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Quantum key distribution with simply characterized light
sources
Akihiro Mizutani1*, Toshihiko Sasaki 2, Yuki Takeuchi3, Kiyoshi Tamaki4 and Masato Koashi 2

To guarantee the security of quantum key distribution (QKD), security proofs of QKD protocols have assumptions on the devices.
Commonly used assumptions are, for example, each random bit information chosen by a sender to be precisely encoded on an
optical emitted pulse and the photon-number probability distribution of the pulse to be exactly known. These typical assumptions
imposed on light sources such as the above two are rather strong and would be hard to verify in practical QKD systems. The goal of
the paper is to replace those strong assumptions on the light sources with weaker ones. In this paper, we adopt the differential-
phase-shift (DPS) QKD protocol and drastically mitigate the requirements on light sources, while for the measurement unit, trusted
and photon-number-resolving detectors are assumed. Specifically, we only assume the independence among emitted pulses, the
independence of the vacuum emission probability from a chosen bit, and upper bounds on the tail distribution function of the total
photon number in a single block of pulses for single, two and three photons. Remarkably, no other detailed characterizations, such
as the amount of phase modulation, are required. Our security proof significantly relaxes demands for light sources, which paves a
route to guarantee implementation security with simple verification of the devices.
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INTRODUCTION
Quantum key distribution (QKD) holds promise for information-
theoretically secure communication between two distant parties,
Alice and Bob.1 Since QKD is a physical cryptography in which
security is based on a mathematical model of the devices, several
assumptions on Alice’s light source and Bob’s measurement unit
have to be satisfied to guarantee the security. Any discrepancies
between the device model and properties of the actual devices
could be exploited to hack the implemented QKD systems. In fact,
several experiments to crack implementation of QKD systems
have been reported,2–6 which is a crucial threat for security of
QKD, and therefore it is important to close the gap between
theory and practice.
So far, tremendous efforts have been made to relax the

demands for light sources (see e.g., a review article7). Possible
approaches to close the gap are to use device independent (DI)
QKD (see, e.g.,8 and references therein) or entanglement based
QKD with trusted detectors.9 On the other hand, as for the device-
dependent QKD, the BB84 protocol10 is one of the most
investigated protocols, and its security assuming an ideal single-
photon source11–13 and an ideal phase randomized coherent-light
source14 with the decoy-state method15–17 were proved. The
security proofs were generalized to accommodate dominant
imperfections of the devices. For example, perfect phase
randomization is relaxed to discrete phase randomization,18

inter-pulse intensity correlations between neighboring pulses
have been accommodated,19 and a perfectly symmetric encoding
of random bit information is relaxed to asymmetric encoding with
the loss-tolerant protocol.20,21 Another promising protocol is the
round-robin differential phase shift (RRDPS) protocol.22 Its
implementation security proof has been studied,23 which shows

that the RRDPS protocol is robust against source flaws. However,
the variable-delay interferometer used in this protocol is an
obstacle to simple implementation.
In this paper, we adopt the differential-phase-shift (DPS)

protocol24 and drastically mitigate the demands for light sources,
which is useful for simple characterization of the devices with
quantified security. Our characterizations of light sources are
based on the photon-number statistics of emitted pulses.
Specifically, we suppose that the vacuum emission probability of
each pulse is independent of a chosen bit, and an upper bound qn
(for n∈ {1, 2, 3}) on the probability that each block of pulses
contains n or more photons. Here, these probabilities are the ones
that would be obtained if we performed a photon number
measurement, and we do not assume that the state is a classical
mixture of Fock states. Remarkably, detailed characterizations of
the source devices that were needed in previous security proofs of
DPS protocol25,26 and the original DPS protocol,24 such as the
precise control of phase modulations, complete knowledge of the
photon-number probability distribution, block-wise phase rando-
mization, and a single-mode assumption on the emitted pulse are
not necessary. At the end of this section, we remark the meaning
of characterized sources in our title in comparison with the
previous work in ref. 27 whose title implies that secure QKD can be
realized with an uncharacterized source. An important note here is
that the uncharacterized source in ref. 27 does not mean no
assumptions on light sources. Indeed, this proof assumes that the
state emitted by the source, averaged over the values of Alice’s
key bit, is basis-independent. Therefore, both our proof and the
proof in ref. 27 have some characterizations on the emitted pulses,
but just the ways are different.
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RESULTS
Assumptions on the devices
Before describing the protocol, we summarize the assumptions we
make on the source and the receiver. First, we list up the
assumptions on Alice’s source as follows. In this paper, for
simplicity of the security analysis, we consider the case where
Alice employs three pulses contained in a single-block. Note that
experimental implementations remain the same with and without
assuming blocks. But if blocks are employed, classical post-
processing needs to be modified such that at most one-bit key is
extracted from a single-block.

