
ARTICLE OPEN

A nonlocal game for witnessing quantum networks
Ming-Xing Luo1,2*

Nonlocal game as a witness of the nonlocality of entanglement is of fundamental importance in various fields. The well-known
nonlocal games or equivalent linear Bell inequalities are only useful for Bell networks consisting of single entanglement. Our goal in
this paper is to propose a unified method for constructing cooperating games in network scenarios. We propose an efficient
method to construct multipartite nonlocal games from any graphs. The main idea is the graph representation of entanglement-
based quantum networks. We further specify these graphic games with quantum advantages by providing a simple sufficient and
necessary condition. The graphic games imply a linear Bell testing of the nonlocality of general quantum networks consisting of EPR
states. It also allows generating new instances going beyond CHSH game. These results have interesting applications in quantum
networks, Bell theory, computational complexity, and theoretical computer science.
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INTRODUCTION
A nonlocal game is generally described as multiple space-
separated players interacting with a referee. The communication
between players are forbidden. Remarkably, it is related to Bell
theory that is fundament in quantum mechanics1 when players
are allowed to share classical resources or quantum entangled
resources. Clauser-Horne-Shimony-Holt (CHSH) game as a dis-
tributed evaluating of Boolean equation: y1 ⊕ y2= x1 ∧ x2,
provides the first notable way for witnessing the nonlocality of
Einstein-Podolsky-Rosen (EPR) state,1–6 where xi, yi are respective
binary input and output. The shared entanglement permits a
quantum strategy with larger winning probability than all classical
strategies.
Generally, a nonlocal game allows all the players to determine a

joint strategy from the complete knowledge of inputs distribution
and the predicate conditions for win. The corresponding
procedure can be featured by a generalized hidden variable
model with classical sources or quantum sources.1 One funda-
mental problem is to determine whether quantum mechanics is
superior to classical theory in terms of nonlocal tasks. These
evaluations are equivalent to solving special optimization
problems from Tsirelson’s reductions.7 Unfortunately, no efficient
algorithm exists for general multipartite nonlocal games.8–13

Besides verifying entanglement, nonlocal games have so far
inspired numerous applications, such as multi-prover interactive
proofs,14–16 quantum proof verification,17,18 hardness of approx-
imation,19–21 PCP conjecture,22–24 separating correlations,25–28 and
communication complexity theory.29,30

There are various interesting nonlocal games except for CHSH
games. XOR games are the most well studied.31–34 The global task
is to XOR of the outcomes of all players. Other games include
Kochen-Specker game,4,31 non-zero sum games,35,36 magic square
game,37 graph isomorphism game,38 Bayesian game,39 and
conflicting interest game.40 The key to achieve a quantum
advantage is the nonlocal correlations generated by local
measurements on the shared entangled states. Similar correlations
are not achievable by remote players using local strategies with
any shared classical resources. These tasks show the important
role of quantum entanglement in information processing.41

Comparison to single entanglement,1 the network scenarios of
multiple independent sources require the nonlinear Bell inequal-
ities to test the nonlocality.42–45 Hence, how to construct
meaningful nonlocal games should be interesting in scaling
applications of entangled resources. Two related problems are as
follows:
Problem 1—How to efficiently construct nonlocal games for

space-separated players who share a quantum network consisting
of entangled states?
Problem 2—How to characterize nonlocal games with or

without quantum advantages in network scenarios?
The goal of this paper is to address these problems in the

context of cooperative nonlocal games, as shown in Fig. 1. We
propose a unified method to construct multipartite games from
graph representations of general multi-source networks. Each
game is determined by some subgraphs that can be constructed
efficiently. Note that for any graph with N nodes, the proposed
method provides O(4nN) different nonlocal games with n players.
These graphic nonlocal games will further be classified in terms of
the quantum advantage using a simple sufficient and necessary
condition. The result holds for the same probability distribution of
all inputs going beyond previous algorithmic results46 or semi-
definite programs.7,10,11,47,48 Surprisingly, the present graphic
games allow testing the nonlocality of multi-source quantum
networks going beyond previous CHSH game for single entangle-
ment.1–3,36 Compared with the recent nonlinear witness,42–45 the
graphic game provides the first verification of general networks
using linear Bell testing beyond semiquantum game.49 The new
result is also useful for nonlocal satisfiability problems going
beyond CHSH game3 and cubic game.37 The graphic game finally
extends the guessing your neighbor’s input (GYNI) game.50,51 The
present model provides novel instances to feature nonlocal games
with different performances.52

