
ARTICLE OPEN

Probe optimization for quantum metrology via closed-loop
learning control
Xiaodong Yang 1, Jayne Thompson 2, Ze Wu1, Mile Gu 2,3,4✉, Xinhua Peng 1,5,6✉ and Jiangfeng Du 1,5,6

Experimentally achieving the precision that standard quantum metrology schemes promise is always challenging. Recently,
additional controls were applied to design feasible quantum metrology schemes. However, these approaches generally does not
consider ease of implementation, raising technological barriers impeding its realization. In this paper, we circumvent this problem
by applying closed-loop learning control to propose a practical controlled sequential scheme for quantum metrology. Purity loss of
the probe state, which relates to quantum Fisher information, is measured efficiently as the fitness to guide the learning loop. We
confirm its feasibility and certain superiorities over standard quantum metrology schemes by numerical analysis and proof-of-
principle experiments in a nuclear magnetic resonance system.
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INTRODUCTION
Much of quantitative science deals with measuring a certain
parameter, say ϕ, of a physical process precisely. Typically, this
involves subjecting suitably engineered probe states to the physical
process, and using measurement readout to recover an estimate of
ϕ. The central limit theorem states that repeated applications of this
procedure can improve our estimate, such that the resulting
standard error scales as 1=

ffiffiffiffi
N

p
in the number of particles N.

Remarkably, quantum technologies allow us to surpass this standard
limit. By using suitably entangled probes, we can reach the
Heisenberg limit—suppressing Δϕ, such that it scales as 1/N1–3. This
quadratic scaling advantage can drastically reduce the resources
required for precision measurement, and continues to catalyze rapid
developments in the field of quantum metrology4–15.
While quantum metrology is well understood at the theoretical

level, its physical application to large-scale quantum systems faces
significant challenges16–23. Consider the iconic task of estimating
the phase ϕ of some unitary process Uϕ ¼ e�iHϕ. In this setting,
the theory tells us how to determine the optimal quantum probe
ρ for any possible Hamiltonian H. However, when H acts on a
many-body system, this optimal probe is typically a complex,
entangled many-body state. Engineering this probe is often
nontrivial, especially in the advent of limited access to the physical
operations used to synthesize such probes16. Meanwhile, many
realistic means of initializing such probes involve applying a
sequence of controls, whose operational effects are not fully
characterized21,24–26. These issues are further exacerbated by the
exponentially growing size of the Hilbert space—making direct
implementation of complex metrological schemes extremely
challenging.
Here, we propose a closed-loop learning protocol that

circumvents these issues. The resulting protocol has the following
desirable features: (a) It does not require us to analytically solve for
the optimal probe, nor possess prior knowledge of how this probe
can be synthesized from available physical controls. These aspects

are optimized through the learning process. (b) It does not require
us to know the precise effects of these physical controls, nor
implement tomography on the resulting quantum probes. (c) It
does not require any computation involving matrix representa-
tions of H, avoiding the curse of dimensionality. These features
combined allow a versatile procedure for finding improved
metrology protocols, ideal for complex many-body settings. We
demonstrate a proof-of-principle experiment using nuclear
magnetic resonance (NMR), illustrating the viability of this
approach with present-day quantum technology.

RESULTS
Framework of closed-loop learning-assisted quantum metrology
Here, we consider estimating the phase ϕ of a general N-body
unitary process Uϕ ¼ e�iHϕ. Each metrology protocol begins with
a probe initialized in some easily prepared state ρ0 on N probes—
typically a product state where each probe is initialized in some
default state 0j i. The goal then is to implement a control—a
sequence of physical operations that we apply to the N-probe
system, transforming ρ0 to some candidate entangled state ρC. By
acting Uϕ on each probe, we end up with ρϕ, which encodes
information regarding ϕ (see Fig. 1a). The efficacy of each
candidate probe ρC is typically quantified by the quantum Fisher
information FQ

