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One-shot detection limits of quantum illumination with
discrete signals
Man-Hong Yung1,2,6, Fei Meng 1,3,6, Xiao-Ming Zhang 4✉ and Ming-Jing Zhao 5✉

To detect a stealth target, one may directly probe it with a single photon and analyze the reflected signals. The efficiency of such
conventional detection scheme can potentially be enhanced by quantum illumination, where entanglement is exploited to break
the classical limits. The question is what is the optimal signal state for achieving the detection limit? Here, we address this question
in a general discrete model, and derive a complete set of analytic solutions. For one-shot detection, the parameter space can be
classified into three distinct regions, in the form of a “phase diagram” for both conventional and quantum illumination.
Interestingly, whenever the reflectivity of the target is less than some critical value, all received signals become useless, which is
true even if entangled resources are employed. However, there does exist a region where quantum illumination can provide
advantages over conventional illumination; there, the optimal signal state is an entangled state with an entanglement spectrum
inversely proportional to the spectrum of the environmental noise state and is, surprisingly, independent of the occurrence
probability and the reflectivity of the object. The entanglement of the ideal probe state increases with the entropy of the
environment; it becomes more entangled as the temperature of the environment increases. Finally, we show that the performance
advantage cannot be fully characterized by any measure of quantum correlation, unless the environment is a complete mixed state.
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INTRODUCTION
One of the most important tasks in quantum information science
is to understand how physical procedures related to information
processing can be improved by exploiting quantum resources
such as entanglement1. Apart from the well-established applica-
tions such as quantum computation2, simulation3,4, teleportation5,
metrology6, etc., the area of quantum illumination7–28 is emerging
as a promising and novel quantum method for increasing the
sensitivity or resolution of target detection in a way that can go
beyond the classical limits. The primary goal of quantum
illumination is to detect the presence or absence of a target, with
potentially a low reflectivity and in a highly noisy background, by
sending out an entangled signal and performing joint measure-
ments. More specifically, the setup of quantum illumination
consists of three parts: (i) a source emits a signal entangled with
an idler system kept by a receiver, (ii) if a target exists, the receiver
obtains the reflected part of the signal in addition to the
background noise; otherwise, only the background noise can be
received, and (iii) the receiver performs a joint positive-operator
valued measure (POVM) measurement on the whole quantum
system and infers from it the presence or not of the target.
An intriguing feature of quantum illumination is that it is highly

robust against loss and decoherence. One can still gain quantum
advantages, even if the signal is applied to entanglement-breaking
channels29. As an important application, one can apply quantum
illumination to secure quantum communication9,30–33, where the
sender encodes a 0-or-1 message by controlling the presence or
absence of an object, and the receiver determines its presence by
illuminating entangled photons. In this way, an eavesdropper who
does not have access to another half of the entangled signal could

virtually know nothing about the message communicated9. An
experimental implementation31 of the protocol above suggested
that quantum illumination can provide a reduction up to five
orders of magnitude in the bit-rate error against an eavesdropper’s
attack. Furthermore, experimental implementations of quantum
illumination have been demonstrated for not only the opti-
cal11,31,34 but also the microwave domain12,28.
Despite the progress achieved so far, quantum illumination

lacks a fundamental understanding on the ultimate limit of the
performance advantage of quantum illumination over conven-
tional illumination (quantum advantage) when the noise state is
arbitrary. Most existing literature of quantum illumination assumes
maximally entangled states as probe states. This is fine for infinite
temperature, since the optimal signal is the maximally entangled
state when the environmental noise is white noise. However,
when the environment is of finite temperature, and thus the noise
has a nontrivial spectrum, the maximally entangled probe state is
no longer the best possible one. To obtain its ultimate
performance, we need to optimize the probe state. In fact,
quantum illumination should be treated as a problem of channel
discrimination35–38. The existence and absence of the object
correspond to two different channels, whose inputs should be
optimized such that the outputs are most discriminable. Quantum
channel discrimination is generally a difficult computational
problem where only a few analytic solutions have been
discovered39; it is complete for the quantum complexity class
QIP (problems solvable by a quantum-interactive proof system),
which has been shown40 to be equivalent to the complexity class
PSPACE (problems solvable by classical computer with polynomial
memory).
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We solved the one-shot quantum illumination problem
completely, with a compact analytic solution, for any given
parameter regime and any finite-dimensional noise. We extend
the protocol to finite- temperature noise and even athermal noise;
the basis and spectrum of the environmental noise in our analysis
are completely arbitrary. We obtained the minimum-error prob-
ability of target detection, where the minimization is over all
possible POVM measurements and all finite-dimensional probe
states. Furthermore, the optimal state we obtained depends only
on the environmental noise. In other words, the minimum-error
probability can always be achieved without even knowing the
reflectivity and the occurrence probability of the target.
Our results show that there are three performance regions (see