RESULT
Nonlocal multipartite cooperating games
An n-player nonlocal cooperating game consists of n players A1,
A2, ..., An and a referee,31 as shown in Fig. 1. All the players agree
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with a joint strategy beforehand but cannot communicate with
each other during the game. The referee firstly chooses n
questions: x1, x2, ..., xn from a finite set X := X1 × X2 × ... × Xn
according to a known distribution p(x). And then, sends xi to Ai, i
= 1, 2, ..., n. All the players are now required to reply with answers
y1, y2, ..., yn chosen from a finite set Y := Y1 × Y2 × ... × Yn to the
referee. Finally, the referee determines whether all the players win
or lose the game according to a payoff function: F: X ´Y → {0, 1},
i.e., win if F(x, y)= 1 and lose if F(x, y)= 0, where x= x1x2...xn, y=
y1y2...yn. The optimal average winning probability of all the players,
i.e., the nonlocal value of the game, is defined by:

ϖc ¼ sup
Ω

X
x;y;λ

pðxÞμðλÞFðx; yÞPðyjx; λÞ (1)

Here, μ(λ) is the probability measure of the hidden classical
resource λ and satisfies

P
λ μðλÞ ¼ 1. P(y|x, λ) denotes the joint

conditional probability depending on the shared randomness λ.
The supremum is over all the possible classical spaces Ω of hidden
variables λ. Generally, it is hard to approximate the nonlocal value
ϖc of multipartite games.10,11,48 From the linearity of ϖc with
respect to all probability distributions, it is sufficient use
deterministic strategies for all the players, i.e., p(λ)= 1 for some λ.
In quantum scenarios, players are allowed to share various

entangled states and perform quantum measurements (asso-
ciated with noncommuting operators which are different from
commuting operators in classical physics) to obtain answers. Let
ρ be the shared entangled state. Denote positive-operator valued
measurements (POVMs) of all the observers as fMx1

y1g, fMx2
y2g,...,

fMxn
yng, which depend on the received questions x1, x2, ..., xn,

respectively. These operators satisfy the normalization conditions:P
yi M

xi
yi ¼ I for i= 1, 2, ..., n, where I is the identity operator. The

optimal winning probability for all the quantum players to player a
cooperating nonlocal game defined above is defined by:

ϖq ¼ sup
X
x;y

pðxÞFðx; yÞTr½�n
j¼1M

xj
yjρ�; (2)

where the supremum is over all the possible quantum states and
local POVMs. Note that each linear Bell-type inequality is
equivalent to a cooperating nonlocal game.53 The nonlocal value
ϖq is related to the Tsirelson bound of linear Bell inequality.7 A
central problem in the nonlocality theory is to find computable
good bounds of nonlocal value ϖq.

7,31 Unfortunately, it is QMA-
hard to approximate the nonlocal value of ϖq.

17,54

Graphic games
CHSH game provides a novel idea to witness a bipartite
entanglement.2,3 As a natural extension, it would be of interesting
to characterize multiple entangled states shared by space-
separated observers in a network scenarios. Although the linear
testing of single entanglement53,55–59 allows designing equivalent
nonlocal game, it is unknown how to construct meaningful
nonlocal games for multi-source quantum networks that requires
nonlinear testing42–45 or semiquantum testing.49 To address this
problem, we propose a general method to construct nonlocal
games from any graphs with only vertices. Surprisingly, the
graphic games can be completely classified with respect to the
nonlocal values. To explain the main result, we firstly present the
following definitions.
Definition 1—(The graphic representation of quantum net-

works) Consider a multi-source network N q consisting of multiple
independent EPR states shared by different observers. Its graphic
representation is defined as a vertex graph Gq , where each node
denotes one entanglement.
Some typical examples of quantum networks are shown in Fig.