2. The rationale is that after repeating this process
through ν independent runs, the standard error to which we can
estimate ϕ is bounded below by 1=

ffiffiffiffiffiffiffiffi
νFQ

p
. This lower bound is

tight, and can always be saturated using an ideal measurement
scheme.
The particular benefit of quantum metrology is that use of

suitably entangled ρC enables one to reduced uncertainty of ϕ
much more quickly than conventional strategies. One iconic case,
for example, is when Uϕ corresponds to applying an identical
unitary process e�iHϕ to each individual probe. In such scenarios,
use of non-entangled ρC results in FQ that scales linearly with N,
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such that sensing ϕ to some desired Δ requires N > O(1/Δ2)
probes. In contrast, if ρC is appropriately entangled, FQ scales as N2,
enabling the Heisenberg limit scaling of N > O(1/Δ). The goal of
quantum metrology can thus be split into two distinct tasks:

1. Determine the control sequence C that synthesizes some
near-optimal state ρC whose corresponding quantum Fisher
information FQ(ρC) is made as large as possible.

2. Use the control sequence to synthesize ρC, which can then
be injected as input to Uϕ for purposes of estimating ϕ.

Here, our primary focus is the first task, with an understanding
that our resulting control sequences can be used to synthesize
the appropriate states to perform metrology. This is highly
nontrivial for general H. Notably, the dimensions of H grow
exponentially with N, making analytical methods for finding the
optimal ρC computationally intractable. Meanwhile, C is
described by an ordered list of readily accessible elementary
operations (e.g., pulse sequences). Inferring how these can be
chained together to generate a given ρC is generally highly
nontrivial, especially when the exact physical effect of each
elementary operation on the probe state is not known. Typical
means of optimizing FQ(ρC) are further hampered by difficulty
in evaluating the efficacy of a candidate control sequence C.
Given ρϕ, evaluation of the corresponding efficacy FQ(ρC)
involves an optimization over all possible measurement bases
—a task whose complexity also scales exponentially with
system size.
In our protocol, we first tackle the difficulty in evaluating

efficacy by using relations between quantum Fisher information
and purity loss. Let ρavg = ∫Pxρϕ+ x dx, where Px is some
probability distribution with mean 0 and standard deviation Δx.
Meanwhile, setting ΔγðΔxÞ ¼ Trðρ2CÞ � Trðρ2avgÞ. Then, recent
results27 established that in the limit where Δx ≪ 1, the quantum

Fisher information FQ(ρC) with respect to ϕ satisfies

FQðρCÞ � 2
ΔγðΔxÞ
Δxð Þ2 :¼ FLQ: (1)

Physically, ρavg represents the resulting ensemble state when
the aforementioned metrology procedure is applied to a unitary
Uϕ, such that ϕ undergoes stochastic fluctuations of magnitude
Δx. Thus, Δγ(Δx) captures the purity loss of the resultant state
induced by these fluctuations. Equation (1) then states that the
efficacy of a metrology protocol is bounded below by the rate in
which its output state loses purity when subject to stochastic
noise in the parameter we are trying to sense. Therefore, we can
effectively use FLQ as a proxy for the efficacy of a probe.
The advantage is that purity loss is far more amendable to

direct measurement than quantum Fisher information28. To
evaluate the efficacy of a candidate C, we apply two pairs of
the control sequence in parallel to obtain two copies of ρC. The
rate of purity loss of the resulting outputs when subject to
stochastic noise on ϕ can then be experimentally measured by
application of suitable controlled-SWAP gates—coherently swap-
ping output pairs controlled on an ancillary quantum mechanical
degree of freedom (see Fig. 1c). We refer to this quantum
algorithm as the quantum efficacy estimator, which can now be
coupled with a suitable closed-loop learning algorithm for
automated discovery of increasingly effective control sequences
for sensing ϕ (see Fig. 1b).
In practice, we can use many different learning algorithms,

ranging from simple direct search algorithms29 to more complex
evolutionary algorithms30. Here, we found the Nelder–Mead
algorithm31 to be particularly effective for our experiments. The
entire learning process can then be summarized as follows: we
begin by initializing a population of n + 1 control sequences at
random, and make use of the quantum efficacy estimator to sort