Fig. 1c, d) for both conventional and quantum illumination. When
the reflectivity of the target is smaller than a critical value (Regions I
and II), the received signals become useless, and the optimal
strategy is directly guessing “Yes” or “No”. But in Region III, the
reflected signals are useful, and the quantum illumination has better
performance. In this region, the optimal probe state is an entangled
state whose entanglement spectrum is inversely proportional to the
noise spectrum. The maximally entangled state is optimal only when
the environment is of infinite temperature, which corresponds to a
completely mixed state as the noise state. In other words, the ideal
probe state is less entangled when the environmental noise is of
lower temperature. The quantum correlation (entanglement) con-
tained in the ideal probe state increases with the entropy of the
environment noise (see Fig. 2).
On the other hand, efforts have been made to understand the

resources attributing to the advantage of quantum over conven-
tional illumination. When the environment is of infinite tempera-
ture, the discord of encoding, a measure of quantum correlation41,
was suggested15,42 to be the resource inducing the advantage of
quantum illumination. However, when the environmental noise is
of finite temperature, or is a nonequilibrium state, this measure of

correlation cannot fully characterize the quantum advantage. In
fact, we show that no measure of quantum correlation can fully
characterize the quantum advantage at any finite temperature
(see “Methods”). We identify two competing factors that
contribute to the performance of the protocol: the local
distinguishability and the quantum correlation (see Supplemen-
tary Discussion 5). With our results, not only can we optimize the
performance of the quantum illumination in practice, but also
better understand its power and limitation.

RESULTS
Model of one-shot quantum illumination
Following ref. 7, let us consider the illumination problem where
the signal is encoded with an optical photon mode. The thermal

Fig. 1 Conventional and quantum illumination. a In conventional illumination, a signal is sent to probe a target without the use of
entanglement. b In quantum illumination, the signal is entangled, and a joint POVM measurement is performed at the end to reduce the
detection error. c The phase diagram for conventional illumination and d the same diagram for quantum illumination.

Fig. 2 Relations between entropy of the environment ρE and
entanglement of the corresponding optimal probe states for a. d= 2
and b. d= 10. The environment has a linear spectrum, and each
triangle represents a ρE with a particular value of λd. Entanglement is
quantified by the Von Neumann entanglement entropy.
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environment is in a temperature significantly lower than the
optical energies, i.e., ρth= ρ1 ⊗ ρ2 ⊗ . . . . Here,
ρk � vacj i vach j þ O εð Þ 1kj i 1kh j þ O ε2ð Þ, where 1kj i represents a
single-photon mode with frequency k. Furthermore, we assume
that the detector can distinguish a finite number of photonic
modes of single photons, which means that we can approximate
the environment as

ρth � vacj i vach j þ
X
k

O εð Þ 1kj i 1kh j þ Oðε2Þ: (1)

In this work, we focus on the “single-shot” detection case, where
one waits until the detector is triggered only once. So one can
post select the single-mode term of Eq. (1), and the density matrix
describing the environment is the diagonal matrix on the
frequency basis (the model can be generalized to more
complicated environment states, such as the entangled state,
multiphoton state, or the one including vacuum state. One just
needs to diagonalize the environment state, making it coincide
with the form of Eq. (2))

ρE ¼
Xd
i¼1

λi θij i θih j; (2)

where each basis θij i corresponds to a frequency mode, and we
have assumed that there are totally dmodes. In fact, our analysis is
applicable for arbitrary basis. The frequency basis is adopted here
because it is most frequently used in practice. In Lloyd’s paper7

and other existing literature, thermal noise is simply approximated
by white noise, i.e., the λi for all θij i are identical. But considering
that the noise can, in general, have a nontrivial spectrum, we
generalize the model to a scenario where different modes can
have different weights. For convenience, we assume that the noise
spectrum λ1 ≥ λ2. . . ≥ λd is decreasingly ordered. While the
quantum advantage has been shown7 by the input state of Bell
state, it is unclear what is the ultimate limit on the power of
quantum illumination with general noise. As discussed later, the
noise spectrum in Eq. (2) can be used to design optimal probing
states, which improve the detection performance over the
standard Bell-state-based scheme.
Our major contribution is the optimization of the input signal

state and derivation of the ultimate performance of one-shot
quantum illumination. This is done by modeling the detection as a
problem of quantum channel discrimination35–38.
For conventional illumination, a single-photon-probe state ρA is

sent for detecting a distant object. As shown in Fig. 1a: (i) if the
target is absent, the probe signal ρA is completely lost; we can only
receive the noisy state from the environment. This process can be
modeled by the following quantum channel:

E0ðρAÞ ¼ ρE : (3)

(ii) If the target is present, with probability, or reflectivity, η, the
probe photon is reflected. With probability 1− η, the probe
photon is absorbed, and only background noise can reach the
detector. This process can be modeled by the following quantum
channel:

