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Characterization and control of open quantum systems beyond

quantum noise spectroscopy

Akram Youssry ('?™, Gerardo A. Paz-Silva®* and Christopher Ferrie'

The ability to use quantum technology to achieve useful tasks, be they scientific or industry related, boils down to precise quantum
control. In general it is difficult to assess a proposed solution due to the difficulties in characterizing the quantum system or device.
These arise because of the impossibility to characterize certain components in situ, and are exacerbated by noise induced by the
environment and active controls. Here, we present a general purpose characterization and control solution making use of a deep
learning framework composed of quantum features. We provide the framework, sample datasets, trained models, and their

performance metrics. In addition, we demonstrate how the trained model can be used to extract conventional indicators, such as

noise power spectra.
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INTRODUCTION

Accurately controlling the dynamics of open quantum systems is a
central task in the successful implementation of quantum-
enhanced technologies. Doing so to the highest possible level
of accuracy involves a two-stage approach: first, quantum noise
spectroscopy (QNS)'™" protocols are used to infer characteristics
of the open quantum system that affect the open quantum
system dynamics, and then optimal control routines (OC) exploit
this information to minimize the effect of noise and produce high-
quality gates®*%,

In this work, we go beyond the aforementioned approach and
pose the problem in a machine-learning (ML) context. By doing so,
we provide a common language in which the “learning”
(equivalent to QNS) and “validation” (the precursor to OC) cycles
are directly related to the objective of controlling an open
quantum system. Notably, we show that doing so considerably
extends the real-world applicability of the aforementioned two-
stage strategy, as one can forgo some of the non-trivial control
and model assumptions necessary for the implementation of
sufficiently general QNS protocols. The success of the approach
relies on the fact that the ML algorithm learns about the dynamics
relative to a given set of control capabilities, which effectively
reduces the complexity of the problem in a way meaningful to
experimental constraints (see also®* for a formal analysis of this
problem).

The guiding principles of this work were to develop a
framework that enables us to have models that are independent
on any assumptions. It has to be suitable for estimating physically
relevant quantities. Moreover finally, it should have the capacity to
do standard tasks such as decoherence suppression and quantum
control.

The proposed method is based on a graybox approach, where
all the known relations from quantum mechanics are implemen-
ted as custom whitebox layers—quantum features—while the
parts that depend on assumptions on noise and control are
modeled by standard blackbox machine-learning layers. In this
paper, we show how to construct such a model. The proposed

model can be trained from experimental data consisting of sets of
control pulses, and corresponding quantum observables. How-
ever, in this paper, we do not have access to an actual experiment,
and thus we train the algorithm and asses its performance using
synthesized datasets, obtained by computer simulations of a noisy
qubit system. The results show high accuracy in terms of
prediction error. We also show the possibility of utilizing the
trained model to do basic quantum control operations. This paper
opens the door for a number of possible novel machine-learning
methods in the fields of quantum dynamics and control.

This work complements the existing literature applying classical
machine-learning to the quantum domain. Recently, machine-
learning and its deep learning framework?> have been applied to
many areas of quantum information, and physics more generally.
Application areas include quantum control**=?8, characterization
of quantum systems**7=2, experiment design®>°, quantum
cryptography®®, and quantum error correction®”°, A related
approach is Bayesian learning that was applied for Hamiltonian
learning®®*!, quantum noise spectroscopy™?, and characterization
of devices*.

In broad terms, our objective is to effectively characterize and
accurately predict the dynamics of a two-level open quantum
system, i.e., a qubit interacting with its environment, undergoing
user-defined control picked from a fixed set, e.g., consistent with
the control capabilities available to a given experimental platform.
In what follows we make this statement precise.

For concreteness we start by choosing a model for our
dynamics. We will consider a qubit evolving in the presence of
both quantum and classical noise’® via a time-dependent
Hamiltonian of the form,

H(t) = ) 0a @ Bal(t) + Haul(t), 1

a=xy.z

where B, (t) = Bq(t) + B,(t)ls is an operator capturing the effect of
a quantum bath, via the operator B,(t) typically resulting by
working in the interaction picture with respect to the bath internal
Hamiltonian, and classical noise, via the stochastic process B,(t).
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Control is implemented via the Hamiltonian

9 0
Han(t) = Q=+ Y falt) 2
a={x,y.z}

where Q denotes the energy gap of the qubit, f,(t) implements the
user-defined control pulses along the a-direction, and o, is the a Pauli
matrix. Notice that this generic model can accommodate classical
noise process simply by making B,(t) = B4(t)ls, with B4(t) an stochastic
process. In all equations and simulations in this paper, we work with
units, where h=1. Since we are interested in predicting the
dynamics of the qubit in a time interval [0, T], we will be interested
in the expectation value E{O(T)}, of observables O at time T given
an arbitrary initial state of the system p and a choice of {f,(t)}.

While these expectation values contain the necessary informa-
tion, it will be convenient to further isolate the effect of the noise.
To this end we proceed as follows. Our starting point is the usual
expression,

E{O(T)}, = (tr[U(T)(p @ pp)U(T)'O)).. 3)
where U(T) :Tef"fodSH(S) and (-). denotes classical averaging
over the noise realizations of the random process S,(t), and pg is
the initial state of the bath. One can then move to a toggling-

frame with respect to the control Hamiltonian Hy(t), inducing a
control unitary Ucy(T) via,

T
Uan(T) =T 1€ Jo Hew (S)ds7 “

which enables the decomposition,

U(T) = Ui(T)Uaan(T). (5)
with,
U =TS : e () (5) Uy (T)ds ©6)

the (modified) interaction picture evolution (see Supplementary
Note 2 for details), and H/(t) is defined as

Hi(t) = Ul (0H: () U (1), Hr(8) = > 0a @ Ba(t)- )

a=xy.z

In turn, this allows us to rewrite,
E{O(T)}, = tr[Vo(T)Uew(T)pUatn(T) O, 8)
where the operator