Fig. 1 Schematic diagram of closed-loop learning-assisted practical quantum metrology. a General procedure of quantum metrology,
including probe state preparation (applying controls to the initial probe state to generate a candidate probe ρC), encoding some parameter ϕ
by application of Uϕ to ρC, and measurement readout. b A candidate control sequence C is evaluated for efficacy through quantum
information processing. This involves using C to prepare copies of the candidate probe state ρC, half of which are transformed into ρavg. The
purities of ρC and ρavg are then measured, and their difference—the purity loss—is used as a proxy for efficacy. c Illustrates implementation of
this process in experiment. The parameter encoding with fluctuations in the dotted box are switched off to determine the purity of ρC, and on
to determine the purity of ρavg. Their difference is fed into a classical computer running a Nelder–Mead algorithm that generates candidate
control sequences for subsequent iterations. In our experiment, this process is automated, such that control fields are tuned automatically at
each iteration.
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them in the order of decreasing efficacy, denoted

CðgÞ ¼ fCðgÞ
0 ; CðgÞ

1 ; ¼ ; CðgÞ
nþ1g, with g = 0 indicating the 0th

iteration. Meanwhile n is generally chosen to scale linearly with
the number of actions (controls) we can apply in each particular
time-step (e.g., if we have access to local rotations along x- and y-
axis on N qubits, then n scales linearly with N). Once the initial
population is set, the Nelder–Mead algorithm then stipulates a
systematic method to generate a new candidate control through
geometric considerations—which replaces the worst performer

CðgÞ
nþ1 to form the population in the next iteration, which is then

again sorted by decreasing efficacy to obtain Cðgþ1Þ . The exact
mechanics of this algorithms involve mapping each control
sequence into a vertex in some suitable convex space, the details
of which are found in “Methods.” At each iteration g, the control
sequence with maximum purity loss is denoted as C(g). The
procedure is then continued until some designated stopping
condition, such as when the purity loss of C(g) becomes sufficiently
stable over multiple rounds, or when a set number of iterations
are reached. Once the stopping condition is hit, the C(g) with
maximum efficacy is delivered as the recommended control
sequence.
This optimization process scales as a polynomial with respect to

the number of free parameters that specifies a candidate control
sequence. This latter condition is typically true for realistic settings,
where (1) we are typically limited to one and two-body
interactions, such that the number of possible control sequences
we have at any particular point in time scales at most scales
quadratically with N, (2) we are reasonably restricted to the
reachable states within polynomial resource, such that the amount
of time it takes to synthesize them does not scale exponentially
with N. The protocol also has a number of other key advantages.
First, at no stage does it require tomography of candidate probe

states, either before or after the action of Uϕ. Second, it does not
require complete mathematical knowledge of how the control
sequences act on the Hilbert space. Finally, the algorithm
automatically accounts for potentially physical anomalies, such
as drift Hamiltonians when optimizing the control sequences of
synthesizing the probe state. Each of these tasks would typically
require a classical computer an exponential amount of time to
address. Thus, the learning procedure inherits all the advantages
of closed-loop learning—easily adaptable to diverse physical
architectures32–34.

Example of sensing with spin chains
We illustrate these advantages numerically for a scenario with spin
chains featuring unavoidable spin–spin interactions. Consider the
case where we have access to N-qubit spin chains, and we wish to
use them to estimate the strength of some external magnetic field
in the z-axis. This problem aligns with estimating the phase ϕ of

an N-qubit unitary Uϕ ¼ e�iϕ
PN

i¼1
Iiz , where Iiz represents the

angular momentum operator of the ith spin. If non-entangled
qubits are used, the achieved Fisher information will scale as N. In
contrast, the use of appropriately entangled probes can lead a
quantum Fisher information FQ that scales as N2, enabling us to
achieve the Heisenberg limit. While theory would enable us to
work out the optimal probe, the catch here is that our control on
the spin system is limited. First, the chain evolves naturally
according to nearest-neighbor Ising coupling HS ¼ 2πJ

PN
i¼2 I

i�1
z Iiz

(J is the coupling strength). Second, our control of the system is
limited to a sequence of local Ix and Iy interactions, whose strength
we can adjust M times. What is then the optimal way to adjust our
control fields? The question is nontrivial.

