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Progress toward a capacitively mediated CNOT between two
charge qubits in Si/SiGe
E. R. MacQuarrie 1, Samuel F. Neyens1, J. P. Dodson1, J. Corrigan1, Brandur Thorgrimsson1, Nathan Holman1, M. Palma1, L. F. Edge2,
Mark Friesen 1, S. N. Coppersmith 1,3 and M. A. Eriksson1✉

Fast operations, an easily tunable Hamiltonian, and a straightforward two-qubit interaction make charge qubits a useful tool for
benchmarking device performance and exploring two-qubit dynamics. Here, we tune a linear chain of four Si/SiGe quantum dots to
host two double dot charge qubits. Using the capacitance between the double dots to mediate a strong two-qubit interaction, we
simultaneously drive coherent transitions to generate correlations between the qubits. We then sequentially pulse the qubits to
drive one qubit conditionally on the state of the other. We find that a conditional π-rotation can be driven in just 74 ps with a
modest fidelity demonstrating the possibility of two-qubit operations with a 13.5 GHz clockspeed.
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INTRODUCTION
With charge, valley, and spin degrees of freedom, quantum dots in
silicon are promising hosts of many different types of qubits.
Using the electronic spin state as the logical basis has enabled
high fidelity single-qubit operations1 and demonstrations of two-
qubit gates2–9. To date, two-qubit gates in Si quantum dots have
been mediated by a spin–spin exchange interaction or by
coupling via a superconducting resonator10.
Alternatively, a capacitive interaction can be used to coherently

couple neighboring double dot qubits using the electronic charge
degree of freedom. Capacitive coupling has been used to perform
fast two-qubit operations in charge qubits11 and singlet-triplet
qubits12,13 in GaAs quantum dot devices.
In Si-based quantum dot devices, a strong14 and tunable15

capacitive interaction between double dots has been demon-
strated and used to perform qubit control conditionally on the
state of a classical two level system16. The strength of this
interaction makes it a promising candidate for coupling qubits
that have a tunable charge dipole moment such as the quantum
dot hybrid qubit (QDHQ)17–19. Fast, multi-qubit control presents a
number of challenges, however, such as pulse synchronization
across a device. Here, we use capacitively-coupled charge qubits
to explore these challenges by measuring correlated oscillations
between two simultaneously-driven qubits, by using those
dynamics to synchronize our multi-qubit control channels, and
by using this interaction to drive a fast (74 ps) conditional
π-rotation.

RESULTS
Device details
To perform capacitively-coupled two-qubit measurements, we
fabricate a linear chain of four quantum dots using an
overlapping-aluminum gate architecture (Fig. 1a)14,15,20,21. The
fabrication details for this device have been reported elsewhere15.
Measurements are performed in an Oxford Triton 400 dilution
refrigerator with a ~15mK mixing chamber temperature. We tune
the device to host two tunnel-coupled double dots, each

nominally residing in the (1,0)–(0,1) charge configuration (Fig.
1b). In all measurements reported here, the double dot electron
temperature was T elec

0 ¼ 228 mK and the charge reservoir
temperature was T res

0 ¼ 321 mK (see Supplementary Note 1).
Two additional quantum dots are formed on the bottom half of

the device to enable charge sensor readout of the qubit states.
The current through the left charge sensor feeds into a room
temperature current preamplifier and the resulting voltage is
measured with a lock-in amplifier. The right charge sensor current
is amplified at the mixing chamber of our dilution unit using a
home-built two-stage cryogenic amplifier22. It is then amplified
again at room temperature, and the resulting voltage is measured
with a lock-in amplifier. While the right charge sensor only
responds to the right double dot (RDD), during qubit operations
the left charge sensor measures both the RDD and the left double
dot (LDD). Both charge sensors are used in the measurements that
follow. As detailed in Methods section, appropriate normalization
measurements allow us to subtract the calibrated RDD signal from
the left charge sensor data, enabling independent measurement
of the two qubits.