Vo(T) = (07 U(T)OUNT) ). ©

where (-) = (trg[-pg]). conveniently encodes the influence of the
noise. As such, this operator is central to understanding the
dynamics of the open quantum system. If our objective is, as is
common in optimal control protocols and imperative when
quantum-technology applications are considered, to minimize
the effect of the noise, e.g., via a dynamical decoupling**~*¢ or
composite pulses*’*®, then one needs to determine a set of
controls for which Vo — 1. Notice that tr[O(U,0U,)] can be
interpreted as the:’gvgrlap” between the observable O and its time
evolved version (U; OU,), which is maximum when the evolution is
noiseless. If additionally one wants to implement a quantum gate G,
then we further require that UdﬂpU‘T:trI — GpG'. Regardless of our
objective, it is clear that one needs to be able to predict Vp(T) given
(i) the actual noise affecting the qubit and (ii) a choice of control.
However, realistically the information available about the noise is
limited, and by the very definition of an open quantum system is

something that cannot typically be measured directly.
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Fortunately, this limitation can in principle be overcome by
quantum noise spectroscopy (QNS) protocols'™'>. These protocols
exploit the measurable response of the qubit to a known and
variable control and the noise affecting it, in order to infer
information about the noise. The type of accessible information is
statistical in nature. That is, without any other information, e.g.,
about the type of stochastic noise process, the best one can hope
to learn are the bath correlation functions (B, (t1) - - - B, (tk))- If
the QNS protocol is sufficiently powerful to characterize the
leading correlation functions and matches the model, in principle
the inferred information can be plugged into a cumulant
expansion or a Dyson series expansion of Vy(t) to successfully
obtain an estimate of the operator for any choice of f4(t), as
desired. This has led to a proliferation of increasingly more
powerful QNS protocols, including those capable of characterizing
the noise model described here'®, some of which have even been
experimentally verified' 78134930 More generally, the idea of
optimizing control procedures to a known noise spectrum?? is
behind some of the most remarkable coherence times available in
the literature®'.

QNS protocols, however, are not free of complications. The
demonstrated success of these protocols relies on the assump-
tions, which support them being satisfied. Different protocols have
different assumptions, but they can be roughly grouped into two
main flavors:

® Assumptions on the noise—Existing protocols assume that
the only a certain subset of the correlation functions
effectively influence the dynamics or, equivalently that a
perturbative expansion of V(t) can be effectively truncated to
a fixed order. In practice, this is enforced in various ways. For
example, demanding that the noise is Gaussian and dephas-
ing or, more generally, that one is working in an appropriately
defined “weak coupling” regime>®'".

® Assumptions on the control— Many QNS protocols, especially
those based around the so-called ‘frequency-comb'>>*'0, rely
on specific control assumptions, such as that pulses are
instantaneous. This assumption facilitates the necessary
calculations, which ultimately allow the inferring of the noise
information. However, it enforces constraints on the control
that translate into limitations on the QNS protocol, e.g., a
maximum frequency sampling range®>. Moreover, experimen-
tally one cannot realize instantaneous pulses, so comb-based
QNS protocols are necessarily an approximation with an error
that depends on how far the experiment is from satisfying the
instantaneous pulse assumption.

This work overcomes these limitations by bypassing the step of
inferring the bath correlation functions. We maintain the
philosophy of QNS regarding characterizing the open quantum
system dynamics, but pose it in a machine-learning context. Thus,
we address the question:

Can an appropriately designed machine-learning algorithm
‘learn’ enough about the open quantum system dynamics (relative
to a given set of control capabilities), so as to be able to accurately
predict its dynamics under an arbitrary element of the aforemen-
tioned set of available controls?

We answer positively to this question by implementing such
ML-based approach. Concretely our ML algorithm (i) learns about
the open quantum system dynamics and (ii) is capable of
accurately estimating—without assuming a perturbative expan-
sion—the operator Vo(T), and consequently measurement out-
comes, resulting from a control sequence picked from the family
control pulses {f,(t)} specified by an assumed (but in principle
arbitrary) set of control capabilities.

The “Results” section is organized as follows. We start by giving
an overall summary of our proposed solution. Next, we present
some of the mathematical properties of the V, operator. This will
allow us to find a suitable parameterization that will be useful to
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build the architecture of the ML model. After that, we present
exactly the architecture of the ML model followed by an overview
on how to construct datasets in order to train and test the model,
as well as the training and testing procedures. Finally, we discuss
the numerical implementation of the proposed solution followed
by the presenting the numerical results. We show the results of
training and testing the ML model, as well as using the trained
model to perform dynamical decoupling, quantum control, and
guantum noise spectroscopy.

RESULTS
Overview

The ML approach naturally matches our control problem, which
becomes clear from the following observation. For most optimal
control applications, e.g., achieving a target fidelity for a gate
acting on an open quantum system, one does not need to have
full knowledge of the noise. To see this consider a hypothetical
scenario where the available control is band limited®'"*? ie,
whose frequency domain representation F(w) is compactly
supported in a fixed frequency range |w| < Q. If the response of
the open quantum system to the noise®® is captured by a
convolution of the form /= [ dwF(w)S(w), where S(w)
represents the noise power spectrum, then it is clear that one
only needs to know S(w) for |w| < Qy. While this statement can be
formalized and made more general®*, the above example captures
a key point: only the ‘components’ of the noise that are relevant to
the available control need to be characterized. Conversely, this
means that a fixed set of resources, e.g., a set of control
capabilities, can only provide information about the ‘components’
of the noise relevant to them. The above observations make the
ML approach particularly well suited for the problem: it is natural
to draw the connection between the control problem of
‘characterizing a system with respect to a restricted set of control
capabilities in order to predict the dynamics under any control
such capabilities can generate’ and the fact that the training and
testing datasets typical in ML make sense when the datasets are
generated in the same way, i.e., by the same ‘control capabilities’.
Of course, the details of the ML approach that can seamless
integrate with the quantum control equations are important, and
we now provide them.

In order to address the question presented in the Introduction
section, we are going to use an ML graybox-based approach
similar to the one presented in*2. The basic idea of a graybox is to
divide the ML model into two parts, a blackbox part and a
whitebox part. The blackbox part is a collection of standard ML
layers, such as neural networks (see Supplementary Note 3 for an
overview), that allows us to learn maps between variables without
any assumptions on the actual relation. The whitebox part is a
collection of customized layers that essentially implement
mathematical relations that we are certain of. This approach is
better than a full blackbox, because it allows us to estimate
physically relevant quantities, and thus enables us to understand
more about the physics of the system. In other words, the
blackboxes are enforced to learn some abstract representations,
but when combined with the whiteboxes we get physically
significant quantities. In the parlance of machine-learning, these
whitebox layers are ‘quantum features’, which extract the expect
patterns in the data fed to the network.

In the case of the problem under consideration, we are going to
use the blackbox part to estimate some parameters for
reconstructing the V, operators. The reason behind the use of a
blackbox for this task is because the calculation of the V,
operators depends on assumptions on the noise and control
signals. So, by using a blackbox we get rid of such assumptions.
Whereas the whitebox parts would be used for the other standard
quantum calculations that we are certain of, such as the time-
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ordered evolution, and quantum expectations. Thus, we end up
with an overall graybox that essentially implements Eq. (8), with
input representing the control pulses, output corresponding to
the classical expectation of quantum observable over the noise,
and internal parameters modeling abstractly the noise and its
interaction with the control. With this construction, we would be
able to estimate important quantities such as V, and Ug,. Now,
since we are using machine-learning, then we will need to
perform a training step to learn the parameters of the blackboxes.
Thus, the general protocol would be as follows:

1. Prepare a dataset consisting of pairs of random input pulse

sequences applied to the qubit (chosen from a fixed and

potentially infinite set of allowed sequences), and the

measured outcomes after evolution.