Fig. 2 Numerical simulations of the closed-loop learning algorithm when sensing with spin chains. a, b each illustrate the performance of
our closed-loop learning algorithms for the respective cases where (Δx)2 = 0.01 and (Δx)2 = 0.001. In both graphs, the horizontal axis denotes
iteration number g. The solid lines represent optimal quantum Fisher information achieved at each iteration, while the dashed lines represent
the bound stipulated by purity loss (i.e., FLQ). We see that both begin at low values at g = 0 as expected for random probes, and improve
markedly during the learning process. c, d illustrate that the efficacy of the discovered probes approaches the Heisenberg limit, indicating
their near optimality. Meanwhile, setting Δx to be smaller seemed to be marginally more advantageous, likely owing to the closer agreement
between purity loss and quantum Fisher information in this regime. In e, we show a table of the fidelity between the quantum probe states
generated and the closest theoretically optimal probe.
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To apply our algorithm, we first formally describe C. Here, each
time we adjust the control field, we have M(2N + 1) free
parameters. (1) 2M parameters Bix ½m� and Biy ½m� describing the
strength of the spin angular momentum operators Iix and Iiy for the
ith qubit for each i = 1, 2, …, N and m = 1, 2, …, M, (2) M
parameters Δt[m] describing the amount of time we should wait
before adjusting the fields again. As such, each control sequence is
described by M(2N + 1) parameters, C ¼ ðBix½m�; Biy½m�;Δt½m�Þ,
where m = 1, 2, . . . , M; i = 1, 2, . . . , N. Application of this control
sequence would then correspond to enacting the unitary UC = UM…

U2U1, where Um ¼ e�iΔt½m�2πfJ
PN

i¼2
Ii�1
z Iizþ

PN

i¼1
ðBix ½m�IixþBiy ½m�IiyÞg. The goal

is to find some near-optimal sequence, such that from some easily
prepared initial probe Ψij i the resulting probe state Ψfj i ¼ UC Ψij i is
near optimal for estimating ϕ.
For sufficiently low N (of up 7), it is feasible to simulate our

algorithm classically. In Fig. 2a, b, we plot the maximum FLQ and FQ
with respect to the particle number for two possible choices of Δx.
Observe that the purity loss becomes a better proxy for quantum
Fisher information when Δx is reduced, in agreement with Eq. (1).
Indeed, at (Δx)2 = 0.001, the relationship is almost exact. As such,
our learning protocols produce results within 1% of the
Heisenberg limit when using (Δx)2 = 0.001.
To further verify the effectiveness of our algorithm, we compare

the results of our algorithm with that of the theoretical optimal. In
this specific case, theory indicates that the N-party entangled
NOON states Ψtj i ¼ ð 0j i�N þ eiθ 1j i�NÞ= ffiffiffi

2
p

are the optimal probes
—saturating the Heisenberg limit35. Executing our closed-loop
learning algorithm, we note that the learned optimal probe state
Ψfj i closely approximates these NOON states. In Fig. 2c, we list the
fidelity 〈Ψt∣Ψf〉 between Ψfj i and theoretical optimal Ψtj i. For small
qubit numbers, the agreement is complete (fidelity = 1). While
limitations in computational resources (in evaluating FQ for
example) do slowly degrade the fidelity as we increase particle
number, there is still a match of over 0.95 when N = 7.
The algorithm, itself, however, is not designed to run purely on

classical computers. Indeed, the computational costs to do so
scale exponentially with N. Tracking the dynamics of controls, and
resulting purity loss becomes quickly intractable. However, when
the algorithm is executed on a quantum processor, such
information does not need to be tracked. In particular, we do

not need to know the mathematical descriptions of the controls,
nor the strength of the internal spin–spin interactions.