Qubit initialization, control, and latched readout
In our device, each double dot has an outer dot that neighbors a
charge reservoir and an inner dot that is isolated from any
reservoir. During qubit operations, we initialize each charge qubit
at a large detuning εI where one electron localizes into the qubit’s
outer dot ( ψ0j i ¼ Lj i for the LDD; ψ0j i ¼ Rj i for the RDD). Single-
qubit operations are described well by a charge qubit Hamiltonian

H1Q ¼ ε

2
σz þ tcσx (1)

where ε is the double dot detuning, tc is the tunnel coupling, and
σx, σz are the standard Pauli operators in the position basis {L, R}.
As discussed in Supplementary Note 3, we have neglected the
valley excited states that can be seen in Si/SiGe quantum dot
qubits.
To perform quantum control, we apply a fast dc pulse to move

the system to ε= 0. This rapid pulse non-adiabatically changes the
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qubit Hamiltonian to generate σx rotations at a rate of 2tc. These
rotations persist until the detuning is moved back to εI. If some
fraction of the electron remains in the inner dot at the end of the
coherent evolution, then there is nonzero probability that a
second electron will tunnel from the reservoir into the outer dot
before the qubit relaxes into ψ0j i. When this occurs, the qubit is
projected into the (1,1) charge configuration and remains there
until a co-tunneling process reinitializes the qubit into ψ0j i,
providing a latched-state readout process23,24.
Using the metastable (1,1) charge configuration for latched-

state readout provides two advantages. First, when the qubit
enters the latched state, a second electron is added to the double
dot system. This produces a larger shift in the charge sensor
current than the mere relocation of a single electron. Secondly,
this change in charge configuration persists for a much longer
time because the co-tunneling process needed for reinitialization
is generally much slower (TLatch > 100 ns) than charge qubit
relaxation (T1 < 10 ns in this device—see Supplementary Note 4
for measurement details). Both of these mechanisms increase the
signal generated by our qubit measurements.
To maximize the probability that a driven state becomes

latched, we tune the tunnel rate between the reservoir and the
outer dot to be much larger than the charge relaxation rate
between the two dots (ΓLoad ≫ 1/T1). Figure 1c provides a
schematic representation of this latched measurement strategy
for the RDD, and Fig. 1d shows the latched state readout window
that appears when dc pulses are applied to the stability diagram in
Fig. 1b. This measurement was performed by shuttering our
control pulses at a fixed repetition rate, locking in to the presence
and absence of control pulses, and measuring the time-averaged
charge sensor response. All qubit data reported here were
measured with this latched-state, time-averaged technique.

Single-qubit measurements
With each qubit tuned to the nominal (1,0)–(0,1) charge
configuration, we use dc control pulses to perform single-qubit
Ramsey measurements of the qubit inhomogeneous dephasing
times T�

2. The pulse sequence (Fig. 2a) begins with initialization at
large detuning εI. A sudden dc-shift to ε = 0 turns on σx rotations
in the {L, R} basis. After a (n + 1)π/2 rotation, we apply a second
dc-shift, moving to nonzero detuning and adding a σz component
to the Hamiltonian to start phase accumulation. Returning to ε = 0
allows us to perform a second (n + 1)π/2 rotation, projecting the
accumulated phase onto the z-axis of the {L, R} Bloch sphere.
Finally, moving back to εI for latched state readout maps the
charge qubit coherence onto the measured charge sensor
current25.
The Ramsey data for the LDD and RDD are shown in Fig. 2b, c,

respectively. Both qubits display coherent behavior. By extracting
the frequency of the Ramsey fringes as a function of detuning, we
map the dispersion of our qubits and confirm that Eq. (1)
appropriately describes each system. At large detuning (ε/h > 30
GHz), however, the RDD dispersion begins to deviate from the
expected charge qubit behavior. This could be due to timing
artifacts in our control hardware as the rotation speed surpasses
the 40 ps rise time of our waveform generator. Alternatively, this
could be evidence of a low-lying valley state generating additional
curvature in the dispersion near ε = 026.
The LDD Ramsey fringes lose all visibility for free evolution at ε >