(A1) Alice chooses a random three-bit sequence
~bA :¼ bA1b

A
2b

A
3 2 f0; 1g3, and bAi is encoded only on the ith

pulse in system Si. Depending on the chosen ~bA, Alice
prepares a following three-pulse state in system S := S1S2S3:

ρ̂
~bA
S :¼

O3

i¼1

ρ̂
bAi
Si
: (1)

Here, ρ̂
bAi
Si

denotes a density operator of the ith pulse when
bAi is chosen. We suppose that each system Ri that purifies
each of the state ρ̂

bAi
Si

is possessed by Alice, and Eve does not
have access to system Ri.

(A2) The vacuum emission probability of the ith pulse is
independent of the chosen bit bAi . That is, we require that
the following equality holds for any i:

trρ̂0Si jvacihvacj ¼ trρ̂1Si jvacihvacj; (2)

where |vac〉 is the vacuum state.
(A3) For any chosen bit sequence ~bA, the probability that a

single-block of pulses contains n (with n∈ {1, 2, 3}) or more
photons is upper-bounded by qn. That is,

Prfnblock � ng � qn; (3)

where nblock denotes the number of photons contained in a
single-block. Note that nblock is the sum of the number of
photons in all the optical modes. By using a calibration
method based on a conventional Hanbury-Brown-Twiss
setup with threshold photon detectors,28 Alice can verify
fqng3n¼1 before running the protocol. If fqng3n¼1 are
estimated from such an off-line test, we need to assume
that these bounds do not change during the on-line
experiment.

We note that our security proof does not cover a situation
where there is a Trojan horse attack.29 This is because one cannot
verify whether or not Eve has an ancillary system of the injected
light, and hence the last requirement of assumption (A1) is not
satisfied. However, unless there are side-channel attacks, our
security proof has following practical advantages to source
imperfections. We emphasize that for the security proof, we do
not make any assumptions on phase modulations. That is, the
precise control over the phase modulation and its characterization
are not needed. We also emphasize that we do not make the
single-mode assumption on the pulses, and the optical mode of
the emitted pulse can depend on the bit bAi . This includes, for
example, the case where the state of the pulse when bAi = 0 (1) is
horizontal (vertical) polarization state. Our framework covers the
original DPS protocol24 using coherent states {|α〉, |−α〉}. In this
case, qn in Eq. (3) is obtained through a priori Poissonian
assumption. We note that the previous security proofs25,26 of
the DPS protocol have assumed ideally phase modulated single-
mode coherent states {|α〉, |−α〉} with block-wise phase randomi-
zation, which is removed in our analysis.
Next, we list up the assumptions on Bob’s measurement as

follows. Note that to fulfill the last requirement of (B2), one may
need to adopt proper countermeasures against attacks on the
detectors such as blinding attack5 or time-shift attacks.4

(B1) Bob uses a one-bit delay Mach–Zehnder interferometer with
two 50:50 beam splitters (BSs) and with its delay being equal
to the interval of the neighboring emitted pulses.

(B2) After the interferometer, the pulses are detected by two
photon-number-resolving (PNR) detectors, which can dis-
criminate the vacuum, a single-photon, and two or more
photons of a specific optical mode. A click event of each
detector corresponds to bit values of 0 and 1, respectively.
We suppose that the quantum efficiencies and dark
countings are the same for both detectors.

In Bob’s measurement, the jth (1 ≤ j ≤ 2) time slot is defined as
an expected detection time at Bob’s detectors from the super-
position of the jth and (j+ 1)th incoming pulses. Also, the 0th (3rd)
time slot is defined as an expected detection time at Bob’s
detectors from the superposition of the 1st (3rd) incoming pulse
and the 3rd incoming pulse in the previous block (1st incoming
pulse in the next block).