2. Generally, for any graph, we can assign a subgraph to each
player according to the input. In this case, the relation that two
observers share one entangled state is equivalent to two players
sharing one vertex, see Fig. 2, where each player owns some
vertices with the same color. These nonlocal games can be then
characterized by using the consistency conditions on the common
vertices shared by different players. Formally, the graphic game is
defined as follows:
Definition 2—An n-partite graphic game is a six-tuple:

ðG;A;V;X ;Y;FÞ. G is a general graph with vertex set V (the
edges are not required in this application). A denotes the set of all
the players Ais and referee. V denotes the set of all the vertex sets
Vxi � V owned by players, where Vxi denotes the set of vertices
assigned to the player Ai according to the input question xi.
Assume that Vxi s satisfy the following conditions: Vxi ∩ Vxj =∅ for
xi= xj= 1 with 1 ≤ i < j ≤m, where m is a parameter satisfying 1 ≤
m < n. X denotes the set of binary problems x1, x2, ..., xn∈ {0, 1}. Y
denotes the set of all the assignments on vertices (as outputs) by
players. F: X ´Y → {0, 1} is a payoff function depending on all the
inputs and outputs of players. A graphic game is implemented as
follows:
Input—The referee randomly chooses binary question xi

according to the distribution {p, 1− p}, and sends to the player
Ai, i= 1, 2, ..., n.

Fig. 1 Cooperating nonlocal game. A referee chooses questions xks
from a finite set according to a prior distribution p(x), and sends to
players. Each player Ak should output an answer yk based on the
received question xk and the shared resource without communicat-
ing with other players. The referee then evaluates a payoff function F
with all outputs and inputs to determine win or lose for all the
players

Fig. 2 Graphic representation of multi-source quantum networks
consisting of EPR states. a Star-type network. Each of n− 1 observers
share one EPR state with the center observer. b Chain-type network
of entanglement swapping in long distance. Any two adjacent
observers share one EPR state. Each entanglement is schematically
represented by one vertex in graph. The relationship that two
observers share one entangled state is equivalent to two players
sharing one vertex, where each player owns vertices with the
same color
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Output—The player Ai assigns an integer yi ∈ {±1} on each
vertex in the set Vxi , and sends all the assignments to the referee
secretly.
Winning conditions—All the players win the graphic game, i.e.,

F(x, y)= 1, if and only if their assignments satisfy the following
consistency conditions:

(a) Sxi = 1 for i=m+ 1, m+ 2, ..., n;
(b) Sxi ;xj ¼ �1 when xi= xj= 1, or 1 otherwise, for 1≤ i ≤m < j ≤ n;
(c) Sxi ;xj ¼ Sxj ;xi ¼ 1 for m < i < j ≤ n;

where Sxi denotes the product of all the assignments of the player
Ai, and Sxi ;xj denotes the product of all the assignments by the
player Ai on the vertices shared with the player Aj.
Definition 2 contains previous nonlocal games3,31,37 as special

cases. The consistency conditions (the conditions (b) and (c) in
Definition 2) are important for the most of nonlocal games.3

Quantum correlations derived from entangled resources can
satisfy these kinds of requirements with higher winning prob-
ability over all classical achievable correlations. Here, m is a free
parameter satisfying 1 ≤m < n, which is used to feature the players
whose assignments satisfy the consistency conditions. Specifically,
the consistency conditions should be satisfied by the outputs of all
the players to win a nonlocal game. Our graphic game is then
similar to a nonlocal computation such as CHSH game with
nonlinear restrictions shown in conditions (a)–(c). Generally, for a
graph G with N vertices, there are 2N− 1 nontrivial subgraphs,
which imply O(4nN) different graphic games. It is hard to evaluate
or approximate the nonlocal values for all these games. Hence, it
should be interesting if some restricted games can be
distinguished.

Toy example
Take the graph G shown in Fig. 3a as an example. There are two
players in Fig. 3b. Each player holds one vertex independent of
inputs, where their outputs are 1− 2x1, 1− 2x2. There is no
consistency requirement for two players with m= 1. It is easy to

obtain ϖc= 1 for classical players. Hence, there is no quantum
advantage from ϖq=ϖc= 1. For the game in Fig. 2c, the player
A1 holds different vertices vx1þ1 according to the input x1 while A2

owns the whole graph independent of the input. In this case, two
players have to satisfy the consistency conditions (b) and (c), i.e.,
y1;A1= y1;A2= 1 and y2;A1= y2;A2=−1, where yi;Aj denotes the
assignment on the vertex vi by the player Aj. Now, assume that the
player A1 assigns 1− 2x1 on the shared one vertex according to
the input x1. The player A2 assigns the same value of 1− 2x2 on
two vertices. With these assignments, the graphic game is
equivalent to CHSH game.3 This implies a strict quantum
advantage for two players who share an EPR state.2 Similar result
holds for the graphic game shown in Fig. 3d. To explain the main
result, some definitions will be introduced beforehand.
Definition 3—Consider a graphic game with n players A1, A2, ...,