E1ðρAÞ ¼ ηρA þ ð1� ηÞρE : (4)

Then the detector measures the returned photon, telling us which
state it is in, and therefore the presence or absence of the object.
To find the ultimate one-shot performance, one has to optimize
the signal as well as the measurements43.
For quantum illumination, besides the probe signal A, the agent

also keeps an ancillary system B, which can be entangled with the
former. When the probe signal is sent, depending on the absence
or presence of the target, it will undergo the evolution described
by either E0 or E1, whereas the ancillary system B is kept
unchanged. Therefore, the composite system of the signal and
ancilla is updated by the following quantum channel when the

target is absent:

ðE0 � IÞðρABÞ ¼ ρE � ρB ; (5)

where ρB is the reduced density state of the joint state ρAB, and
when it is present,

ðE1 � IÞðρABÞ ¼ η ρAB þ ð1� ηÞρE � ρB: (6)

Similar to conventional illumination, one has to optimize all
possible signal–ancilla states and the joint measurements to find
their ultimate performance.

Solving the channel discrimination problem
The problem of target detection in quantum illumination can be
regarded as a problem of quantum channel discrimination35–38,
where one has to optimize both the input state of the channel and
the optimal POVM measurements to answer which channel
defined above is given.
To begin with, we review the results of quantum-state

discrimination as a hypothesis testing. A binary random variable
X= 0, 1 is encoded in a pair of quantum states ρ0 and ρ1, with
prior probabilities p0 for X= 0 and p1= 1 − p0 for X= 1. The task
of state discrimination is to test which quantum state is given, by
performing the optimal POVM measurement {Π0, Π1} and giving
the answer Xest. An error occurs whenever one answers 0 for state
ρ1 and 1 for state ρ0.
In terms of the POVM element, the error probability can be

written as Perr ¼ p0tr½ρ0 Π1� þ p1tr½ρ1 Π0� ¼ 1
2 f1� tr½ðp0 ρ0�

p1 ρ1ÞðΠ0 � Π1Þ�g. By denoting Δ ≔ p0 ρ0 − p1 ρ1, we have
eigenvalue decomposition Δ ¼ P

idi ij i ih j for an orthonormal basis
f ij ig. By the Helstrom theorem43, the optimal POVM is given by
Π0 ¼

P
di�0 ij i ih j, the projector onto the positive support of Δ, and

Π1 ¼
P

di < 0 ij i ih j, the projector onto the negative support of Δ.
The minimum-error probability is

Perr � 1
2

1� p0ρ0 � p1ρ1k kð Þ ; (7)

where Ak k � tr
ffiffiffiffiffiffiffiffi
AyA

p
denotes the trace norm of matrix A. For the

minimum-error detection in the illumination problems, we should
take ρ0 ¼ E0ðρAÞ, ρ1 ¼ E1ðρAÞ for conventional illumination, and
ρ0 ¼ ðE0 � IÞðρABÞ, ρ1 ¼ ðE1 � IÞðρABÞ for quantum illumination.
Moreover, the corresponding trace norms are labeled by ΩcðρAÞk k
and kΩqðρABÞk, respectively, where
ΩcðρAÞ � p1E1 ρAð Þ � p0E0 ρAð Þ; (8a)

ΩqðρABÞ � p1ðE1 � IÞðρABÞ � p0ðE0 � IÞðρABÞ: (8b)

In other words, the corresponding minimum errors are given by

PcerrðρAÞ �
1
2

1� Ωc ρAð Þk kð Þ; (9a)

PqerrðρABÞ �
1
2
ð1� kΩqðρABÞkÞ: (9b)

Then, to solve the illumination problem as a channel
discrimination, we should minimize the error probability over all
possible input states Pcerr;} � min

ρAB
Pcerr and Pqerr;} � min

ρAB
Pqerr. They

are given by

Pcerr;} � 1
2
ð1� Ωck k1Þ; (10a)

Pqerr;} � 1
2
ð1� kΩqk1Þ ; (10b)

where kΩc;qðρÞk1 denotes the induced trace norm
kΩc;qk1 � maxρ kΩc;qðρÞk. When the two subsystems of the
quantum case are uncorrelated, i.e., ρAB ≡ ρA ⊗ ρB, quantum
illumination reduces to the conventional case. Therefore, the
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performance of the quantum illumination is at least as good as the
conventional illumination, i.e., Pqerr;} � Pcerr;}.