Protocol
Before presenting our DPS protocol, we summarize in Table 1 the
differences in our DPS protocol from the original one.24 The
protocol runs as follows. In its description, |κ| denotes the length
of a bit sequence κ. Figure 1 depicts a protocol with a coherent
laser source, which is one possible implementation within our
security framework.

(P1) Alice chooses a random three-bit sequence ~bA and sends
three pulses in a state ρ̂

~bA
S to Bob via a quantum channel.

(P2) Bob receives an incoming three pulses and puts them into
the Mach-Zehnder interferometer followed by photon
detection by using the PNR detectors. We call the event
detected if Bob detects exactly one photon in total among
the 1st and 2nd time slots. The detection event at the jth
(1 ≤ j ≤ 2) time slot determines the raw key bit kB∈ {0, 1}. If
Bob does not obtain the detected event, Alice and Bob skip
steps (P3) and (P4) below.

(P3) Bob announces the detected time slot j over an authenti-
cated public channel.

(P4) Alice calculates her raw key bit kA ¼ bAj � bAjþ1.
(P5) Alice and Bob repeat (P1)–(P4) Nem times.
(P6) Alice randomly selects a small portion of her raw key for

random sampling. Over the authenticated public channel,
Alice and Bob compare the bit values for random sampling
and obtain the bit error rate ebit among the sampled bits.
This gives the estimate of the bit error rate in the remaining
portion.

(P7) Alice and Bob respectively define their sifted keys κA and κB
by concatenating their remaining raw keys.

(P8) Bob corrects the bit errors in κB to make it coincide with κA
by sacrificing |κA|fEC bits of encrypted public communication
from Alice by consuming the same length of a pre-shared
secret key.

(P9) Alice and Bob conduct privacy amplification by shortening
their keys by |κA|fPA to obtain the final keys.

In this paper, we only consider the secret key rate in the
asymptotic limit of an infinite sifted key length. We consider the
limit of Nem→∞ while the following observed parameters are
fixed:

0 � Q :¼ jκAj
Nem

� 1; 0 � ebit � 1: (4)

Security proof
Here, we summarize the security proof of the actual protocol
described above and determine the fraction of privacy amplifica-
tion fPA in the asymptotic limit. The proof is detailed in Methods
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section. Our proof is based on the security proof26 of the DPS
protocol with block-wise phase randomization that employs
complementarity.30 A major difference between our proof and
the previous proof26 is that we do not assume block-wise phase
randomization. If block-wise phase randomization is performed,
the state of each single-block can be seen as a classical mixture of
the total photon number state. This phase randomization
simplifies the security proof because the amount of privacy
amplification |κA|fPA can be estimated separately for each photon
number emission. However, under our assumptions (A1)–(A3), a
phase coherence generally exists among blocks, and the state of
each single-block cannot be regarded as a classical mixture of
photon number states. Therefore, we need to take into account
this phase coherence in proving the security. In our security proof,
the central task is to derive the information increase due to this
phase coherence among the blocks.
For the security proof with complementarity, we consider

alternative procedures for Alice’s state preparation in step (P1) and
the calculation of her raw key bit kA in step (P4). We can employ
these alternative procedures to prove the security of the actual
protocol because Alice’s procedure of sending optical pulses, and
producing the final key is identical to the actual protocol. Also,
Bob’s procedure of receiving the pulses and making his public
announcement j (for each round) in the actual protocol is identical
to the corresponding procedure in the alternative protocol.
As for Alice’s state preparation in step (P1), she alternatively

prepares three auxiliary qubits in system A1A2A3, which remain at
Alice’s site during the whole protocol, and the three pulses
(system S) to be sent, in the following state:

Φj iASR :¼ 2�3=2
O3

i¼1

X1
bAi ¼0

Ĥ bAi
�� �

Ai
ψbAi

��� E
SiRi

: (5)

Here, Ĥ :¼ 1=
ffiffiffi
2

p P
x;y¼0;1 ð�1Þxy jxihyj is the Hadamard operator,

and jψbAi
iSiRi is a purification of ρ̂

bAi
Si
, namely, trRi jψbAi

ihψbAi
jSiRi ¼ ρ̂

bAi
Si
.