Initialize the internal parameters of the graybox model.

3. Train the model for some number of iterations until
convergence.

4, Fix the trained model and use it to predict measurement
outcomes for new pulse sequences, as well as the Vp
operators.

N

It should be noted the nature of quantum information enforces
characterization of quantum systems of large dimension to blow-
up. This is a common problem in any characterization protocol,
including quantum state tomography, quantum process tomo-
graphy, quantum noise spectroscopy, and even quantum control
unless some simplifying assumptions are made. However, in most
practical situations, a full characterization may not be required. A
full characterization of a set of small subsystems can be sufficient.
This is the case for quantum computing where arbitrary multi-
qubit quantum gates are compiled into 1- and 2-qubit gates.
Alternatively, a partial characterization of the whole system can be
sufficient. This is the case for quantum error correction where only
a small subset of observables (error syndromes) are of interest. In
either case, using the proposed machine-learning framework will
remain feasible.

Mathematical properties of the V, operator

If we look back into the definition of the V, operator, we find that
it is convenient to express it as

Vo=0" <0700,> = 0" (Wo),, (10)

because the observable is independent of the noise. As a result we
can see that Wy is a system-only operator with the following
properties. Namely, for a given realization of the classical noise
process and recalling that O is a traceless qubit-only (system-only)
observable, one has that

1. The trace of Wy is bounded. This follows by noting that
tr[Wo)] = trs[Otrs[Uy(Is @ pg)Ul]] = trs[0E(I5)] € [-1,1],

where &(-) = trgU)(- ® pg)Ul] is a Completely-Positive
Trace-Preserving map. In the special case where the noise
generates a unital channel, i.e, when &(Is) =I5, as is the
case for classical-only noise, then tr[Wo] =0, since O is a
traceless observable.

2. W,y is Hermitian. One can see this by noting that W, can always

be written as Wo = 3", .tTs[0atrs[U; OUi(Is @ pp)]] 0a/2.

Since  trs[oatrs[U10U)(Is @ py)]] = trss|OU;(0q © pg)Ul] =
trs[0€(0,)] = trs[O(E(5%) — £(55%)] € R, it follows that
Wo = Wi,

3. Given the above and observing that trsjo,Wo] =

trs[0€(0q)] € [—1, 1], it follows that Wy has real eigenvalues
)\1, Az (S [— 1, 1].

If one also considers the effect of the average over realizations of
the stochastic process, one further finds that the full average
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(including classical and quantum components) satisfies the
following properties

1. Its trace is bounded, i.e., tr[(Wo)C] e[-1,1].

2. Itis Hermitian, i.e, (Wo)! = (W)). = (Wo)..

3. Since for any realization Wo has réal eigenvalues in [~ 1, 1],
the average over realizations of that process will also have
that property, ie, its eigenvalues are such that
-1 < A((Wop),) < 1. This can be proved as follows.
Suppose for the sake of convenience that the probability
distribution of the W, with respect to the noise is finite and
discrete. That is it can only take values W; with probability p;.
Then

/\max(<WO>c) = Amax (i PiWi) (1

i=1

(12)

imax
)\max<P1W1 +Z W

\_/

Imax
SAmax(Pl W]) +)\max< PiWi> (13)

= P1/\max(W1) + Amax( PIWI> (14)

i=2

<Py A4 Amax (ZR‘W‘) (15)

The third line follows from Weyl's inequality since all the
terms of the form P;W; are Hermitian. Now, if we repeat
recursively the same steps on the second remaining term,
we get

Amax ((Wo)) < Py +Py+ P,

Imax

(16)

=1, (17)

as the P/s form a probability distribution. Similarly, we can

show that
Imax
)\min (<WO m|n (Z PI I> (18)
> 1. (19)
and so by combining the two results we get
-1 <A((Wo),) <1 (20)

This proof can be extended to the more realistic situation when
the noise distribution is continuous. Thus, by specifying a diagonal
matrix D whose entries are real numbers in the interval [—1, 1]
adding up to a number that lies in the [—1, 1], and by choosing a
general unitary matrix Q, we can reconstruct any Vo operator in
such a way that satisfies its mathematical properties, using the
eigendecomposition

Vo = <O’1U70U,> —0'QDQ'. 1)

In particular for the case of qubit presented in this paper (i.e., d =
2), we can completely specify the V, operator using six
parameters, which we would refer to as , 6, A, A, and A, such that

Q_<e“” 0)(c059 sin6>(e"A O) 22)
N0 e™®/)\—sin6 cosH 0 e™)’

where we neglected a degree of freedom that represents an
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overall global phase shift, and

D_(/h o> 23)
IR

satisfying |A| = [A; + A;| < 1. The parameters ¢, 6, and A can take
any real values as they are arguments of periodic functions.

In this paper we will focus on the unital case, i.e, A +A,=0,
since we will validate our ML approach via simulated experiments
using classical-only noise. In this case, we we can write the
eigenvalue matrix as

D_(O 7u>’ 2

and u € [0, 1]. In what follows, when building our ML machinery,
we will specify how this constraint is implemented and how it can
be obviated in each layer. Note that in an actual experiment,
where no assumption on the classicality of the noise is valid a
priori, the general, non-unital, case should be considered.

Model architecture

The proposed graybox ML model is shown in Fig. 1. We shall
explain in detail the structure as follows.

The purpose of the proposed architecture is to have a model
that relates the control pulses applied on the qubit (which we
have control over in an experiment) to the classical average of the
quantum observables (which we can physically measure). The
model internal parameters will act as an abstract representation
for the noise, as well as how it affects the measurement outcomes.
The model inputs represents different “features” extracted from
the control pulse sequence. In this paper, we make use of two

p=prrO=0,

NN c
v S| Y
Q_Q = p=pe.O=0, =
8] N
2 [ >o E Vd p=py0=0, ﬁb
6 A “ p=py0=0, <
= = 0= E
" o p=p:4,0 =0,
% O p=pO=0,
NN c p=pe0=0,
) s - -
Q__‘, S p=p..0=0, s
0, o g W P=py0=0y =
{o} o2 W _E
A 7 p=p.0=0, >~
% S o =
p=p:4.0=0y
%~ S Soo-
p=p.—.0=0,
£(0) Hamiltonian NN | c L p=perO=0.
0= C i v, 2 p=pe.O=0. N
onstruction % B S
1Hctrl 0, >o 3 Vi p=py0=0. S
Quantum oo 8 L >
: " S p=psO=0
Evoliglon % S P
ctrl