Main results: the phase diagram
Our major results contain a family of complete analytic solutions
for both conventional and quantum illumination for any d-
dimensional signal state and any given environmental state ρE. For
both illumination problems, the minimum-error probabilities are
strongly dependent on the occurrence probabilities {p0, p1} and
the reflectivity η of the target. In general, we can divide the
parameter space into three distinct regions, namely (I, II, and III).
Region I: (i) p0 < p1, and (ii) η < η*≡ 1− p0/p1. For both

conventional and quantum illumination, the minimal error is
given by

Perr ¼ p0: (11)

Furthermore, the optimal strategy for both quantum and
conventional illumination does not even require a measurement
of the signals; one can simply guess “yes” (presence of the target)
for all detection instances. As whenever p0 < p1, the error for this
simple strategy is equal to p0, i.e., Perr= p0. We summarize this
result as follows (the proof is left in Supplementary Discussion 2):
Result 1 (Region I, for both conventional and quantum illumina-

tion). (a) The minimum errors for both conventional and quantum
illumination are equal to p0, i.e., Perr= p0, and (b) the bound can
be achieved with any probe state (pure or mixed).
We can interpret this region as a regime where the reflected

signal become useless, due to the low reflectivity of the object.
Intuitively, if the object has high probability to be present, and the
reflectivity is so small that the reflected signal cannot help us to
rule out its presence, then we should always guess that the object
is present. The boundary of this region is only determined by the
properties of the object. In other words, it is irreverent to the
environmental noise. The boundary for both conventional and
quantum illumination coincides.
Region II: (i) p0 > p1, and (ii. a) for conventional illumination:

η< ηc � ðp0p1 � 1Þð λd
1�λd

Þ, or (ii. b) for quantum illumination:

η< ηq � ðp0p1 � 1Þð λh
1�λh

Þ. The minimal error is given by

Perr ¼ p1 ; (12)

for both conventional and quantum illumination. Moreover, both
ηc → 0 and ηq → 0 vanish as λd → 0, which implies that Region II
vanishes for both conventional and quantum illumination. The
same performance is achieved by guessing “no” (i.e., absence of
the target) for all events. Here

λ�1
h �

Xd
i¼1

λ�1
i ; (13)

which is proportional to the harmonic mean of the eigenvalues
{λi}. For λd > 0, λh is always less than the smallest eigenvalue λd of
ρE, i.e.,

λh < λd ; (14)

(because λd=λh ¼ λdð
Pd

i¼1 1=λiÞ> 1). Therefore, Region II for the
case of quantum illumination is always smaller than that of
conventional illumination (see Fig. 1). To summarize (proof in
Supplementary Discussion 2, 3), we have
Result 2 (Region II for conventional and quantum illumination). (a)

The minimum error for conventional and quantum illumination is
equal to p1, i.e., Perr= p1, and (b) the bound can be achieved with
any (pure or mixed) probe state.
Similar to Region I, we can interpret this region as a regime

where the reflected signals become useless due to low reflectivity.
When the object is more likely to be absent, and the reflected
signal cannot rule out the absence of the object, we should guess
that the object is absent. However, different from Region I, the

boundary of Region II depends on the spectrum of the
environmental noise. In particular, when there is at least one
mode that is noiseless, i.e., λd= 0, Region II vanishes for both the
conventional and quantum illumination. But in general, the
boundary for the conventional illumination is different from
quantum illumination; the size of Region II with a useless signal for
the quantum illumination is smaller, which is a signature for
quantum advantage.
Region III (the region excluded by Regions I and II): For

conventional illumination, the minimum error over all possible
input states is given by

Pcerr;} ¼ p0 þ γ 1� λdð Þ ; (15)

and for quantum illumination,

Pqerr ;} ¼ p0 þ γ 1� λhð Þ: (16)

Here the parameter, γ≡ p1(1− η)− p0, depends on the occur-
rence probabilities {p0, p1} of the target and the reflectivity η. In
this region, γ < 0 is negative, and it is a decreasing function of η.
This implies that both Pcerr;} and Pqerr;} decrease with the increase
in the reflectivity η. Furthermore, the difference between the
classical and quantum cases (i.e., quantum advantage) depends
on the difference, λd − λh, which is

Pcerr;} � Pqerr ;} ¼ γj j λd � λhð Þ � 0: (17)

When there is no noiseless mode, i.e., λd ≠ 0, the performance of
the quantum illumination is strictly better than the conventional
illumination. Generally speaking, the quantum advantage is larger
when the noise spectrum is more flat and close to the white noise.
The optimal probe state is given in Results 3 and 4. However,
when there is at least one noiseless mode, its performances are
the same, and the quantum advantage vanishes, because in this
case λh= λd= 0. Under this situation, the minimum error is Perr,◇
= p1(1− η) for both protocols. This is because the signal sent can
be orthogonal to the environmental noise, which implies that the
signal state can be perfectly distinguishable from the noise. Thus,
the error occurs only when the object is present and the signal is
lost, corresponding to the probability p1(1− η). To summarize
(proof in Supplementary Discussion 2 and 3), we have
Result 3 (Region III for conventional illumination). The minimum

error Perr over all possible conventional input states is given by
Pcerr ¼ p0 þ γ 1� λdð Þ, which is obtained by choosing ψj i ¼ θdj i to
be the eigenvector of ρE associated with the smallest eigenvalue.
The above result is intuitive; the optimal signal should fully

occupy the mode with minimal noise. However, this strategy is not
optimal if the ancillary system is allowed as shown by the
following result. For quantum illumination, the optimal probe
state is an entangled state between the signal sent and the idler
ancillary system. Notably, the dimension of the ancillary system is
the same as the signal state, and the entanglement spectrum is
inversely proportional to the noise spectrum.
Result 4 Region III for quantum illumination. The minimum error