Note from the assumption (A1) that system Ri is assumed to be
possessed by Alice.
As for the calculation of the raw key bit kA in step (P4), this bit

can be alternatively extracted by applying the controlled-not
(CNOT) gate on the jth and (j+ 1)th auxiliary qubits with the jth
one being the control and the (j+ 1)th one being the target
followed by measuring the jth auxiliary qubit in the X-basis. Here,
we define the Z-basis states for the jth auxiliary qubit as

f 0j iAj ; 1j iAjg, and the CNOT gate ÛðjÞ
CNOT is defined on this basis

by ÛðjÞ
CNOT xj iAj yj iAjþ1

¼ xj iAj x þ ymod2j iAjþ1
with x, y∈ {0, 1}. Also,

the X-basis states are defined as {|+〉A_j, |−〉A_j} with
±j iAj¼ ð 0j iAj ± 1j iAj Þ=

ffiffiffi
2

p
.

In order to discuss the security of the key κA, we consider a
virtual scenario of how well Alice can predict the outcome of the
measurement complementary to the one to obtain kA. In
particular, we take the Z-basis measurement as the complemen-
tary basis, and we need to quantify how well Alice can predict its
outcome zj ∈ {0, 1} on the jth auxiliary qubit. To enhance the
accuracy of her estimation, Alice measures the (j+ 1)th auxiliary

qubit in the Z-basis after performing ÛðjÞ
CNOT on the jth and (j+ 1)th

auxiliary qubits. As for Bob, instead of aiming at learning κA, he
tries to guess the complementary observable zj to help Alice’s
prediction. More specifically, Bob performs a virual measurement
to learn which of the jth or (j+ 1)th half pulse has a single-photon,
whose information is sent to Alice. We define the occurrence of
phase error to be the case where Alice fails her prediction of the
complementary measurement outcome zj (see Eq. (21) for the
explicit formula of the POVM element of obtaining a phase error).
Let Nph denote the number of phase errors, namely, the number
of wrong predictions of zj among |κA| trials. Suppose that the
upper bound f(ωobs) on the number of phase errors is estimated as
a function of ωobs which denotes all the experimentally available
parameters Q, ebit in Eq. (4) and fqng3n¼1 in Eq. (3). In the
asymptotic limit considered here, a sufficient amount of privacy
amplification is given by30

QfPA ¼ Qh
f ðωobsÞ
jκAj

� �
; (6)

where h(x) is defined as hðxÞ ¼ �x log2 x � ð1� xÞ log2ð1� xÞ for
0 ≤ x ≤ 0.5 and h(x)= 1 for x > 0.5. Then, the secret key rate (per
pulse) is given by

R ¼ Q 1� fEC � h
f ðωobsÞ
jκAj

� �� �
=3: (7)

The quantity eUph :¼ f ðωobsÞ=jκAj in Eq. (7) is the upper bound on
the phase error rate eph := Nph/|κA|. Our main result, Theorem 1,
derives eUph with experimentally available parameters Q, ebit and

fqng3n¼1 (see Methods section for the proof).

Fig. 1 One possible implementation of the protocol within our
security framework. At Alice’s site, coherent laser pulse trains are
generated by a conventional laser source followed by the phase
modulator (PM) that randomly modulates a phase 0 or π. At Bob’s
site, each pulse train is fed to a one-bit delay Mach–Zehnder
interferometer with two 50:50 beam splitters (BSs). The pulse trains
leaving the interferometer are measured by two photon-number-
resolving (PNR) detectors corresponding to bit values “0” and “1”. A
successful detection event occurs if Bob detects a single-photon in
total among the 1st and 2nd time slots. We emphasize that the use
of a coherent laser source and precise control over PM are one of
the examples of the implementations, and we can use any source as
long as it satisfies assumptions (A1)–(A3)

Table 1. Differences in our DPS protocol from the original one24

Original DPS protocol24 Our DPS protocol

Light source Coherent light with phase modulations {0, π} Any source satisfying assumptions (A1)–(A3)

Measurement unit Threshold detectors PNR detectors

Classical post-processing A key can be extracted from any detection event At most one-bit key is extracted from a single-block

A. Mizutani et al.
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Theorem 1. In the asymptotic limit of large key length |κA|, the upper
bound on the phase error rate is given by

eUph ¼ λebit þ λ
ffiffiffiffiffiffiffiffiffi
q1q3

p þ q2
Q

(8)

with λ ¼ 3þ ffiffiffi
5

p
.