0. This could be due to imperfect pulse edges creating
unintentional adiabaticity. Such an effect would have been more
apparent in the LDD than in the RDD due to the larger tunnel
coupling (tLc=h ¼ 9:9 GHz versus tRc=h ¼ 5:0 GHz) requiring faster
rise times for true nonadiabatic control.
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Fig. 1 Device and measurement details. a False-color scanning electron micrograph of a device nominally identical to the one measured
here. Gates P1 and P4 are used for fast dc control as described in Supplementary Note 2. The scale bar indicates 200 nm. b Stability diagram of
the right double dot tuned to the nominal (1,0)–(0,1) charge configuration. c Schematic depiction of latched state readout for the right double
dot with a charge reservoir to the right and a hard-wall potential on the left. Latched readout projects the excited charge qubit state into a
(1,1) charge configuration when the tunnel rate from the charge reservoir ΓLoad exceeds the charge qubit relaxation rate 1/T1. d Stability
diagram in b with fast dc control pulses applied to P1. The bright triangular region indicates the latched readout window, and the white
arrows illustrate the applied dc pulse.
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For large detunings, the qubit dispersion is approximately linear
in ε. Assuming non-Markovian detuning noise dominates the
dephasing27, we can fit the decaying coherence to a Gaussian
envelope e�t2=T�22 and find that for large detunings T�

2 ¼ 80 ± 20 ps
and 109 ± 6 ps for the LDD and RDD, respectively. These
dephasing times can be explained by quasistatic detuning noise
with standard deviations given by σε ¼ h=

ffiffiffi
2

p
πT�2 where h is

Planck’s constant. For the LDD and RDD, we find comparable
values of 12 ± 4 μeV and 8.5 ± 0.5 μeV, respectively (additional
details in the Supplementary Note 5).

Correlated Oscillations
The two qubits in our device are capacitively coupled with a gate-
voltage tunable coupling coefficient g15. In the two-qubit position
basis {LL, LR, RL, RR}, the Hamiltonian describing this coupled
system can be written as11

H 2Q ¼ εL
2
σz � I þ tLcσx � I þ εR

2
I � σz

þ tRc I � σx þ g
4
ðI � σzÞ � ðI � σzÞ

(2)

where εL (εR) and tLc (t
R
c ) are the detuning and tunnel coupling in

the LDD (RDD) and I is the identity matrix. The σz ⊗ σz nature of
the capacitive interaction generates a detuning offset in one qubit
conditionally on the state of the other (Fig. 3a, b). This capacitive
interaction can be used to build state correlations between the
two qubits, which we will use to synchronize one qubit’s control
pulses with those of the other. We note that the latched state
readout described above also creates a capacitive shift upon
projection into the latched state due to the introduction of an
additional charge into the system. This shift is of comparable
magnitude to the coherent two-qubit interaction but only appears
after a qubit has been pulsed into its readout window (details in
Supplementary Note 6).
In order to observe such correlations, we first tune a

Hamiltonian with tLc=h ¼ 4:2, tRc=h ¼ 3:3, and g/h = 15.3 GHz.
We then pulse the RDD to its anti-crossing at εR = 0. A time Δ
thereafter, we pulse the LDD to εL = g, the location of its unshifted
anti-crossing. The two qubits then simultaneously evolve accord-
ing to the two-qubit Hamiltonian H2Q. After an evolution time τL
(τR), we pulse the LDD (RDD) into its readout window for
projection into the latched state. Because the latched readout
state produces a capacitive shift of similar magnitude to the two-
qubit interaction, the RDD (LDD) then continues evolving
conditionally on the projected state of the LDD (RDD). By
independently varying τL and τR as shown in Fig. 3c, d, we can
then observe coherent two qubit dynamics along the diagonal of
Fig. 3c, d where both qubits evolve at their respective anti-
crossings. Away from that diagonal, we observe correlated two
qubit evolution since one qubit has been conditionally projected
into its latched state for some portion of the measurement. In Fig.
3d, for instance, when τL < τR − Δ the RDD continues evolving
after the LDD has been pulsed to its readout window. If the LDD