Perr over all possible conventional input states is given by
Pqerr ¼ p0 þ γ 1� λhð Þ, which can be reached with
ρAB ¼ ψABj i ψABh j, where

ψABj i ¼ IA � UB

Xd
i¼1

μi θij i θij i (18)

with μi ¼
ffiffiffiffiffiffiffiffiffiffi
λh=λi

p
and UB to be any local unitary on the ancillary

system B.
In Region III, the reflected signals become useful in the one-shot

detection setting. When the reflectivity is larger than the critical
value, the probe state becomes sufficiently discriminable to the
environmental noise, resulting in an error probability smaller than
the trivial strategy. In this region, the nonclassical correlation
contained in the entangled probe state helps to increase the joint
distinguishability between the reflected signal and the
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environmental noise with the help of the ancilla. Interestingly, the
ideal probe state has an entanglement spectrum that is inversely
proportional to the noise spectrum. This can be interpreted as a
balance of the local distinguishability and the quantum correla-
tion; the inverse proportionality results in a reduced state that is
relatively more discriminable to the noise locally, while maintain-
ing sufficient quantum correlation that increases the joint
distinguishability. This also implies that the amount of entangle-
ment of the optimal probe state increases with the entropy of the
environment. In Fig. 2, we provide an example on the linear
environment spectrum case, i.e., λi= λ1+ (i − 1)dλ.
To better understand the above result and the performance of

quantum illumination Eq. (16) in Region III, we summarize the
steps for deriving it.

Sketch of the proofs for quantum illumination
The main physical quantity to be investigated is
kΩqðρABÞk1 ¼ kp1ηρAB þ γρE � ρBk1, where γ≡ p1(1− η)− p0.
The trace norm of this operator is the sum of the absolute values
of its eigenvalues. Due to the convexity of the norms, the optimal
input states must be pure (see Supplementary Discussion 1). Then
for convenience, we can focus on the pure input states. Defining
Hq ≡Ωq/γ, we have Hq ¼ ρE � ρB � α ψj i ψh j and
Ωqð ψj i ψh jÞ�� ��

1 ¼ jγj 	 Hqð ψj i ψh jÞ�� ��
1 ; (19)

where ψj i is any pure bipartite state and
α � �ηp1=γ ¼ ηp1= p0 � p1 1� ηð Þð Þ> 0. Furthermore, we express
the bipartite pure state in the following form: ψj i ¼ Pd

i¼1 θij i uij i,
where the vectors uij i’s are not assumed to be normalized. In
general, they can be even nonorthogonal to one another.
However, since the eigenvalues θij i’s are orthonormal, the
normalization condition implies that ψh ψj i ¼ Pd

i¼1 uih uij i ¼ 1.
Denoting the eigenvalues of Hq(ψ) by E1 ≥ E2 ≥. . . ≥Ed, we can

calculate its trace norm as HqðψÞ
�� ��

1 ¼
P

ijEij. We can prove that
there is at most one negative eigenvalue (Lemma 1 in
Supplementary Discussion 2). Then we have

HqðψÞ
�� ��

1 ¼
Xd�1

i¼1

Ei þ jEdj ¼ 1� α� Ed þ jEdj: (20)

To minimize this trace norm, it is sufficient to bind the minimum
eigenvalue, Ed � λminðHqÞ of the matrix Hq. The corresponding
eigenvector jgψi, where Hqjgψi ¼ Edjgψi, can always be expanded
by the the following vectors (in a way similar to jψi),
jgψi ¼

Pd
i¼1 kθiijvii, where, again, the vectors vij i’s can be neither

normalized nor orthogonal to one another. By Lagrangian
multiplier, we found that (see Supplementary Discussion 3) the
eigenvalue is minimized when we choose juii ¼ jvii for all i’s,
which means that jgψi ¼ jψi. Finally, we found that the minimum
eigenvalue, Ed= λh− α, of Hq can be achieved by choosing an
input of the form

ψj i ¼
Xd
i¼1

μi θij i θij i ; μi ¼
ffiffiffiffiffiffiffiffiffiffi
λh=λi

p
: (21)

Examples
Below, we provide three different examples to illustrate our
results.
Example 1—when λmin ¼ 0. For the eigenstate ψj i of