An. For each i with 1 ≤ i ≤m, Ai denotes the set of players Ajs (m+
1 ≤ j ≤ n) who share vertices with Ai for each input xixj, i.e.,

Ai ¼ fAjjVxi \ Vxj 6¼ ;; 8xi ; xj ¼ 0; 1g: (3)

Definition 4—Denote As
i as the set of players as follows:

As
i ¼ ðAi;Ai1 ; ¼ ;Ais�1ÞjAij 2 Ai ; Vxi \ ð\s�1

j¼1V
xij Þ 6¼ ;;

n

8xi; xi1 ; ¼ ; xis�1 ¼ 0; 1g;
(4)

where each element consists of s players Ai;Ai1 ; ¼ ;Ais�1 who share
common vertices for each input xixi1 ¼ xis�1 , and 2 ≤ s ≤ n−m.
As

i characterizes the consistency requirements among s players
of Ajs and Ai. In what follows, we omit the case that all the players
have no common vertex because of ϖc=ϖq.
Definition 5—Let Ii be an integer associated with As

i as:

Ii ¼ minfsjAs
i 6¼ ;g; 8i ¼ 1; 2; ¼ ;m: (5)

With these definitions, we find all the graphic games with
quantum advantages when proper consistency conditions are
satisfied.
Theorem 1—For any graphic game with ϖc 6¼ 1, there is a

quantum advantage, i.e., ϖq >ϖc, if and only if min{I1, I2, ..., Im}= 2.
Theorem 1 presents a sufficient and necessary condition for

graphic games with quantum advantage. One example is shown
in Fig. 3b. This provides the first instance for Problem 2 with a
deterministic separation of classical correlations and quantum
correlations in correlation space. It is interesting to intuitively
show the relationship between Ii and quantum advantage. Note
that As

i shown in Eq. (4) features the number of players who have
the consistency requirements with Ai independent of inputs. If one
divides a network into m subnetworks according to players Ais
(i= 1, 2, ..., m) who have no shared vertices, Ii is then used to
describe the topology characters of a given network. Specially, it
means that the network consists of star-type in Fig. 2a networks or
chain-type subnetworks in Fig. 2b for Ii= 2. For Ii= k > 2, the
network consists of various cyclic subnetworks. In this case, similar
to previous nonlinear method42–45 Theorem 1 implies that there is
no useful linear testing scheme for cyclic networks. One example
is triangle network.42,45 The proof is inspired by the unbalanced
CHSH game shown in Supplementary Notes 1 and 2.6,37 To explain
the main idea, consider a graphic game G with m= 1 consisting of
three players A1, A2, A3. Two different games Gi are defined as
follows. G1 requires that the outputs of two pairs of players {A1,
A2}, and {A1, A3} are consistency simultaneously. G2 requires that
the outputs of three pairs of players {A1, A2}, and {A1, A3}, and {A2,
A3} are consistency simultaneously. Both games can be regarded
as two and three simultaneous CHSH games, respectively.
Theorem 1 means that G1 has a quantum advantage with I1= 2
while G2 has no quantum advantage with I1= 3. The main reason
is that there are too many restrictions in G2 to achieve a quantum
advantage. This provides a new witness for entanglement-based
quantum networks45 and nonlocal games.33

Fig. 3 A graphic nonlocal game. a A graph with two vertices. b A
graphic game with two players. The player Ai holds the vertex vi
independent of the input, i= 1, 2. c A graphic game with two
players. The player A1 holds the vertex vx1 depending on its input x1
while the player A2 owns the vertices v1, v2 independent of the
input. d A graphic game with two players. The player Ai holds the
vertexes v1, v2 independent of the input, i= 1, 2. The players can
share classical or quantum resources
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Witnessing multi-source quantum networks
Multi-source quantum networks can extend applications of single-
source Bell network in large scale.60,61 However, it is hard to verify
these distributive entangled states in global pattern due to the
non-convexity of quantum correlations. One useful way is to make
use of some nonlinear Bell-type inequalities.42–45 Interestingly, the
present model provides another witness for general quantum
networks. Specifically, let one vertex schematically represent one
EPR state, as shown in Definition 1.2 Any multi-source quantum
network consisting of EPR states is equivalent to a graph with lots
of vertices. Some examples are shown in Fig. 2. Figure 2a presents
a star-type quantum network, where each pair of Bi and A share
one EPR state |Φ〉i, i= 1, 2, ..., n− 1. Its graphic representation
consists of n− 1 vertices v1, v2, ..., vn−1. The assumption that each
pair of players share one EPR state can be schematically
represented by sharing one vertex in terms of the graphic game
in Definition 2. Similar representation holds for chain-type network
shown in Fig. 2b. From the equivalent reformations, there are lots
of testing to achieve a quantum advantage when the graphic
games are defined. Generally, from Theorem 1 we obtain a
corollary as:
Corollary 1—For any quantum network N q consisting of EPR