was projected into its latched state, the resulting capacitive shift
prevents further oscillations in the RDD. Otherwise, the RDD
continues to oscillate with τR. Importantly, by using the abrupt
change in charge dynamics along the diagonal of Fig. 3 as
feedback, we are able to sync our fast dc pulses at the mixing
chamber to within ~80 ps.
As shown in Fig. 3e, f, we recreate the measured two-qubit

evolution by numerically solving the von Neumann equation
using the Hamiltonian presented in Eq. (2). Dephasing from
charge noise is included by convolving this simulation with
perturbations to both εL and εR (i.e. εi → εi + δεi). We assume these
perturbations follow Gaussian distributions with standard devia-
tions given by σε = 12 and 8.5 μeV, respectively. Notably, the only
free parameter in this simulation is the fixed offset between the
rising edges of the pulses, which we fix to Δ = 150 ps. Additional
simulation details are provided in Supplementary Note 8.

Towards a two-qubit gate
The capacitive interaction can also be used to drive one qubit
conditionally on the state of the other as has been demonstrated
experimentally in GaAs charge qubits11 and proposed theoreti-
cally in Si/SiGe QDHQs19. To demonstrate conditional rotations, we
designate the LDD the control qubit and the RDD the target. We
shift the control qubit to εL = g (the location of the LDD anti-
crossing for the initialized state LRj i), allow it to evolve for
some time τL, and then shift it to a large detuning εidle that lies
outside the readout window. The addition of this idle step delays
the conditional projection of the control qubit into its latched
state, ensuring that the control qubit remains within its
computational basis during target qubit operations. While the
control qubit is idling, the target qubit is pulsed to εR = 0 and
is conditionally driven dependent on the state populations of the
control qubit. This pulse on the target qubit constitutes our
conditional driving. Both qubits are then moved into their readout
windows for latched-state measurement. We note that the control
qubit dephases during its idle period (T�

2 ¼ 80 ± 20 ps at εidle), but
because dephasing does not alter qubit state populations, this
does not affect the target qubit evolution. The results of this
measurement generate the patchwork pattern shown in Fig. 4a,
which is a hallmark of conditional evolution.
Next, we characterize the fidelity of a conditional π-rotation at a

tuning where tLc=h ¼ 7:2, tRc=h ¼ 5:4, and g/h= 28 GHz (Supple-
mentary Note 6). Our latched-state measurement technique
provides the time-averaged values of 〈σz ⊗ I〉 and 〈I ⊗ σz〉.
Without joint single shot readout or a verified, high fidelity two-
qubit gate, this is not enough information to perform two-qubit
tomography28, so we restrict our analysis to input states for which
both qubits are expected to evolve into single-qubit eigenstates.
For these inputs, we can assume the resulting two-qubit state is
separable and our readout provides the appropriate populations
for construction of the truth table Mexp describing our conditional
operation.
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Fig. 2 Single qubit dispersions. a Dispersion (orange) and pulse sequence (cyan) for measuring Ramsey oscillations at a detuning ε for a free
evolution time τ. b, c Ramsey oscillations measured in b left and c right double dots. The extracted charge qubit dispersions with tLc=h ¼ 9:9
GHz and tRc=h ¼ 5:0 GHz are shown in the insets.
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To measure Mexp, we follow the pulse sequences shown in Fig.
4b to prepare each input state {LR, LL, RR, RL}. We then measure
the resulting output after application of an additional driving
pulse of length τt on our target qubit. As discussed in the Methods
section, the charge sensor dedicated to the control qubit
measures both qubits simultaneously. To account for this, we
use the calibrated signal from the target qubit’s charge sensor to
isolate the control qubit response. We then perform a maximum
likelihood estimate to ensure positive probabilities29. Figure 4c, d
shows the results of this measurement.
Selecting τt = 74 ps maximizes the average of the logical state

input fidelities (the inquisition I30) at a modest value of I ¼ 63%.
At this point, in the {LR, LL, RR, RL} basis,

Mexp ¼

0:22 0:65 0:12 0:09

0:68 0:33 0:02 0:13

0:03 0:02 0:73 0:32

0:08 0:01 0:13 0:46

0
BBB@

1
CCCA (3)

which we compare to an ideal conditional π-rotation

Mπ ¼

0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

0
BBB@

1
CCCA: (4)

Notably, the input state that requires the most preparation
( RLj i) has a significantly lower fidelity (46%) than the other input
states. This suggests that state preparation errors are a dominant
source of infidelity in our conditional operation, although tunnel
coupling noise and state relaxation could also contribute as
discussed in Supplementary Note 9.