Fig. 1 The proposed graybox architecture for modeling the noisy
qubit following Eq. (8). The inputs of the model are the sequence of
control signal parameters {a,}, and the actual time-domain wave-
form f(t). The outputs of the model are the expectations over the
noise for all the Pauli eigenstates as initial states, and all Pauli’s as
measurement operators. The blackbox part of the model consist of
two layers of GRU followed by a neuron layer. The output of this
layer represents the parameters that can be used to construct the
“Vo" operator. There are three different branches corresponding to
each of the three possible Pauli observables. The whitebox part of
the model is formed from the layers that implement specific
formulas known from quantum mechanics. This includes layers for
constructing the V, operators from the parameters generated from
the blackbox, constructing the control Hamiltonian from the time-
domain representation of the control pulse sequence, the time-
ordered evolution to generate the control unitary, and the quantum
measurement layer. The model is trained using a set of pairs of
control pulse sequence and corresponding expectation values of
the observables. After training, the model can be used to predict the
measurements for new pulse sequences. It can also be probed to
estimate one of the “V," operators, and thus can be used as a part of
a quantum control algorithm to achieve a desired quantum gate.
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independently processed features, and thus the model has two
inputs. The first feature is a global feature of the control pulse: the
parameterization of the pulse. The other is a local feature: the
time-domain representation of the pulse. These two features are
explained as follows.

The first feature represents the set of parameters defining the
control pulse sequence. We assume in this paper that the control
signal can be parameterized by a finite set of parameters. This still
allows having infinitely large number of possible control signals
since each of the parameters can take infinitely many values. For
example a train of N Gaussian pulses can be completely defined
by 3N parameters: the amplitude, mean, and variance of each of
the N pulses. Similarly, a train of square pulses can be defined by
each of the pulse positions, pulse widths, and pulse amplitudes.
Now, these parameters have to be represented in a way that is
suitable for the subsequent blocks (standard ML blackboxes) to
process. So, the first step is to normalize each of signal parameters
to be in the range of [0, 1] across all the examples. For instance,
the pulse locations can be normalized with respect to the the total
evolution time T since there will be no pulses beyond this point in
time. The pulse amplitudes could also be normalized such that the
maximum amplitude for any pulse sequence is 1. The second is
step is the proper formatting of these parameters. We choose to
organize the signal parameters of an npmax pulse train in the form
of a sequence of vectors {a,},™, where each vector represents
the n'™ pulse and has r entries representing the normalized pulse
parameters (example: Gaussian pulse train will have r = 3). For the
case of multi-axis control, we concatenate the parameterization
along each direction into one vector assuming the controls are
independent along each direction. We emphasize here that we
take Gaussian and square pulses as examples to demonstrate our
ideas, but in general any waveform with any suitable parameter-
ization could be used. This feature is considered global since every
parameter affects the whole waveform shape of control sequence.

The second feature used for the model is the actual time-
domain representation of the pulse sequence, discretized into M
steps. In other words, the amplitude of the pulse at each time step.
This feature is considered local, since a change in one of the
parameters does not affect the whole sequence. This input is only
processed by customized whiteboxes. Although in principle we
can calculate the time-domain representation from the signal
parameters in the first input, it turns out that the overall algorithm
performs better if we do not do this calculation directly. In other
words treat both features as two “independent inputs” to
the model.

The output of the model should be the measurement
outcomes. If we initialize our qubit to each of the eigenstates
(“up/down”) of each Pauli operators (that is a total of 6 states), and
measure the three Pauli operators, then we have enough
information (tomographically complete) to predict the dynamics
for other configurations. So, we need to perform a total of 18
“prepare-measure” experiments and collect their results. Moreover
so, our model will have 18 outputs corresponding to each of the
measurement settings.

As discussed previously, there are lots of known relations from
quantum mechanics that we are certain of. It is better in terms of
the overall performance to directly implement as much as possible
of these relations in non-standard customized layers. This saves
the machine from essentially having to learn everything about
quantum mechanics from the data, which would be hard and
could decrease the overall accuracy. Moreover, this allows us to
evaluate physically significant quantities, which is one of the most
important general advantages of the graybox approach. In our
proposed model, we make use of the following whiteboxes.

® Hamiltonian construction: this layer takes the discretized time-

domain representation of the control pulses (which is exactly
the second input to the model), and outputs the control
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Hamiltonian H., evaluated at each of the M time steps using
Equation (2). The layer is also parameterized by the energy
gap Q, which we fix at the beginning.

® Quantum evolution: this layer follows the “Hamiltonian
Construction” layer, and thus it takes the control Hamiltonian
at each time step as input and evaluates the time-ordered
quantum evolution as output (i.e., Eq. (4)). Numerically, this is
calculated using the approximation of an infinitesimal product
of exponentials

T

Uctrl = T+e_’ fo Hew (s)ds (25)
- /\/llznx e~ et (tm)AT g=iHew (tn-1)AT | o=iHeui(to) AT (26)

r @ e ()BT g=iHea(tw1)AT e_I'H(m(l‘o)AT7 (27)

where t, = kAT and AT = ﬁ The last line follows if M is large
enough.

® V/, construction: this layer is responsible for reconstructing the
Vo operator. It takes the parameters , 6, A, and u as inputs
and outputs the V, following the reconstruction discussed
previously. The blackboxes of the overall model are respon-
sible for estimating those parameters. The output of this layer
can be probed to estimate the V, operator given a control
pulse. This allows us to do further operations, including noise
spectroscopy and quantum control. In the general case for
non-unital dynamics, the reconstruction will require the two
parameters A, € [-1, 11 and A=A, + A, € [-1, 1], instead of
the parameter u € [0, 1].

® Quantum measurement: this layer is essentially the imple-
mentation of Eq. (8). So, it takes the V, operator as input,
together with the control unitary, and outputs the trace value.
It is parameterized by the initial state of the qubit, as well as
the observable to measure. Therefore, in order to calculate all
possible 18 measurements, we need 18 of such layers in the
model, each with the correct combination of inputs and
parameterization. The outputs of all 18 layers are concate-
nated finally and they represent the model’s output.

The exact calculation of the measurement outcomes requires
assumptions on both the noise and control pulse sequence. So, by
using the standard ML blackbox layers, such as neural networks
(NN) and gated reccurent units (GRU) (see Supplementary Note 3
for an overview), we can have an abstract assumption-free
representation of the noise and its interaction with the control.
This would allow us to estimate the required parameters for
reconstructing the V operators using a whitebox. The power of
such layers comes from their effectiveness in representing
unknown maps due to their highly non-linear complex structure.
In our proposed model we have three such layers explained as
follows.