Ωcð ψj i ψh jÞ ¼ p1η ψj i ψh j þ γ ρE , i.e., ψh jρE ψj i ¼ 0. The error prob-
ability is Perr ¼ 1

2 ½1� p1ηþ γj jð Þ�, which means that (i) when η ≤ η*
(or γ ≥ 0), then Perr= p0, and (ii) when η ≥ η* (or γ ≤ 0), then
Perr ¼ p1 1� ηð Þ, which vanishes as expected when η → 1.
Example 2—binary signals. Let us consider the case where the

signals are two-dimensional, which means that ρE is a 2 × 2

Hermitian matrix. In its diagonal basis (labeled as 0j i; 1j if g), we
write ρE ¼ λ0 0

0 λ1

� �
.

Since the trace norm is invariant under unitary transformation,
we can always choose to have the pure state to be optimized as
follows: ψj i ¼ μ0 0j i þ μ1 1j i, where both parameters, μ0 ≥ 0 and
μ1 ≥ 0, are positive, and μ20 þ μ21 ¼ 1. Consequently, we have

Ωc ¼ a c
c b

� �
, where a � p1ημ

2
0 þ γλ0, b � p1ημ

2
1 þ γλ1, and c≡

p1ημ0μ1. The eigenvalues λ± of Ωc are given by

λ± ¼ 1
2 trΩc ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2Ωc � 4 detfΩcg

ph i
, where trace and determi-

nant of Ωc are tr Ωc= a+ b= p1η+ γ= p1− p0,
detfΩcg ¼ ab� c2 ¼ γ2λ0λ1 þ p1ηγ λ0μ

2
1 þ λ1μ

2
0

� �
. The trace norm

of Ωc is given by one of the following possibilities:

Ωck k ¼ tr Ωcj j if det Ωcf g � 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr2Ωc � 4det Ωcf g

p
if det Ωcf g< 0:

�
(22)

Note that detΩc is a product of the two eigenvalues; the condition
of detfΩcg> 0 implies that either both eigenvalues are positive or
both negative.

Example 3—completely-mixed environment. Suppose the
returning signal from the noisy environment is completely mixed,
i.e., ρE= I/d, the corresponding matrix Ωcð ψj i ψh jÞ, for any pure
state ψj i, can be diagonalized explicitly to give
Ωcð ψj i ψh jÞk k ¼ p1ηþ γ

d

		 		þ d�1
d γj j. In Region I, where p0 � 1

2 and
η ≤ η*≡ 1− p0/p1, we have γ≡ p1(1− η)− p0 ≥ 0. As a result,
Ωck k ¼ jp1ηþ γj ¼ p1 � p0j j and hence Pcerr ¼ p0. On the other
hand, in Region II, p0>

1
2 (where γ < 0) and η<ðp0p1 � 1Þ 1

d�1 (where
p1η+ γ/d < 0), we have again Ωck k ¼ p1ηþ γj j ¼ p1 � p0j j, but it
gives Pcerr ¼ p1. In Region III, Ωck k ¼ p1ηþ 2=d � 1ð Þγ, which gives
Pcerr ¼ p1 1� ηð Þ � γ=d. Similarly, for quantum illumination, we
have Pqerr ¼ p0 for Region I, Pqerr ¼ p0 for Region II. For Region III, we
have kΩqk ¼ p1ηþ ð2=d2 � 1Þγ, which gives Pqerr ¼ p1 1� ηð Þ
�γ=d2.
In Fig. 3, we demonstrate the advantage of quantum

illumination over the conventional illumination under different
dimensions and parameters p0 and η.

Complementary results
If for all the events, we simply guess “yes” (i.e., the presence of the
target) whenever p0 < p1 and “no” (i.e., absent) whenever p0 > p1.
Then, the error for guessing wrong is given by the minimum of the
probabilities p0 or p1, i.e., min p0; p1f g. For example, the instance
shown below shows that the number of wrong decisions (i.e.,
“yes” when the object is absent “0”) is equal to the number of
absent events “0”.

This argument can be justified more formally for both classical
and quantum illuminations with the following, where the proof is
given in Supplementary Discussion 4.
Result 5 (upper bound of minimal error). The error probability Perr

is bounded above by either p0 or p1, i.e., Perr � 1
2 1� p0 � p1j jð Þ ¼

min p0; p1f g.
This error bound is relevant to the cases where the reflectivity η

is zero, i.e., ρ0= ρ1 for both conventional and quantum illumina-
tion, which gives Perr ¼ 1

2 1� jp0 � p1jð Þ. In other words, when
there is no signal related to the absence/presence of the target,
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the best strategy one can make to minimize the error of
discrimination is exactly the strategy mentioned above.
Another interesting question is how the reflectivity η affects the

error bound. Intuitively, we would believe that the higher the
value of η, the smaller the error bound. This intuition can be
justified by the following theorem (proof in Supplementary
Discussion 4):
Result 6 (monotonicity of minimal error). For a given reflectivity η,

and density matrix ρ as probe state, the minimal error is given by
Perr ηð Þ ¼ 1

2 1� p1ρ1 ηð Þ � p0ρ0k kð Þ, where ρ1 ηð Þ ¼ ηρþ 1� ηð Þρ0.
The minimal error is a nonincreasing function of the reflectivity,
i.e., if η � η0, thenPerr ηð Þ � Perr η0ð Þ.