DISCUSSION
Although the 74 ps conditional π-rotation demonstrated here is
consistent with a two-qubit CNOT, the T�

2 ¼ 80 ± 20 ps dephasing
time of the control qubit during its idle step limits any claim of a
coherent two-qubit processor. Nevertheless, the 13.5 GHz two-
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Fig. 3 Correlated qubit evolution. a, b Dispersions (orange) and pulse sequences (cyan) for simultaneously driving two charge qubits. Both
the capacitively-shifted (light orange) and unshifted (dark orange) dispersions are shown. c, d Measured two-qubit response to simultaneous
driving. In c, charge sensor crosstalk has been subtracted as described in the Methods section, and the black pixels lie outside the range of the
plotted color scale. In d, a jump in the charge sensor has been normalized out of the data as described in Supplementary Note 7.
e, f Simulated two-qubit response to simultaneous driving. In this measurement, the right double dot pulse starts 150 ps before the left
double dot pulse. We note that the time evolution in this figure occurs near each qubit’s anti-crossing, so coherent oscillations persist for
longer times than those in Fig. 2.
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qubit clockspeed highlights the benefit of using the strong
capacitive interaction for inter-qubit coupling. Encoded qubits
that have a tunable electric dipole moment such as the QDHQ
stand to benefit from this fast gate speed without suffering from
dephasing during idle periods. Compared to the charge qubits
used in this work, higher fidelity single-qubit operations18 and
longer coherence times31 for the QDHQ could also reduce state
preparation errors and enable the extended pulse sequences
needed for a multi-qubit processor.
In summary, we have demonstrated correlated and conditional

evolution between two capacitively coupled charge qubits. After
quantifying the single-qubit coherences, we simultaneously drove
coherent rotations in both qubits to demonstrate correlated two-
qubit evolution. We then operated in a sequential-driving mode to
demonstrate a fast (74 ps) conditional π-rotation with a modest
average fidelity (63%) that was likely limited by state-preparation
errors. These results represent an important demonstration of the
promise capacitive coupling holds for two-qubit interactions in Si/
SiGe double dot qubits.

METHODS
Crosstalk subtraction
During our two-qubit measurements, the left charge sensor was sensitive
to both the LDD and RDD qubits, whereas the right charge sensor was only
sensitive to the RDD qubit dynamics. Supplementary Note 7 provides data
demonstrating this crosstalk, which obfuscates the LDD qubit dynamics. A
series of appropriate normalization measurements allow us to deconvolve
the LDD and RDD signal from the left sensor data.
Since the right sensor only measures RDD qubit dynamics, two

normalization measurements are performed for this signal. First, the right
sensor is measured after the LDD and RDD qubits have been initialized into
Lj i and Rj i, respectively, providing RLR. Next, the right sensor is measured
after the RDD qubit has been pulsed into the (1,1) latched state. This is
done by rapidly shifting the RDD to a large negative detuning, delaying at

that point until the system has relaxed into Lj i, and rapidly shifting back to
the readout window for latching. This second measurement provides RLL.
The left charge sensor measures both qubits, so more normalization

measurements are required to deconvolve its signal. First, the pulses
described in the previous paragraph are repeated, and the left sensor
current is monitored. This provides the quantities LLR and LLL. These same
measurements are then repeated again with the pulses applied to the LDD
qubit instead of the RDD qubit to obtain LLR (again) and LRR. A final
normalization measurement applies pulses to both the LDD and the RDD
to obtain LRL.
It is worth noting that our time-averaged measurement technique

integrates signal over the entire duty cycle of the pulse sequence. This
pollutes our data with signal generated during the manipulation portion of
the duty cycle. For all of our measurements, however, the manipulation
time is many orders of magnitude shorter than the measurement time and
any pollution is negligible. This effect is most significant for the
measurements of RLL, LLL, LRR, and LRL where the manipulation time
rises to ~1% of the total duty cycle.
After obtaining normalization data, qubit measurements are performed

to obtain the uncalibrated signal L andR. Because the right charge sensor
only measures the RDD qubit, we can first calibrate R to obtain the
probability the RDD qubit has ended its evolution in state Lj i:

