time and resources. For
example, optical filters and power monitors can be added in
Alice’'s and Bob’s stations to limit Trojan horse attacks from
eavesdropper. In our current set-up, attenuators are used to
simulate the optical channel loss. When long spans of fibers are
used instead of attenuators, the noise induced by the back-
scattering (especially the Rayleigh backscattering) of strong pulses
would definitely worsen the performance of our system. There are
also some possible solutions. Since the intensity of the back-
scattered signal is proportional to the input power, one way to
limit the backscattering is to lower the intensity of the pulses sent
out by Charlie into the loop. To compensate for fiber loss,
bidirectional amplifiers can be inserted between Alice and Bob to
amplify the signal as long as the power of the signal is higher than
the minimum input power of the amplifier. This is a viable strategy
as it was used in ref. '8, Another way to mitigate the back-
scattering issue is to exploit the time dependence of the
backscattering. Due to fiber loss, if a single short pulse is launched
into the fiber at time t = 0, the backscattering is strongest at t =0,
and subsequently decays with time. One could use a very low
repetition rate such that the detection window can be moved to
the end of the period where the backscattered signals decay to a
tolerable value. Alternatively, one can use bursts of pulses. More
specifically, bursts of pulses are sent out by Charlie with a very low
repetition rate R, while in each burst, n pulses with very short time
interval 6t are sent into the Sagnac loop. The parameters R, n, and
6t can be well designed such that the detection window can be
moved to the low noise point. The drawback is that both
strategies (low repetition rate or pulse bursts) will decrease the
overall key rate. More study on the decay rate of the back-
scattering and careful design of the burst timing will be carried
out in future. In addition, the above two strategies can be
combined to combat backscattering.

In summary, we have demonstrated the proof-of-principle
experiment of TFQKD over optical channels with asymmetric
losses. Sagnac interferometer is applied for the auto phase
stabilization. Our experiment shows that, compensation strategies
are necessary for TFQKD with asymmetric channel losses. Two
strategies have been tested, that are applying asymmetric signal
intensities or adding extra losses to make the channel loss
symmetric again. Compared with the latter strategy, applying
asymmetric signal intensities provides much better secure key rate
for TFQKD with asymmetric channel losses. It keeps the major
advantage of TFQKD, i.e., surpassing the repeaterless bound, and
significantly enlarges the distance coverage. Our implementation
provides the experimental study of TFQKD with asymmetric
channel losses and shows the feasibility of applying TFQKD to
build the long-distance quantum network in reality.

METHODS

Finite size analysis

In this paper, we have used a standard error analysis>* for finite-size effects.
Here we consider only individual attacks and assume each signal is
identically and independently distributed. This means we can assume a
normal distribution for the observables, and upper/lower bound it with a
confidence interval (measured by the number of standard deviations, y)
given a failure probability e. Specifically, for a given observed value x, the
expected value X satisfies:

X —yVx <X <x—yvx m
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where y satisfies y = ﬁerf’1(1 —¢) (here erf ! is the inversed error
function).

The focus of this work is to demonstrate a realistic validation on
asymmetric signal intensities being able to compensate for channel
asymmetry, while the finite-size analysis (especially on the decoy states) is
not really the focus, so we have adopted a relatively simple finite-size
model just to perform an estimation on the real-world performance of the
protocol. Nonetheless, we would like to point out that, should a more
rigorous finite-size analysis be applied (such as applying Chernoff's
bound® or alternative bounds*®3®), our method demonstrated in this
paper would still be compatible. This is because the performance gain in
asymmetric channels comes from the asymmetric signal states compen-
sating for signal QBER, which is a process independent from the finite-size
analysis that largely involves the decoy states and the phase error rate.

Parameter optimization

In this paper, we perform parameter optimization using the same local
search algorithm “coordinate descent” in refs. %2, In this algorithm, we
search a parameter list p = {P1,Py,---,Pn} by maximizing the target (key
rate) function along one coordinate at a time (and fixing the other
components):

i+1
Pk

= argmaxR(p}, pi"!

7"'7pk7p;v<+1"'7p;\l) 2)
Pr

where as an illustration we are updating the k-th component at iteration i,
and all components expect p, are fixed such that the search is one-
dimensional. After all components are updated, we stop the algorithm when
either optimality is met, or the max iteration number is reached, otherwise
we continue into the next iteration. Such an algorithm is a type of local
search (and other algorithms such as gradient descent are in principle
applicable here too), and global search is not needed, since we observe that
for this protocol the key rate is a convex function with respect to the
parameters (as is observed in ref. 2* for TF-QKD and also in refs. 25** for MDI-
QKD when the coordinates of parameters are appropriately defined).
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