Proof-of-principle experiment
Our proof-of-principle experiment was conducted on a Bruker
Avance III 400 MHz spectrometer using the sample diethyl-
fluoromalonate at room temperature. This three-qubit NMR
processor consists of three spins 13C, 1H, and 19F. Label these as
qubits 1, 2, and 3. This process enables us to engineer controlled-
SWAP gates that coherently swaps between qubits 2 and 3,
controlled on qubit 1 (see “Methods” and Supplementary Note 3).
Thus provided, we can initialize both qubits 2 and 3 in a
designated state ρ; we can also experimentally measure the purity
Trðρ2Þ28. This processor is thus capable of realizing the quantum
efficacy estimator for single qubit probes.
We illustrate the use of this device to estimate ϕ, encoded within

the single qubit unitary Uϕ ¼ e�iIzϕ. Here, the probe state is a single
spin, which we can rotate along x and y directions. Assume M total
pulse segments, each candidate control sequence is now described
by 2M free parameters, C = (Bx[1], By[1], Bx[2], By[2], …Bx[M], By[M]).
The resulting propagator could be expressed as UC = UM…U2U1

with

Um ¼ expf�iðBx ½m�Ix þ By½m�IyÞΔtg: (2)

Note that we have omitted the Δt[m], which was present in
numerical simulation for the general N case, as the lack of a drift
Hamiltonian makes this unnecessary. Our goal is then to find a
control sequence C such that UC 0j i has maximal quantum Fisher
information with respect to ϕ.
We implement our closed-loop learning algorithm with a

population of n = 7, and M = 3 pulse segments. Each pulse
sequence was set to T = Mτ = 30 μs. The key difference here from
numerics is that the efficacy is now evaluated directly using our
NMR processor. For a particular candidate control sequence C, we
first initialize each of qubits 2 and 3 of our processor into the state
0j i. The control sequence C is then applied to both qubits, setting
them each to some resulting candidate probe state ρC. Application
of the controlled-SWAP circuit then enables estimation of
γC ¼ Trðρ2CÞ (see Fig. 1c).

Fig. 3 Closed-loop learning on the NMR computer. In the experimental implementation, each control sequence consisted of three pulses of
duration T = 30 μs, with a stopping criterion of 25 iterations and a population size per iteration of 7. Each candidate probe state in iteration
g is specified by ρðgÞC ¼ ψj ihψjwith jψi ¼ cosðδ=2Þ 0j i þ sinðδ=2Þeiφ 1j i. In a, we plot the candidate probes discovered during iterations 1, 10, 20,
and 25, as overhead projections on the Bloch sphere. Here ðφ; sin δÞ are effectively mapped to polar coordinates—such that sin δ becomes the
magnitude (displacement of the point from the center), and φ is the angle relative to the x-axis. The points in each plot are color coded
according to their efficacy. The plots then directly depict the convergence of the sequentially discovered candidate probes to the optimal
probe (demarcated by δ = π/2). b plots the purity loss of these probe state (round circles with values given by axis on the left), together with
the blue line indicating the bound stipulated by maximal purity loss out of all candidates in each iteration (solid blue line). The red line plots
(with values given by axis on the right) the quantum Fisher information achievable by the associated probe state, should it be used to sense ϕ.
These results illustrate that the learning algorithm converges quickly to near-optimal values by the tenth iteration. Meanwhile, c plots the
associated control fields in the x and y directions (orange and pink bars) used to general the optimal probe of iterations 1, 10, 20, and 25.
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Determination of γavg ¼ Trðρ2avgÞ requires us to simulate the
effects of applying Uϕ+ X, where X is Gaussian distribution with
standard deviation Δx. This is a little more complex in the NMR
regime, but can be done using a variation of stratified sampling
(see “Methods”). Once done, we can then directly evaluate the
efficacy estimator Δγ = γC − γavg (see Fig. 1b). Thus, our NMR
processor is able to function as an effective quantum efficacy
estimator.
This gives us all the tools in place for a quantum-assisted

closed-loop learning algorithm. To begin, we generated a random
selection of seven control sequences, denoted as Cð0Þ. By
evaluating their efficacy using the NMR processor, and feeding
results into the Nelder–Mead algorithm, we can systematically
produce subsequent populations Cð1Þ, Cð2Þ, …. We emphasize that
the entire procedure was fully automated, such that this
procedure can proceed ad infinitum without intervention till
stopping conditions are met.
In our experiment, we set the stopping condition as g = 25.