® |[nitial GRU: this layer is connected to the first input of the
model, i.e,, the parameters of the control pulse sequence. The
purpose behind this layer is to have an initial pre-processing
of the input features. Feature transformation is commonly
used in ML algorithms, to provide a better feature space that
would essentially enhance the learning capability of the
model. In the modern deep learning paradigm, instead of
doing feature transformation at the beginning, we actually
integrate it within the overall algorithm. In this way, the
algorithm learns the best optimal transformation of features
that increases the overall accuracy. In our application, the
intuition behind this layer is to have some sort of abstract
representation of the interaction unitary U, This would
depend on the noise, as well as the control. In this sense,
the input of the layer represents the control pulses, the output
represents the interaction evolution operator, and the weights
of the layer represent the noise. This does not mean that
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probing the output layer is exactly related to the actual U, as
the algorithm might have a completely different abstract
representation, which is a general feature of blackboxes. In the
proposed model, we choose the GRU unit to have ten hidden
nodes. The reason behind choosing the GRU, which is a type
of a recurrent neural network (RNN), rather than a standard
neural network, is to make use of the feedback mechanism.
We would like to have a structure that processes a sequence
not only term by term, but taking into account previous terms.
An RNN-like structure would accomplish this kind of proces-
sing. In this sense, we can abstractly model relations that
involve convolution operations, which is exactly the type of
relations obtained when we do theoretical calculations of the
dynamics of open quantum systems.

® Final GRU: this is another GRU layer that is connected to the
output of the initial GRU layer. The purpose of this layer is to
increase the complexity of the blackboxes so that the overall
structure is complex enough to represent our relations. For
our application, this layer serves as a way to estimate the
operator (U]OU;) in some abstract representation. Moreover,
thus we need actually three of such layers to correspond to
the three Pauli observables. We choose to have 60 hidden
nodes for each of these layers.

® Neural network: this is a fully connected single neural layer
consisting of four nodes. The output of the final GRU layer is
connected to each of the nodes. The first three nodes have
linear activation function and their output represent the actual
parameters ¢, 6, and A that are used to construct the Vp
operator. The last node has a sigmoid activation function and
its output corresponds exactly to the u parameter of the V,
operator. As discussed before the u parameter has to be in the
range [0, 1], which is exactly the range of the sigmoid function.
Since the parameters will differ for each of the three
observables, we need three of such layers each connected
to one of the final GRU layers. In the case of non-unital
dynamics, the neural network will change as follows. First, the
fourth node will have a hyperbolic tangent (tanh) activation
(whose range is [—1, 1]) and would represent the parameter A,
instead of u. Second, a fifth node with a hyperbolic tangent
activation will be needed to represent the parameter A. In this
way, the constraints of the V operators will be satisfied, and
hence the architecture would be suitable for modeling the
non-unital dynamics.

Dataset construction

For any ML algorithm, we need a dataset for training it and testing
its performance. A dataset is a collection of “examples” (instances),
where each example is a pair of inputs (that should be fed to the
algorithm) and corresponding actual outputs or “labels” (that the
algorithm is required to predict). The dataset is usually split into
two parts, one part is used for training the algorithm while the
other part is used for testing its performance. The examples
belonging to the testing portion of the dataset are not used in the
training process at all. In the application presented in this paper,
the dataset would be a collection of control pulse sequences
applied to a quantum system, and the corresponding measured
quantum observables. In the experimental situation such a dataset
can be constructed as follows. We prepare the qubit in an initial
state, apply some a control sequence, then measure the
observable. This is repeated for all 18 possible configurations of
initial states/observables. The pair consisting of the control pulse
sequence parameterization and time-domain representation, and
the value of the 18 measurements would correspond to one
example in the dataset. To generate more examples, we choose
different control sequences and repeat the whole process. In this
paper, we do not have access to an actual experiment. However,
we need to validate the proposed algorithm, so we generate
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datasets by computer simulation of a noisy qubit (details are given
later in this section, and also in Supplementary Note 1). In a
practical application of the algorithm with experimental data,
there is no need to use simulated datasets. The algorithm will be
trained directly from the acquired data.

An important aspect of this discussion is how to choose the
examples constituting the dataset and how large the dataset
should be. This is an empirical process, but there are general
principles to follow. First, any ML algorithm should be able to
generalize, i.e., predict the outcomes for examples that were not in
the training portion of the dataset. The way to ensure this is to
have the training subset large enough to represent wide range of
cases. For instance, consider constructing a dataset of CPMG-like
sequences®”, i.e, sequences composed of equally spaced pulses.
Then, in order for the model to have the capability of predicting
the correct outcomes if the pulses are shifted (maybe due to some
experimental errors), we have to provide training examples in
which the control pulses are randomly shifted. Similarly, if we
want accurate predictions for control pulses that have powers
other than 7, then we need to include such examples for training.
Additionally, the prediction would work for example of the same
pulse shape. This means that if all training examples are square
pulses then the predictions would be accurate only for square
pulses. In case we need the trained algorithm to predict outcomes
corresponding to pulses of different shapes, then we must include
examples of all desired shapes in the dataset (for example, square
and Gaussian pulses). This would result in an increase in the
complexity of training due to two reasons. First, more computa-
tions will be required as we have to increase the size of the
dataset to include examples of the different pulse shapes.
The second reason is that consequently we need to increase the
learning capacity of the blackboxes (by increasing the number of
nodes in the neural networks, GRU’s,...etc.). However, this is not a
problem in practice specially in actual physical experiments. The
reason is that usually there are constraints about what types of
control sequences can be generated. This would depend on the
specifications of the available hardware in the experiment. For
example, it might be only possible to generate square pulses with
some maximum amplitude, or Gaussian pulses with a fixed pulse
duration. In such cases, we will be interested to predict and
control the dynamics of a quantum system driven by that
particular kind of pulses only. Therefore, the dataset needs to
consist of examples of control sequences whose pulse shape is of
interest. This would result in a smaller dataset and the training
complexity decreases. Thus, experimental constraints arising from
the specifications of the available hardware defines what control
capabilities are available, which in turn simplifies the process of
training the ML algorithm. In this paper, we do not consider
training the algorithm on datasets consisting of different pulse
shapes. However, we construct different datasets and train
different ‘instances’ of the algorithm on each dataset indepen-
dently. This is done for the purpose of proving the concept, and
showing that the proposed algorithm works with different pulse
shapes. Later in this section, we give details about the different
datasets we constructed in this paper, as well as the results of
training and testing the algorithm on each of the datasets
individually.

The size of the dataset (i.e., the number of instances) is usually
chosen empirically. The general rule of thumb is that the more
training examples are used, the better the generalization of the
algorithm is. Moreover, the more testing examples are used in
the assessment process, the better the assessment is. So, usually
the procedure is iterative where we start with some size for the
dataset, train the algorithm, assess the performance, and then
decide whether the size is sufficient or not. Note, however, that we
might be constrained by some upper limit on the dataset size
before the process of data collection becomes infeasible. This is
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one of the main challenges facing the design of modern ML
algorithms.