P RDD
Lj i ¼ R �RLR

RLL �RLR
: (5)

The left charge sensor measures both qubits simultaneously. To account
for this, we first need to determine how the two qubit signals are
combined in the charge sensor response. In Supplementary Note 7, we see
that the LDD and the RDD both contribute positively to the left sensor
signal, and comparing normalization pulses, we find LRR >LRL >LLL >LLR.
Making the assumption of monotonic contributions to the charge sensor
signal, we explain this behavior with a LDD signal whose dynamic range
depends on the state of the RDD. If the RDD is in Rj i then the LDD signal
ranges from LRR to LLR, whereas with the RDD in Lj i, the LDD contribution
ranges from LRL to LLL. The RDD contribution, however, always ranges
from LLL � LLRð Þ to 0.
To apply this model to our data, we approximate the combined signal by

L ¼ LLDD þ LRDD (6)
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where LRDD (LLDD) is the RDD’s (LDD’s) contribution to the left sensor
signal. The calibrated right sensor signal allows us to calculate

LRDD ¼ P RDD
1j i ´ LLL � LLRð Þ: (7)

Combining Eqs. (6) and (7) and calibrating with our normalization data, we
can then write the probability the LDD qubit has ended its evolution in
state Rj i as

P LDD
Rj i ¼ L � P RDD

Lj i ´ LLL � LLRð Þ � cmin

cmax � cmin

(8)

where

cmin ¼ LLLP
RDD
Lj i þ LLR 1� P RDD

Lj i
� �

(9)

and

cmax ¼ LRLP
RDD
Lj i þ LRR 1� P RDD

Lj i
� �

(10)

define the state-dependent ranges of LLDD. Notably, applying this
procedure to our normalization pulses returns the expected probabilities.

Maximum likelihood estimation
In Supplementary Note 7, we plot Fig. 4c with and without the charge
sensor crosstalk subtracted. For some portions of these data, this crosstalk
removal procedure returns a slightly negative probability. To make sense
of this unphysical result, we apply a maximum likelihood estimator (MLE)
to our single-qubit states to enforce positivity of the reported probabilities.
Because we have assumed separable states in our conditional measure-
ments, applying this MLE at the single-qubit or the two-qubit level
provides identical results.
The MLE aims to find the physically-valid density matrix ρp that most

closely approximates our measured density matrix ρexp. Since we can only
measure the diagonal elements of ρexp, we adapt the MLE protocol used
by James et al.29 to neglect coherences. We constrain ρp to be a non-
negative, definite matrix by defining ρp ¼ T̂

y
T̂= Tr ½T̂yT̂ � where

T̂ ¼ t1 0

0 t2

� �
: (11)

We then make the assumption that for each element ρexp,i imperfections in
our measurements generate a Gaussian probability of measuring the
physical value ρp,i and the standard deviation of that distribution is
approximated by ffiffiffiffiffiffiffi

ρp;i
p 29. The probability that ρp could produce ρexp then

becomes

PðρexpÞ ¼
1
N

Y4
i¼1

exp
�ðρp;i � ρexp;iÞ2

2ρp;i

" #
(12)

where N is a normalization constant. Rather than maximizing Eq. (12), we
instead maximize its logarithm, which amounts to minimizing the function

LðρexpÞ ¼
X4
i¼1

ðρp;i � ρexp;iÞ2
2ρp;i

: (13)

The diagonal elements of the resulting ρp then fill in the columns of Mexp,
providing the truth table quoted above. In Supplementary Note 7, we plot
the results of this MLE process for the control and target qubit data.
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