states shared by n observers, there are nonlocality witnesses in
terms of graphic game if N q is k-independent with k ≥ 2.
In Corollary 1, k-independence means that there are a set of k

observers who do not share any entanglement among them-
selves. Note that for verifying quantum networks, all the shared
vertices Vxi s are independent of inputs. From the equivalent
reduction,45 any k-independent network is equivalent to a
generalized star-type network, as shown in Fig. 2a. The proof of
Corollary 1 follows easily from the corresponding graphic games,
where mini Ii ¼ 2 because no more than two players share
vertices. Take the star-type network shown in Fig. 2a as an
example. Each pair of players {Bi, A} shares one vertex vi
independent of their inputs, i= 1, 2, ..., n− 1. There exists
quantum advantage because of I1= 2 by assuming m= 1 (or m
= n− 1). For the chain-type network shown in Fig. 2b, each vertex
vi is owned by two adjacent players Ai and Ai+1. One can define
different m by choosing the players without sharing vertices
(independent in quantum networks).45 Quantum advantages hold
for these graphic games. Generally, the present graphic games
allow the first linear testing for multi-source quantum networks
consisting of EPR states.

CHSH game
Two equivalent forms of CHSH game in ref. 3 are shown in Fig. 3c,
d. Another extension is cube game, which is defined over an
n-dimensional cube graph G with 2n vertices represented by {(q1,

q2, ..., qn), ∀qi= 0, 1}, as shown in Fig. 4a, where m= 1. Specially,
the referee randomly chooses binary question xi ∈ {0, 1} according
to a given distribution {p, 1− p}, and sends it to the player Ai. Each
player assigns 1 or −1 to their own vertices on n− 1-dimensional
hyperplane defined by {(q1, q2, ..., qn)|qi= xi} and sends to the
referee. All the players win the game if and only if their
assignments satisfy the requirements in Definition 2. From
Theorem 1, it follows that the cubic game has no quantum
advantage over all the classical strategies when n ≥ 3, where I1=
n. Our result is different from a recent result with relaxed
consistency conditions.35 Another simple extension with m ≥ 1 is
defined as: the player Ai owns the local subgraph defined by {(q1,
q2, ..., qn)|q1= q2= ...= qm= xi} for i= 1, 2, ..., m, and {(q1, q2, ..., qn)|
qj= xj} for j=m+ 1, m+ 2, ..., n. Note that any two players of A1,
A2, ..., Am have no common subgraph for all the inputs. It is
straightforward to check that this generalization has quantum
advantage when m= n− 1.

Distributive SAT problems
A Boolean satisfiability problem (SAT) aims to check some given
equations.62 The decision problem is of central importance in
theoretical computer science, complexity theory and algorithmic
theory.63 Interestingly, each graphic game is equivalent to a
distributive SAT problem. Take the game shown in Fig. 4a as an
example. Let yi;xj be assignment on the vertex vi by Aj according to
the input xj, i= 1, 2, ..., 8; j= 1, 2, 3. From Definition 2, the winning
conditions are equivalent to Boolean equations with 48 variables.
Theorem 1 shows a qualitative decision without quantum
advantage from shared entangled resources. Generally, for an n-
player graphic game involving N vertices, there are O(nN)
conditions, which should be checked.64 Theorem 1 provides an
intuitive completion for distributive SAT problems with different
resources using graphic game model. Hence, in applications, an
equivalent graphic game should be found for special decision
problems. One possible way is to reduce the required clauses
firstly even if it is hard. And then, define a graphic game clause-by-
clause. Special output strategies may be applied as guess your
neighbour’s input (GYNI) game.50