From this theorem and Eq. (7), the scaling of the key rate R with
respect to the channel transmission η is estimated. If the protocol
is implemented by a weak coherent laser pulse as a light source
with its mean photon number μ, the detection rate Q is in the
order of O(μη) and both

ffiffiffiffiffiffiffiffiffi
q1q3

p
and q2 are in the order of O(μ2). To

obtain a positive secret key rate, the upper bound on the phase
error rate must be smaller than 0.5:

eUph ¼ Oðμ2Þ
OðμηÞ ¼

OðμÞ
OðηÞ <0:5: (9)

To maximize the key rate under this constraint, μ is decreased in
proportion to η. Therefore, we find that the scaling of the key rate
is in the order of R=O(μη)= O(η2).

Simulation of secure key rates
We show the simulation results of asymptotic key rate R per pulse
given by Eq. (7) as a function of the overall channel transmission η
(including detector efficiency). For simplicity of the simulation, we
assume that each emitted pulse is a coherent pulse from a
conventional laser with mean photon number μ. In this setting, qn
in Eq. (3) is given by

qn ¼
X1
ν¼n

e�3μð3μÞν=ν!: (10)

We adopt fEC= h(ebit) and suppose the detection rate as Q=
2ημe−2ημ, where in the simulation we omit the cost of random
sampling as its cost is negligible in the asymptotic limit. In Fig. 2,
we plot the key rates for ebit= 0.01, ebit= 0.02 and ebit= 0.03
(from top to bottom). The key rates are optimized over μ for each
value of η. The optimized values of μ when ebit= 0.02 is about 7 ×
10−5 (with η= 10−2) and about 7 × 10−3 (with η= 1). From these
lines, we see that all the key rates are proportional to η2. If we
consider the overall channel transmission as η ¼ 0:1 ´ 10�0:2‘=10

(with ‘ denoting the distance between Alice and Bob) and laser
diodes operating at 1 GHz repetition rate, we can generate a
secure key at a rate of 170 bits s−1 for a channel length of 50 km
and a bit error rate of 1%. Note that in Fig. 2, we assumed that the

bit error rate is independent of channel transmission η. An η-
dependence of the bit error stems from, for instance, the dark
count of detectors. When dark count rate (Pdark) becomes
compatible with Q, no key can be generated. For example, if
Pdark= 10−7, Pdark becomes compatible with Q at η= 10−2, which
can be found by substituting a typical value μ= 10−5 at η= 10−2.

DISCUSSION
In this paper, we have provided the information-theoretic security
proof of the DPS protocol based on simple source characteriza-
tions. Once one admits the commonly used assumption (A1) to be
physically reasonable, our proof only requires the independence
of the vacuum emission probability from a chosen bit, and the
upper bounds fqng3n¼1 on the probabilities that a single-block
contains at least n (n∈ {1, 2, 3}) photons. Even with these
experimentally simple assumptions, we demonstrated that we can
generate a secret key at the rate of about 100 bits s−1 for inner-
city QKD (‘ � 50 km) given realistic bit error rate of 1–3%.
Compared with the decoy-BB84 and the RRDPS protocols, the key
rate and the achievable distance of our DPS protocol are limited.
This is because the key-rate scaling of our protocol is in the order
of O(η2), while the decoy-BB84 and the RRDPS protocols can
achieve scaling of O(η).
We end with some open questions.

1. As we have only provided the security analysis in the case of
three pulses in a single-block, we leave the question about
the optimal number of pulses contained in a single-block.

2. In a practical perspective, it is important to refine our proof
to achieve an improved key rate. The DPS protocol has no
limitations on surpassing the key rate scaling of O(η2).
Indeed, the DPS protocol with block-wise phase randomiza-
tion25,26 can achieve the order of Oðη3

2Þ in a low bit error rate
regime when the block size is larger than three. It is an
interesting question whether the minimal assumptions
adopted in this paper is enough or we need to make
additional assumptions to achieve the same improved
scaling.

3. It is an interesting problem to construct a secure coherent-
state-based DPS protocol combined with measurement-
device-independent setting.31

4. As for Alice’s side, it is interesting to extend our security
proof by relaxing the assumption (A2) to the case where the
vacuum emission probability is different
trρ̂0Si jvacihvacj≠ trρ̂1Si jvacihvacj, and Alice only knows the
bounds on trρ̂0Si jvacihvacj and trρ̂1Si jvacihvacj.