Training and testing

The second step after constructing the dataset, is to choose a loss
function for the model. This a function that measures how
accurate the outputs predicted by the model compared to the
true outputs. This choice depends on the application under
consideration. In our case, we shall use the mean-square-error
(MSE), averaged over all 18 measurement outcomes. The weights
of the model are chosen such that the loss function is minimized.
Ideally, we seek a global minimum of the loss function but in
practice this might be hard and we probably end up with a local
minimum. However, practically, this usually provides sufficient
performance.

The third step is to choose an optimization algorithm. The
optimization is for finding the weights of the model that
minimizes the loss function averaged over all training examples.
The standard method used in ML is backpropagation that is
essentially a gradient descent-based method combined with an
efficient way of calculating the gradients of the loss function with
respect to the weights. There are many variants of the back-
progation method in the literature, the one we choose to use in
this paper is the Adam algorithm®>. There exist also other
gradient-free approaches such as genetic algorithm (GA)-based
optimization®®.

The fourth step is to actually perform the training. In this case,
we initialize the weights of the model to some random values,
then apply enough iterations of the optimization algorithm till the
loss function reaches a sufficiently small value. In the case of MSE,
we would like it ideally to be as close as possible to 0, but this
could require infinite number of iterations. So, practically we stop
either when we reach sufficient accuracy or we exceed a
maximum number of steps.

A final thing to mention is that because the whiteboxes do not
have any trainable parameters, the blackboxes are enforced
through the training to generate outputs that are compatible with
the whiteboxes, so that we end up with the correct physical
quantities.

After executing the aforementioned steps for training the
algorithm, it will be able to predict accurately the outputs of the
training examples. In our application, this by itself is useful
because we can easily probe the output of the V; layers and use
that prediction for various purposes. However, we have to ensure
the model is also capable of generalizing to new examples. This is
where the portion of the dataset used for testing comes in place.
The trained algorithm is used to predict the outcomes of the
control pulse sequences of the testing subset, and the average
MSE is calculated. Next, the testing MSE is compared to the
training MSE. If the testing MSE is sufficiently low then this
indicates the model has good predictive power. Ideally, we need
the MSE of the testing subset to be as close as possible to the MSE
of the training subset. Sometimes this does not happen and we
end up with the testing MSE being significantly higher than that of
the training MSE. This is referred to as overfitting. In order to
diagnose this behavior we usually plot the MSE of both subsets
evaluated at each training iteration on the same axes, versus the
iteration number. Note, that the testing examples or the testing
MSE do not contribute at all to the training process of the
algorithm, they are just used for performance evaluation. If both
curves decrease as the number of iterations increase, until
reaching a sufficiently low level, then the model has a good fit.
If the testing MSE saturates eventually or worse starts increasing
again, then the algorithm is overfitting. There are many methods
proposed in the classical machine-learning literature to overcome
overfitting, including decreasing the model complexity, increasing
the number of training examples, and early stopping (i.e., stop the
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Table 1. The different simulation parameters used for generating the
datasets.

Parameter Description Value
T Evolution time 1

M Number of discrete time steps 4096
K Number of noise process realizations 1000
Q Energy gap 10

iterations before the testing MSE of the testing starts to increase).
On the other hand, the significance of overfitting on the
performance of a model depends on the application, and the
required level of accuracy. This means that a model might be
experiencing some overfitting behavior, but the prediction
accuracy is still sufficient.

Implementation

We implemented the proposed protocol using the “Tensorflow”
Python package®, and its high-level APl package “Keras™’. We
also implemented a simulator of a noisy qubit, to generate the
datasets for training and testing. It simulates the dynamics of the
qubit using Monte Carlo method rather than solving a master
equation, to be general enough to simulate any type of noise. The
details of the design and implementation of this simulator are
presented in Supplementary Note 1. We chose the simulation
parameters as shown in Table 1.

We created three categories of datasets using the simulator,
summarized in Table 2, as follows.

1. Qubit with noise on a single-axis and control pulses on an
orthogonal axis.
The Hamiltonian in this case takes the form
1 1
H= > (Q+B,(t)o, + Efx(t)ox. (28)
We chose the noise to have the following power spectral
density (PSD) (single-side band representation, i.e. the
frequency f is non-negative)

(f—20)2

% + 0.8e7 10

0<f <50

Sz(f) = (29)

(F-20)2

0.25+40.8e7 1™ f>50

Figure 2a shows the plot of this PSD. The reason for
choosing such a form is to ensure that the resulting noise is
general enough, while also covering some special cases
(such as 1/f noise). Also, the total power of the noise is
chosen such the effect of noise is evident on the dynamics
(i.e., having coherence < 1). In this category, we generated
two datasets. The first one is for CPMG pulse sequences with
Gaussian pulses instead of the ideal delta pulses. So, the
control function takes the form

Nmax 2

o)=Y Ae ot
n=1

where ¢ =5, and A== and 1, = (”‘m&)T The

n

(30)

highest order of the sequence was chosen to be
Nmax = 28. Now, this means we have a set of 28 examples
only in the dataset. In order to introduce more examples in
the dataset, we randomize the parameters of the signal as
follows. The position of the ™ pulse of a given sequence is
randomly shifted by a small amount &, chosen at uniform
from the interval [—60, 60]. As a result, we lose the CPMG
property that all pulses are equally spaced. However, this
can be useful experimentally when there is jitter noise on
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Table 2. The datasets generated by computer simulations of a noisy qubit for training and assessing the performance of the proposed machine-
learning algorithm.
Category Name Pulse shape Noise Control # Training # Testing
1 CPMG_G_X_28 Gaussian (x) 2100 700
1 CPMG_S_X_28 Square (x) 2100 700
2 CPMG_G_XY_7 Gaussian (x, 2) x, ) 3625 1225
2 CPMG_G_XY_pi_7 Gaussian x, 2) x, ) 3625 1225
3 CPMG_G_XY_7_nl Gaussian x ¥ 3625 1225
3 CPMG_G_XY_pi_7_nl Gaussian x ) 3625 1225
a b
1.0 A 1.0 A
0.8 1 0.8 1
__0.61 — 0.6
< <
~ s
20 2N
0.4 0.4 1
0.2 1 0.2 1
0.0 1 0.0
6 2'0 4'0 6'0 8'0 100 ('J 2'0 4'0 6'0 8'0 100

f

the pulses. Additionally, we also randomize the power of the
pulse. In this case, we vary the amplitude A by scaling it with
randomly by amount 6, chosen at uniform from the interval
[0, 2]. For this randomization, we scale all the pulses in the
same sequence with the same amount. Again we lose the
property of CPMG sequences that they are - pulses, but this
is needed so that the algorithm can have sufficient
generalization power. With these two sources of random-
ness, we generate 100 instances of the same order resulting
in a total of 2800 examples. Finally, we split randomly the
dataset following the 75:25 ratio convention into training
and testing subsets.