Figure 3b plots the resulting purity loss of various control
sequences in CðgÞ for each iteration g. Meanwhile, Fig. 3c shows
the sliced control sequences along x and y directions for the
maximum purity loss in the 1st, 10th, 20th, and 25th iteration. We
see these control sequences quickly converge, and the resulting
purity loss becomes almost maximal within 10 iterations.
To verify that optimizing purity loss indeed optimizes the

efficacy of the probe, we experimentally extracted the best
candidate probe state, ρðgÞC , in each iteration from a full three-qubit
state tomography36 (see Supplementary Note 3). The correspond-
ing quantum Fisher information FðgÞQ are obtained in Fig. 3b,
illustrating the increments in efficacy of the probes closely follow
that of increments in purity loss. Moreover, the final quantum
Fisher information obtained is 0.9967 ± 0.0014 (statistical results
over the last eight iterations), which is very close to the theoretical
maximum of 1. Finally, Fig. 3a illustrates candidate probes at
various iterations, illustrating how our controls quickly converge
on engineering probe states that are maximal coherent with
respect the computational basis—the requirement for a probe to
be optimal for estimating ϕ.

DISCUSSION
Here, we proposed a quantum-enhanced machine learning
protocol for synthesizing effective probes for the purposes of
quantum metrology. The protocol enables an automated method
to discover what control sequences one should apply to many-
body quantum system—in order to steer into a state ideally suited
for probing the phase ϕ of some unitary process e�iHϕ. We
experimentally realized a proof-of-principle experiment using a
three-qubit NMR processor, where the device was able to discover
control sequences that prepare probe states whose sensitivity to a
desired ϕ (as measured by quantum Fisher information) is within
1% of theoretical optimal values. Our numerics indicate that this
methodology can remain effective when engineering probes
involving a large number of entangled qubits—even when these
qubits possess uncontrollable spin–spin interactions.
There are a number of open questions. The first is the issue of

noise. One of the benefits of our approach is that it automatically
accounts for noise during the control process, and naturally finds
the optimal control sequence that accounts for such noise.
However, the evaluation of purity loss does require the addition of
an extra controlled-SWAP gate, and extra noise introduced at this
stage can potentially skew the results. Fortunately, our analysis
(see “Methods”) demonstrates that the protocol is highly resistant
to one dominant source of noise in NMR—dephasing, such that
any amount of dephasing noise can be corrected for by repeating
our purity estimation protocol by some fixed number that does
not scale with the size of the system. Sensitivity to other noise
sources needs further investigation, and will likely require full

tomographical data of the experimentally realized controlled-
SWAP gate to correct.
As with all learning algorithms for solving intractable problems,

there are of course caveats. The main one is that our algorithm will
not always efficiently find the optimal probe. Like all optimization
processes, the Nelder–Mead algorithm can be potentially trapped
in local optima. Thus, one particular important line of future study
would be the performance landscape of purity loss. In instances
where this landscape is not ideal, our techniques can support
multiple pathways for modification. Nelder–Mead, for example,
could be replaced with genetic algorithms, neural networks, or
other means of machine learning37–39. Meanwhile, there may exist
other indicators of efficacy that outperform purity loss in certain
settings. Thus, our closed-loop architecture could be modified to
incorporate many possible alternative means of quantum-aided
probe design.
Meanwhile, there will always be an ultimate limit to such

learning algorithms. The reason is that there is a polynomial
equivalence between time-complexity in optimal control and
quantum gate complexity40,41. Coupled with knowledge that most
quantum circuits cannot be efficiently decomposed into funda-
mental gates, this means that the optimal probes can easily lie
outside the set of states that can be synthesized through a control
sequence with free parameters that grow as a polynomial of N. In
such instances, an ideal solution simply does not exist. However,
such situations may in fact represent scenarios where such
learning protocols are most useful—for its optimization represents
all control sequences that can be implemented in some bounded
amount of time. As such, the solution presented could be a good
approximation for the best quantum probe we can synthesize
with limited computation power.