GYNI game
Guess your neighbour’s input (GYNI) game has recently been
proposed to separate the multipartite quantum correlations from
classical correlations.50 This game is equivalently represented by a
graphic game, as shown in Fig. 4b. The original consistency
requirements are equivalently reduced to special output strategies
for all the players, where the input is assigned the vertex v2i−1 for
the players Ai, i= 1, 2, 3. This kind of graphic game has no
quantum advantage for any quantum resources. It can be viewed

Fig. 4 Some graphic games. a Cubic game. Each player owns all the vertices on a 2-dimensional plane (denoted by Ai, Bj, Ck) with different
colors depending on the input. b The equivalent graphic game of GYNI game.50 Each player owns three vertices of one subgraph (denoted by
A, B, C) with different colors. Here, the edges with dot lines are used for visualization
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as a relaxed graphic game satisfying partial consistency conditions
in Definition 2. Here, we prove a more generalized result.
Specifically, consider the following winning condition, i.e., F(x, y)=
1 if yi= fi(x) for all is; Otherwise, F(x, y)= 0. Here, fi denotes some
function of the input bit series x. As an example, fi(x) can be
regarded as the restriction of the product of all the assigned
values in the graphic games.
Theorem 2—There is no quantum advantage for a multipartite

nonlocal game if F : x 7!ðf1ðxÞ; f2ðxÞ; ¼ ; fnðxÞÞ is injective.
The proof is similar to its in ref., 50 which is shown in

Supplementary Note 3. This provides another feature to address
Problem 2. Some examples are presented as follows.
Example 1—Consider f1, f2, ..., fn be any permutation in the

permutation group Sn. Take n= 3 as an example. All the
permutations are given by S3= {(1), (1, 2), (1, 3), (2, 3), (1, 2, 3),
(1, 3, 2)}, where (1) denotes the identity operator, (i, j) denotes the
permutation of i→ j and j→ i, and (i, j, k) denotes the permutation
of i→ j, j→ k and k→ i. Now, define the expected output of three
parties as g(i, j, k) for the corresponding inputs i, j, k where g∈ S3.
For the games with (f1, f2, f3)= (i, j, k) are previous games of
guessing the neighbor’ input.50 From Theorem 2, there is no
quantum advantage for this kind of games over classical
resources.
Example 2—Consider f1, f2, ..., fn be any injective mapping going

beyond the permutation group Sn, where {0, 1}n is input space
while R

n is output space. Take n= 3 as an example. Consider the
following mappings: F 1 : ðx1; x2; x3Þ7!ðx2 þ x3; x1 þ x3; x1 þ x2Þ
and F 2 : ðx1; x2; x3Þ7!ð2x1 � 2x2þx3 ; 2x2 � 2x1þx3 ; 2x3 � 2x1þx2Þ. Both
mappings are injective. If the mappings are used as the winning
conditions of players, Theorem 2 implies no quantum advantages
for these games.
Example 3—Define fi ¼

Qki
j¼1 sij , for i= 1, 2, ..., n. Assume that

si1 ; si2 ; ¼ ; siki denote special assigns on the subgarph shared by
the player Aj. If si∈ {±1}, the new game falls into graphic game
proved in Theorem 1 when fis are injective mappings. There is no
quantum advantage from Theorem 1 or Theorem 2. Interestingly,
similar result holds for si 2 R going beyond the games stated in
Theorem 1.

DISCUSSION
Theorem 1 provides a result for separating quantum correlations
from classical correlations in terms of multi-source networks. The
consistency conditions in Definition 2 characterize the “incompa-
tible measurements” derived from quantum mechanics. These
conditions should be carefully designed for special goals in
applications. Unfortunately, the graphic game cannot solve
generalized XOR game, which is an extension of CHSH game.1,3,31

Another interesting problem is how to define meaningful
consistency conditions such as assignments on edges going
beyond Definition 2 for different goals including verifying general
cyclic networks.42,45

Generally, we presented a unified way to construct multipartite
nonlocal games using graph representations of entanglement-
based quantum networks. The graphic games with quantum
advantage are distinguished from others for general graphs. The
new model is useful for witnessing general quantum networks
consisting of EPR states. This can be regarded as a new feature of
multi-source networks going beyond nonlinear Bell-type inequal-
ities and semiquantum game. Our results are interesting in Bell
theory, quantum Internet, theoretical computer science, and
distributive computations.
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