The second dataset in this category is very similar with
the only difference being the shapes of the pulses. Instead
of Gaussian pulses we have square pulses with finite width.
The control function takes the form

Mmax
ZAu(t -1, — 0.50)u(t, + 0.50 — t),

n=1

f(t) = (31)
where u(-) is the Heaviside unit step function, o = ?W—T, and
A =Z. The same scheme for randomization and splitting is
used in this dataset.
Qubit with multi-axis noise, and control pulses on two
orthogonal directions.

The Hamiltonian in that category takes the form

H= %(Q +B,(t))o, + 1 (Fx(t) + B, (1))0y + %fy(t)o-y (32)

2

We chose the noise along z-axis to have the same PSD as in
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Fig.2 Powers spectral density of the noise signals that were used to generate the datasets in categories 1 and 2. The plot in a is for Sz(f)
and the plot in b is for Sx(f.

Eq. (33), while the noise along the x-axis has the PSD

(f-15)2

W 4+ 0.5e7

0<f <20
Sx(f) = 33)

(5/48) + 0.5e— 7

f>20

Figure 2b shows the plot of this PSD. This category consists
of two datasets. The first one consists of CPMG sequences of
maxmimum order of 7 for the x- and y- directions. We take all
possible combinations of orders along each direction. This
leaves us with 49 possible configurations. We follow the
same randomization scheme discussed before applied to the
pulses along the x- and y-directions separately. We generate
100 examples per each configuration and then split into
training and testing subsets. The second dataset is similar
with the only difference that the we do not randomize over
the pulse power, we just randomize over the pulse positions.
Qubit without noise (i.e., a closed quantum system), and
pulses on two orthogonal directions.
The Hamiltonian takes the form

1 1 1
H= EQGZ + EfX(t)OX + Efy(t)oy (34)

This category has only datasets as well which follow the
same scheme of pulse configuration and randomization as

the second category dataset. The only difference is that the
absence of noise.

It is worth emphasizing here that since we are generating the

datasets by simulation, we had to arbitrarily chose some noise
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Table 3. The average MSE evaluated for the various datasets at the
end of the training process.

Dataset # Iterations MSE training MSE testing
CPMG_G_X_28 3000 9.86x10° 1.03x10°*
CPMG_S_X_28 3000 1.05x10°* 1.14%x107*
CPMG_G_XY_7 3000 412x107* 436x 107"
CPMG_G_XY_pi_7 3000 247%x107% 2.38x107*
CPMG_G_XY_7_nl 3000 832x107° 831x107°
CPMG_G_XY_pi_7_nl 3000 1.50x 107 1.52%x10°°

The average is calculated over the mutually exclusive training and testing
subsets.

models and pulse configurations. In a physical experiment
however, we do not assume any noise models and just directly
measure the different outcomes. Moreover, the pulse configura-
tions should be chosen according to the capability of the available
experimental setup.

Numerical results

The proposed algorithm was trained on each of the different
datasets to assess its performance in different situations. The
number of iterations is chosen to be 3000. Table 3 summarizes the
MSE evaluated at the end of the training stage for both training
and testing examples. Figure 3 shows the history of the training
procedure for each of the datasets. The plot shows the MSE
evaluated after each iteration for both the training and testing
examples. For the testing examples, the MSE evaluated is just
recorded and does not contribute to the calculation of the
gradients for updating the weights. Figure 4 shows a violin plot of
the MSE compared across the different datasets; while Supple-
mentary Figure 2 shows the boxplot. Supplementary Figures 3 to 8
show the square of the prediction errors for measurement
outcome in the best case, average case, and worst-case examples
of the testing examples of each dataset.

Dynamical decoupling and quantum control

For the model trained on the single-axis Gaussian dataset
CPMG_G_X_28, we tested the possibility of using it perform some
quantum control tasks. Particularly, we implemented a simple
numerical optimization-based controller that aims to find the
optimal set of signal parameters to achieve some target quantum
gate G. We used the cosine similarity as an objective function,
which is defined for two d x d matrices U and V as

2

. tr[U'V]

F(U,v) = (35)
tr{UTU)tr[VTV]

satisfying that 0 < F(U, V) < 1. This is a generalized definition for

fidelity that reduces to the standard definition of gate fidelity

when U and V are unitary,

1
F(U,V) = 7 |tr[UTV] ]2 (36)
Ideally, we target four objectives listed as follows:
F(Vo,I) =1, YO € {X,Y,Z} 37)
F(Uew, G) = 1, (38)

where V and Uy are estimated from the trained model. The first
three conditions are equivalent to getting rid of the effects of
noise, while the last one is equivalent to having achieve evolution
described by quantum gate G. Practically, it is hard to completely
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remove the noise effects, so what we want to do is to find the set
of optimal pulse parameters {a} such that
? + (F(Uanlal], G) = 1)".

(39)

Then using this objective function we can numerically find the
optimal pulse sequence. Utilizing this formulation allows us to
treat the problem of dynamical decoupling exactly the same, with
G =1. It is important to mention that this is just one method to do
quantum control, which might have some drawbacks because of
its multi-objective nature. For instance, the optimization could
result in one or more of the objectives having sufficient
performance, while the others are not. An example of this case
is where Uy becomes so close to G, while the V, operators are
still far from the identity. This means that the overall evolution will
not be equivalent to G. There are ways to overcome this problem.
For example, we can optimize over the observables instead of the
operators or optimize over the overall noisy unitary U. However,
this is a separate issue, and we defer it to the future work of this
paper. We present these results as a proof of concept that it is
possible to use the trained model as a part of a quantum control
algorithm. We tested this idea to implement a set of universal
quantum gates for a qubit. The resulting fidelities are shown in
Table 4. The control pulses obtained from the optimization
procedures are shown in Fig. 5 and Supplementary Fig. 9.

o = argmin (E(Vx[a], 1) — 1)* + (E(Vy[a], 1) — 1)° + (E(Vz[a],1) — 1)

Quantum noise spectroscopy

It is also possible to use the trained model to estimate the PSD of
the noise using the standard Alvarez-Suter (AS) method?. In this
case, we use the trained model to predict the coherence of the
qubit (that is the expectation of the X observable for the X + initial
state [E{X(T)},_y,) for a set of CPMG sequences at the correct
locations and powers. Then, from the predicted coherence we can
find the power spectrum that theoretically produces these values.
In order to do so we have to assume the noise is stationary and
Gaussian. Here, we have trained a separate model with CPMG
sequences up to order 50. Since the evolution time T is fixed, the
higher the order of the sequence is, the higher the accuracy of the
estimated spectrum would be specially at high frequencies. On
the other hand, because the pulses still have finite width, there is a
maximum we could apply during the evolution time and thus we
can only probe the spectrum up to some frequency. Figure 6
shows the plot of the estimated PSD of the noise versus the
theoretical one, as well as the coherences obtained from
predictions of the model, as well as the theoretical ones. We
emphasize here that the point of presenting this work is to
develop a method that is more general than the standard QNS
method. However, we show in this application that we can still
utilize the conventional methods combined with our proposed
one. Also, in this experiment the focus was on showing the
possibility of doing spectrum estimation. We did not use the
trained models discussed in the previous section as they are
limited to 28 pulses, which prevents the probing of the spectrum
using the AS method to high frequencies.