METHODS
Purity measurement in NMR
To establish the purity of ρðgÞavg, we made use of stratified sampling. Let xk be
drawn by the stratified sampling method from the discretized Gaussian
distribution with K samples and a variance of (Δx)2 = 1.0721.
In our experiments, we divided the Gaussian distribution into

K = 9 stratas, such that xk ∈ {−1.7046, −0.9757, −0.5922, −0.2832, 0,

0.2832, 0.5922, 0.9757, 1.7046}, (Δx)2 = 1.0721. Let ρxj ¼ Uϕðxj Þρ
ðgÞ
C Uy

ϕðxj Þ
with UϕðxjÞ ¼ e�iðϕþxjÞIz . The purity of the ensemble-averaged state, namely

ρ
ðgÞ
avg, can then be estimated as follows:

Tr½ðρðgÞavgÞ
2� � Tr 1

K

PK
j¼1

ρxj

 !
1
K

PK
k¼1

ρxk

� �" #

¼ 1
K2

PK
j;k¼1

Trðρxjρxk Þ

¼ 1
K2

PK
j¼k

Trðρ2xj Þ þ 2
K2

PK
j
Trðρxjρxk Þ:

(3)

Hence, estimation of the purity Tr½ðρðgÞavgÞ
2� was achieved by measuring

the purity of each term of Trðρxjρxk Þ using the scheme of Fig. 1c, where
qubit 2 and 3, respectively, were prepared in ρxj and ρxk .

The Nelder–Mead algorithm
The Nelder–Mead algorithm functions by performing a series of geometric
transformations on a simplex iteratively to get closer to the optimal control
sequence. The simplex is a geometric shape consisting of n + 1 vertices,
and each vertex represents a candidate control sequence Ci with i =
1, 2, . . . , n + 1. Here, n should be the product of the directions of the
control sequence and and its sliced numbers. Note that n is closely related
to the number of vertices. Based on the following defined performance
function (relate to the efficacy estimator) with respect to each candidate
control, namely f ðCiÞ ¼ 1� ΔγðρCi

Þ, this algorithm attempts to replace the
worst vertex by a new better one according to the geometric
transformations reflection, expansion, contraction, and shrinkage.
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Concretely, we describe the procedure of the Nelder–Mead algorithm used
in this study.
Step 1: Randomly generate an initial simplex with vertices
C1;C2; ¼; Cnþ1f g and calculate their performance functions
f i ¼ f ðCiÞ ¼ 1� ΔγðρCi

Þ. The amplitude of Ci in each slice is set in the
range [−1000, 1000].
Step 2: Sort the vertices so that f(C1) ≤ f(C2) ≤ ⋯ ≤ f(Cn+ 1), calculate the

centroid of the best n points by C ¼Pn
i¼1 Ci .

Step 3: Calculate the reflected point, Cr ¼ C þ αðCnþ1 � CnÞ, evaluate
the performance function fr = f(Cr), where the reflection factor is set as
α = 1.
Step 4: Replace the worst vertex Cn+ 1 and its corresponding

performance function fn+ 1 by the generated better one according to
one of the following conditions:

(1) if f1 ≤ fr < fn, let Cn+ 1 = Cr, fn+ 1 = fr;
(2) if fr < f1. Calculate the expanded point Ce ¼ C þ γ � αðCnþ1 � CnÞ,

evaluate its performance fe = f(Ce), where the expansion factor is set
as γ = 2. (2a) if fe < fr, let Cn+ 1 = Ce, fn+ 1 = fe; (2b) if fe > fr, let
Cn+1 = Cr, fn+ 1 = fr;

(3) if fr ≥ fn, (3a) if fn ≤ fr < fn+ 1, calculate the outside contracted point,
Cc ¼ C þ β � αðCnþ1 � CnÞ, evaluate the function value fc = f(Cc),
where the contraction factor is set as β = 0.5. Let Cn+ 1 = Cc,
fn+ 1 = fc when fc ≤ fr, or shrink the simplex Ci = C1 + (1 − δ)Ci, fi = f
(Ci), i = 2, 3, … , n + 1 when fc > fr, where δ is the shrinkage factor
and set as 0.5. (3b) if fr ≥ fn+ 1, calculate the inside contracted point,
Cc ¼ C � β � αðCnþ1 � CnÞ, evaluate the function value fc = f(Cc),
where the contraction factor is set as β = 0.5. Let Cn+ 1 = Cc,
fn+ 1 = fc when fc ≤ fr, or shrink the simplex Ci = C1 + (1 − δ)Ci, fi = f
(Ci), i = 2, 3, … , n + 1 when fc > fr, where δ is the shrinkage factor
and set as 0.5.