DISCUSSION
In this work, we presented complete solutions to the problem of
one-shot minimum-error discrimination for both conventional and
quantum illumination. The analysis is divided into three regions.
Region I is the same for both conventional and quantum
illumination; the minimal error is a constant and does not depend
on the reflectivity of the target, with the optimal strategy being a
simple guess. Region II is similar and the reflected signal is useless,
but quantum illumination shrinks the boundary of Region II. For

Region III, quantum illumination can yield a lower minimal error
than conventional illumination.
Mathematically, this quantum advantage originates from the

difference between the induced trace norm44 and the diamond
norm45, which can be directly observed from the definitions.
Defining Ω � p1E1 � p0E0, then Ωck k1 is the induced trace norm
of Ω, and kΩqk} is the diamond norm of Ω. The quantum
advantage, in terms of the difference in detection error
probability, is just the difference between them.
Physically, the performance of the quantum illumination is

determined by two competing factors: the quantum correlation in
the probe state, and the local distinguishability of the probe state
and the noise. When the environment is of infinite temperature,
the optimal probe state is the maximally entangled state whose
reduced state is completely mixed. This implies that the
nonclassical correlation dominates the performance. However,
when the environment is of zero temperature (a pure state), the
optimal probe state is unentangled and orthogonal to the noise
state. This implies that the local distinguishability dominates the
performance. When the environment is of finite temperature, the
ideal probe state is at a subtle balance between these two
competing factors. As a result, no measure of quantum correlation
can fully characterize the quantum advantage when the

Fig. 3 Advantage of quantum illumination over conventional illumination in a completely mixed environment ρE ¼ I=d. a Color plot of
the difference of minimal error Pcerr � Pqerr as a function of the occurrence probability p0 and reflectivity η for two-dimensional signals d= 2. b
The same plot for d= 10. c–f Explicit dependence of Pcerr and Pqerr as a function of η. Solid lines represent quantum illumination, and dash lines
represent conventional illumination.

M.-H. Yung et al.

6

npj Quantum Information (2020)    75 Published in partnership with The University of New South Wales



environment noise is not white. This is because the non-white
noise is no longer isotropic and it breaks the local unitary
invariance (see “Methods”), which is a necessary symmetry for any
measure of quantum correlation46. Although the discord of
encoding42, as a measure of quantum correlation, can characterize
the quantum advantage under white noise, it cannot be applied
to other noise states.
We also extend our discussion to the multishot detection case.

Our numerical result shows that the optimal bipartite probe state
(Eq. (21) for Region III) for one-shot detection also has the
minimum asymmetry error for multishot detection. This result
implies that the optimal probe state we obtained may play a more
important role beyond the one-shot detection case, which can be
an interesting topic in the future. Moreover, the discussion about
the optimum illumination strategy may also be extended to the
scenario when the interaction between the environment and the
probe state is more complete than direct substitution.

METHODS
No measure of quantum correlation can fully characterize the
quantum advantage
We claim that the quantum advantage cannot be solely captured by
quantum correlation, when the environmental noise is not a maximally
mixed state, i.e., ρE ≠ I=d.
To justify our claim, we first set up a framework in describing the

quantum advantage, with the assumption that the environmental noise is
not white noise. The presence and absence of the object are denoted by a
binary random variable X, where X= 1 means the object is present, and X
= 0 means the object is absent. This random variable is encoded in two
quantum ensembles, ϵQ :¼ fpx ; ρxQg and ϵC :¼ fpx ; ρxCg, with p0 where the
probability of the random variable is 0, p1 where the probability of the
random variable is 1, ρ0C ¼ ρE , ρ1C ¼ η ρA þ ð1� ηÞρE , ρ0Q ¼ ρE � ρB ,
ρ1Q ¼ η ρAB þ ð1� ηÞρE � ρB . The agent performs the optimal POVM on
the ensemble and gets the best estimate Xest, which maximizes the mutual
information I(X, Xest) ≔ H(X)− H(X∣Xest). We define IC as the maximum
mutual information obtained for conventional illumination with ensemble
ϵC and similarly IQ for quantum illumination. Then, the quantum advantage
is characterized by the difference ΔI ≔ IQ− IC. By fixing ρA as the optimal
probe state for conventional illumination, the quantum advantage ΔI is a
function of the entangled probe state ρAB.
Then, we prove that ΔI(ρAB) cannot be explained by only the quantum