5. As for Bob’s measurement unit, it is important to relax the
assumption (B2) to allow the use of threshold detectors. One
can extend our proof to the use of threshold detectors by
following the same argument done in the paper.32 To
extend our proof with these detectors, we need to upper-
bound the rate of detection events where two or more
photons are received by Bob. This can be done by
monitoring the number of double-click events occurring in
a single-block of pulses. To estimate this quantity, an optical
shutter needs to be placed in a long arm of the
Mach–Zehnder interferometer.

METHODS
Outline
Here we prove our main result, Theorem 1. First, we introduce notations
that we use in the following discussions. Second, we introduce the POVM
(positive operator valued measure) elements corresponding to a bit and
phase error. Third, we explain the relation between the Z-basis
measurement outcome (zj) on the auxiliary qubit system Aj and the
number of photons contained in the jth emitted pulse. Finally, we prove
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Fig. 2 Secure key rate R per pulse as a function of the overall
channel transmission η. The top, the middle and the bottom lines
respectively represent the key rates for ebit= 0.01, ebit= 0.02 and
ebit= 0.03
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Theorem 1 by using two lemmas, Lemmas 1 and 2. We leave the proofs of
Lemmas 1 and 2 to Sections I and II in the Supplementary Information,
respectively.

Notations
We first summarize the notations that we use in the following discussions:

P̂½jψi� :¼ jψihψj (11)

for a vector |ψ〉 that is not necessarily normalized, and the Kronecker delta

δx;y :¼
1 x ¼ y

0 x ≠ y:

	
(12)

Furthermore, we introduce the Z-basis states of Alice’s auxiliary qubit
system A as

zj iA :¼
O3

i¼1

zij iAi (13)

with z= z1z2z3 and zi∈ {0, 1}, and wt(z) denotes the Hamming weight of a
bit string z:

wtðzÞ ¼ #fij1 � i � 3; zi ¼ 1g: (14)

Let us define the projectors P̂a (with 0 ≤ a ≤ 3), P̂even and P̂odd as

P̂a :¼
X

z:wtðzÞ¼a

P̂ zj iA

 �

;

P̂even :¼ P̂0 þ P̂2;

P̂odd :¼ P̂1 þ P̂3: (15)

POVM element for a detected event
We introduce POVM elements for Bob’s procedure of determining the
detected time slot j and the bit value kB. Based on the following procedure,
Bob can determine whether the event is detected or not prior to
determining j and kB. Bob sends the first pulse to the first BS in Fig. 1, and
after the first pulse is split, one of the pulses goes to the long arm of the
Mach–Zehnder interferometer, and we call it first half pulse. Bob keeps the
second pulse as it is, and sends the third pulse to the first BS. After the
third pulse is split at the first BS, one of the pulses goes to the short arm of
the Mach–Zehnder interferometer (we call it the third half pulse). Bob then
performs the quantum nondemolition (QND) measurement of the total
photon number among the first half pulse, the third half pulse and the
second pulse. The detected event is equivalent to an event where the QND
measurement reveals exactly one photon. If the detected event occurs, the
state of the three pulses after the QND measurement is in the subspace
spanned by the orthonormal basis iBj if g3i¼1 with i representing the position
of the single-photon (at the half pulse when i= 1, 3 and at the original
pulse when i= 2). Given the detection, the POVM elements Π̂j;kB

� 

j;kB

for
detecting the bit kB at the jth time slot (1 ≤ j ≤ 2) is given by

Π̂j;kB ¼ P̂ Πj;kB

�� �
B

h i
(16)

with

Πj;kB

�� �
B
:¼

ffiffiffiffiffi
wj

p jjiB þ ð�1ÞkB ffiffiffiffiffiffiffiffiffi
wjþ1

p jj þ 1iBffiffiffi
2

p ; (17)

where w1=w3= 1 and w2= 1/2.