Step 5: Check the stopping conditions, if not satisfied, change the
iteration number with g = g + 1 and continue at Step 2.

Effects of decoherence
Here, we analyze the effect of decoherence in algorithm. This is because
our process for benchmarking the efficacy of a control sequence makes
use of the same quantum device that will be used to during the actual
metrological process. Specifically, each iteration of the learning algorithm
can be casted as the following procedures:

(A) Synthesize two copies of candidate probe states ρC corresponding
to a candidate control sequence C.

(B) Synthesize two copies of the state ρavg, by first preparing a second
pair of copies of the candidate probe state ρC, and then applying the
physical encoding process of parameter ϕ subject to stochastic
fluctuations separately to each copy.

(C) Estimate the purity loss due to stochastic fluctuations by
experimentally measuring the purity of the resulting states from
step (A) to step (B).

We can now consider the impact of docoherence in each of these three
steps. The first thing to note is that decoherence in steps (A) and (B),
respectively, represent the intrinsic decoherence of our probe preparation
device and that of the physical process it is trying to sense. As such, their
inclusion in our learning process is actually desired. That is, as the device
that is used to estimate the efficacy of the probes is the device that will
eventually be used for metrology, we naturally want all decoherence
within this device to be accounted for while benchmarking the efficacy of
candidate control sequences. A similar argument also holds for
decoherence when applying the physical process, as this decoherence
will also exist during sensing.
Given these considerations, the only undesired decoherence is that

which occurs during estimation of purity loss (step (C)). This procedure is
done via the SWAP test, summarized as follows:

(i) Take two copies of ρC, and one ancillary qubit initialized in state
þj i ¼ ð 0j i þ 1j iÞ= ffiffiffi

2
p

.
(ii) Apply a controlled-SWAP gate to swap the pair of ρC, add a

Hadmard gate to the ancillary qubit, and measure the expectation
value 〈Iz〉 of ancillary control qubit in the Iz basis (see Fig. 1c), to
estimate Trðρ2CÞ.

(iii) Repeat the above procedure for ρavg to estimate Trðρ2avgÞ.
(iv) The difference Δγ ¼ Trðρ2CÞ � Trðρ2avgÞ is then used to estimate the

efficacy of the control sequence C.

Noise and decoherence during this procedure can affect the accuracy in
which we estimate purity loss. In general, its effect is likely nontrivial, and
tomography will be needed to work out what noise introduces to 〈Iz〉 so
that this error can be corrected for.
In the case of NMR, the dominant source arises from dephasing. This

dephasing noise can be described by a non-unitary channel εiðρÞ ¼
ð1� pÞρþ 4pIizρI

i
z that acts on each qubit seperately, where Iiz denotes the

angular momentum operator acting on the ith qubit and p is the strength
of the dephasing. Following an error analysis similar to that of other NMR
experiments that employ controlled gates42, we see that this noise does
not change the relative order of our purity loss estimates. That is, provided
there is a sufficient number of repetitions, our conclusion of which control
sequence has greater purity loss between two candidates will not change
under dephasing.
In particular, let hIzip denote the expectation value of Iz under dephasing

strength p, then our measured purity has expectation value hIzip ¼
ð1� pÞ2hIzi with variance bounded above by 1. To correctly compare two
probe states whose purity loss differs by at most δ requires each purity
measurement to have a variance <δ2/4 (as differences in purity loss involve
four additive purity measurements). This is guaranteed provided we repeat
our measurement process of order 4

δð1�pÞ2 times—a overhead of 1/(1− p)2

compared to the case where there is no decoherence. Notably, this
overhead does not scale with N, and thus the protocol remains efficient. In
our experiment, p is ~0.025, thus we are able to discern rank control
sequences whose purity loss differ by >0.045.
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