DISCUSSION

The plots presented in the “Results” section are useful to assess
the performance of the proposed method. First, we can see that
for all datasets, the average MSE curve evaluated over the training
examples versus iterations decreases on average with the number
of iterations. This means that the structure is able to learn some
abstract representation of the each of the V,, operators as function
of the input pulses. For the testing subsets, we see that the MSE
curves goes down following the training MSE curves. This
indicates that the model is able to predict the observables for
the training and testing examples, and thus the fitting is good.
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Fig. 3 The average MSE evaluated for the training and testing examples versus the iteration number for the various datasets. The first
row is for a CPMG_G_X_28 and b CPMG_S_X_28. The second row is for ¢ CPMG_G_XY_7 and d CPMG_G_XY_pi_7. The final row is for
e CPMG_G_XY_7_nl and f CPMG_G_XY_pi_7_nl. The plots show a “good fit” model since both lines are close for each datasets, and they are
decreasing as the number of iterations increase. The small fluctuations at the end of the plots result from the gradients of the loss function
being noisy, and are exaggerated due to the logarithmic scale of the plot.

Second, the violin plot and boxplot of the MSE of the testing
subsets show that there exists some minor outliers, which we
would expect anyway from a machine-learning-based algorithm.
However, most of the points are concentrated at or below the
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median. This indicates that for most testing examples, the
prediction was accurate (Note, the lower the MSE the better the
prediction is). The best performing cases of the algorithm in terms
of the spread of the testing MSE around the median was category
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0.1 3 datasets. This is expected since in that category the quantum
system is closed. Category 2 datasets had a slightly higher median
0.01 1 compared to category 1 datasets. This can be explained due to the
fact that in category 2, the qubit had multi-axis noise, which
0.001 4 means the overall noise strength is higher than the category 1
datasets. This is a general observation that we would expect that
w the stronger the noise is, the harder it is to predict the outcomes.
£ 0.0001 1 = Finally, if we look into the worst-case examples, we see that
they are actually performing well in terms of accuracy for the
1e-05 1 different datasets. The overall conclusion from this analysis is that
proposed model is able to learn how to predict the measurement
1e-06 - & outcomes with high accuracy. The noisy multi-axis datasets had
slightly less accuracy than the single-axis and the noiseless
le-07 T T T T T T
’}% ’)ﬁb .\‘_\/) Q\/ /\S\ §
X 02 o2 £ Euls 7 Table 4. The resulting generalized infidelity between the predicted
Cz%\ dﬁ\ S Q@OS’ QV“O/ 09“} and target operators using the trained machine-learning model.
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datasets, which might be worth investigation and is subject to the
future work.

The results of the applications of the trained model are also very
promising. The fidelities obtained for the different quantum gates
are above 99% including the identity gate, which is equivalent to
dynamical decoupling. This indicates that we can use numerical
quantum control methods combined with our proposed one. We
were also able to show the possibility of estimating the spectrum
of the noise using the AS method. These results could be
enhanced by including longer pulse sequences, which requires
increasing the overall time of evolution. Thus, the proposed
framework is general enough to be used for different tasks in
quantum control.

In this paper, we presented a machine-learning-based method
for characterizing and predicting the dynamics of an open
quantum system based on measurable information. Expressing
the quantum evolution in terms of the V operators instead of a
master equation (such as the Lindblad master equation) allows
our method to work with general non-Markovian dynamics. We
followed a graybox approach that allows us to estimate the V,
operators, which are generally difficult to calculate analytically
without assumptions on noise and control signals. We showed the
method is applicable to the general case where the noise is
defined by a non-unital quantum map, but restricted the
numerical experiments in this paper on the case of classical noise
(unital dynamics). The numerical results show good performance
in terms of prediction accuracy of the measurement outcomes.
However, this is not the end of the story. There are lots of points to
explore as an extension of this work.

In terms of our control problem, there are two direct extensions.
The first relates to that generality of the model used in the
whiteboxes. We chose here to study a classical bath because its
dynamics was amenable to simulations. However, the learning
algorithm itself does not depend on the details of the noise
Hamiltonian, and indeed one only needs that Eq. (8) holds—
essentially that what we know about about open quantum
systems holds—and that given {f,(t)} one can write U.(T). A more
important direction our results allow, however, is related to the
observation that we are characterizing the open quantum system
relative to the given set of control capabilities. Here, we chose a
simple set to demonstrate how our algorithm learned about the
open quantum system dynamics it relative to them (see also ref. 2*
for a formal analysis of this observation) and is capable of
predicting the dynamics under control functions {f,(t)} achievable
by those capabilities. However, our algorithm is generic, in the
sense that it can be applied to a set of control capabilities that is
relevant to a specific experimental setup, e.g., when convex sums
of Gaussian or Slepian pulses are available or when certain timing
constraints must be obeyed, etc. Similar to what we showed here
in the sample applications, one can then implement optimal
control routines tailored to a specific platform. We are currently
working on such targeted result.

On the ML side, the blackboxes can be further optimized to
increase the accuracy specially for the noisy multi-axis datasets.
There are lots of architectures that one could exploit. We tried to
present the problem in a way that that would facilitate for
researchers from the machine-learning community to explore and
contribute to this field. we emphasize on the importance of
understanding the theory so one can know limitations and
assumptions of various tools. This is the essence of using the
graybox approach, as opposed to using only a blackbox (which is
often criticized in the physics community). Moreover, one could
make use of existing results in machine-learning that deals with
incomplete training data®®™®". These could be leveraged to reduce
the number of required experiments, which would be useful
particularly for higher dimensional systems.

In summary, we have established a general ML tool that
integrates the concept of a graybox with the problem of
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characterizing (and eventually controlling) an open quantum
system relative to a set of given control capabilities. We made
every effort to present the result in a way that is palatable for both
the physics and the ML community, with the hopes of establishing
a bridge between the two communities. We believe this
interaction to be necessary in order to achieve efficient and
robust protocols that can tackle the extremely relevant problem of
high-quality control of multiple qubits in Noisy Intermediate-Scale
Quantum era machines and beyond.
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