correlation in the optimal quantum probe state ρAB. This is because of the
advantage that ΔI has different symmetries from any quantum correlation
measure. For any measure Q of quantum correlation, QðρABÞ must satisfy
local unitary invariance, i.e., QðρABÞ ¼ QðUA � UBρABU

y
A � Uy

BÞ for any
unitary UA acting on system A and unitary UB acting on system B. This
local unitary invariance is a necessary requirement for any lawful quantum-
correlation measure46.
However, this invariance symmetry is broken for ΔI(ρAB) when the

environmental noise ρE ≠ I=d. In other words, ΔIðρABÞ≠ΔIðUA �
UB ρAB Uy

A� Uy
BÞ, unless UA ¼ IA . To see this, recall that we have found

the optimal signal state ρAB ¼ ψj i ψh j in the main text, where ψj i ¼Pd
i¼1 μi θij i θij i and μi ¼

ffiffiffiffiffiffiffiffiffiffi
λh=λi

p
. When ρE ≠ I=d, the ability to discriminate

ρ0Q from ρ1Q is decreased if a local unitary is applied to system A, since ψj i
has been proved to be the unique (up to local unitary on system B) optimal
signal state in Result 4 of Supplementary Discussion 3.
When the environmental noise is white noise, i.e., ρE ¼ I=d, the optimal

probe state is the maximally entangled state ψj i ¼ 1=
ffiffiffi
d

p P
i θij i θij i. In this

case, ρE is unitary invariant. This implies that we have ΔIðρABÞ ¼ ΔIðUA �
UB ρAB Uy

A � Uy
BÞ for any local unitary UA and UB, and therefore ΔI(ρAB) is the

local unitary invariant. So, in principle, this quantum advantage with white
noise can be explained by quantum correlation. Indeed, it is proved42 that
the quantum advantage ΔI equals to the discord of encoding, which is a
quantum-correlation measure.
Therefore, we conclude that no measure of correlation can fully

characterize the quantum advantage in the performance of quantum
illumination, unless the environmental noise is white noise, i.e., ρE ¼ I=d.
The discord of encoding, although can be used to explain the quantum
advantage with white noise, cannot fully characterize the quantum
advantage (see Supplementary Discussion 5 for a specific
counterexample).

Multiple-shot detection and quantum relative entropy
Here, we provide numerical evidence for the optimality of the probe state
in Eq. (21) that holds for a special class of multiple-shot quantum
illumination. The discussion is restricted to the following scenario: given
probe state ρAB, the task of n-shot detection is to distinguish between
ρ�n
0 (absent) and ρ�n

1 (present). We aim at minimizing two kinds of
asymmetric error: Type-I error occurs when declaring the target present
while it is not, and Type-II error occurs when declaring the target absent
while it is not. According to Quantum Stein’s Lemma47, when Type-I error
cannot exceed a fixed value δI ∈ (0, 1), the optimal type-II error takes the
exponential form (for large enough N) ϵII ¼ exp �NSðρ1jjρ0Þ½ �. Similarly,
when Type-II error is restricted to below δII ∈ (0, 1), the optimal type-I error
is given by ϵI ¼ exp �NSðρ0jjρ1Þ½ �. So both Type-I and Type-II errors are
determined by the quantum relative entropy S(ρ1∣∣ρ0) and S(ρ0∣∣ρ1)22,48.
We simply restrict all systems to be two-level. The environment can be

described by

ρE ¼ λ1 1j i 1h j þ ð1� λ1Þ 2j i 2h j; (23)

and the probe states ρAB ¼ ψABj i ψABh j are assumed to be pure. Remarkably,
numerical results show that both S(ρ0∣∣ρ1) and S(ρ1∣∣ρ0) reach their
maximum when ψABj i takes the form of Eq. (21), i.e.,
ψABj i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� λ1
p

1j iA 1j iB þ
ffiffiffiffiffi
λ1

p
2j iA 2j iB . As an example, in Fig. 4, we show

the case when λ1= 0.3, and ψABj i are parameterized as

ψABj i ¼ ffiffiffi
α

p
1j i 1j i þ

ffiffiffiffiffiffiffiffiffiffiffi
1� α

p
2j i

ffiffiffi
β

p
1j i þ

ffiffiffiffiffiffiffiffiffiffiffi
1� β

p
2j i


 �
; (24)

The maximum of the entropies is taken when α= 0.7, β= 0, which
coincides with Eq. (21). Note that we have only considered a special case
where the detection signal remains the same for each run, and there is no
correlation and adaptation for different shots. The optimal probe state and
strategy for genuine multiple-shot detection with adaptive operations are
still an open question, which requires further studies. Moreover, one may
also study the multishot cases based on other quantities, such as the
mutual information42 or conditional max entropy49.
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