Bit- and phase-error POVM elements
Here, we construct the bit- and phase-error POVM elements êbit and êph,
respectively. Alice and Bob measure their systems A and B just after the
QND measurement reveals exactly one photon to learn whether a bit error
or phase error exists. Importantly, these POVM elements are defined only
on Alice’s auxiliary qubit system A and Bob’s system B, and the
assumptions on the encoded states in system S do not come into their
description. Therefore, even if the assumptions on Alice’s emitted states
are different from those in the security proof26 of the DPS protocol with
block-wise phase randomization, the same formulas of the bit- and phase-
error POVM elements in26 can be used. Here, we only provide brief
explanations of how to construct êbit and êph, and refer details to ref. 26

First, we introduce the POVM element ê jbit corresponding to announcing
the jth time slot and the occurrence of a bit error. As a bit error occurs
when kA (Alice’s X-basis measurement outcome of the jth auxiliary qubit

after performing ÛðjÞ
CNOT on the jth and (j+ 1)th ones) and Bob’s

measurement outcome kB are different, ê jbit is given by

ê j
bit ¼ P̂ þþj iAjAjþ1

h i
þ P̂ ��j iAjAjþ1

h i� �
� Π̂j;1

þ P̂ þ�j iAjAjþ1

h i
þ P̂ �þj iAjAjþ1

h i� �
� Π̂j;0:

(18)

Here and henceforth, we omit identity operators on subsystems, such as
those for Alice’s irrelevant auxiliary qubits in the above equation. Equation
(18) is re-expressed as

ê jbit ¼
P1
s¼0

P̂
j00iAj Ajþ1

þ ð�1Þs j11iAj Ajþ1ffiffi
2

p
� �	

þ P̂
01j iAj Ajþ1

þ ð�1Þs 10j iAj Ajþ1ffiffi
2

p
� ��

� Π̂j;s�1:

(19)

This equation shows that there are no cross terms between even parity
terms ( zjzjþ1

�� �
AjAjþ1

with zj+ zj+1 is even) and odd parity terms ( zjzjþ1

�� �
AjAjþ1

with zj+ zj+1 is odd). Therefore, we have

ê jbit ¼ P̂evenê
j
bitP̂even þ P̂oddê

j
bitP̂odd: (20)

This equation can be derived more intuitively. The parity of wt(z) can be
determined by measuring the auxiliary qubits in the Z-basis except for the

jth one after performing ÛðjÞ
CNOT on the jth and (j+ 1)th qubits. This implies

that the measurement fP̂even; P̂oddg and ê j
bit commute, and hence we

obtain Eq. (20). Equation (20) plays an important role in proving
Theorem 1.
Second, we introduce the POVM element ê j

ph corresponding to
announcing the jth time slot and the occurrence of a phase error. A
phase error event is defined as an event where Alice fails her prediction of
the Z-basis measurement outcome zj on the jth auxiliary qubit. To enhance
the accuracy of her estimation, she measures the (j+ 1)th auxiliary qubit in
the Z basis (with zj+1 denoting its result) after performing ÛðjÞ

CNOT, and Bob
measures system B to learn which of the jth or (j+ 1)th pulse has a single-
photon. With the help of information of zj+1 and Bob’s information, Alice
adopts the following strategy for predicting zj. As for the case of zj+1= 1, if
Bob reveals that the jth [(j+ 1)th] pulse has a single-photon, Alice predicts
zj= 1 [zj= 0]. On the other hand, if zj+1= 0, Alice predicts zj= 0 regardless
of Bob’s information. The phase error event is defined as an instance of a
wrong prediction of zj, and the POVM element corresponding to
announcing the jth time slot and the occurrence of a phase error is
represented by

ê jph ¼
X
z

P̂½jziA� � wjδzjþ1 ;1P̂½jjiB� þ wjþ1δzj ;1P̂½jj þ 1iB�

 �

: (21)

Since ê jph is diagonal in the basis |z〉A, we have

ê jph ¼
X3
a¼0

P̂aê
j
phP̂a: (22)

Then, by taking the sum over all the time slots, we obtain the bit and phase
error operators as

êbit :¼
X2
j¼1

ê jbit; êph :¼
X2
j¼1

ê jph: (23)

It follows that the probability of having a bit error is given by trσ̂êbit, and
the one of having a phase error is trσ̂êph. Here, σ̂ denotes a state of Alice
and Bob’s systems A and B just after the QND measurement reveals exactly
one photon.

Relation between wt(z) and nblock
Here, we derive the relation between wt(z) and nblock. For this, we first
derive the number of photons (nj) contained in system Sj when zj= 1.
Recall that the assumption (A2) guarantees that trρ̂0Sj jvacihvacj ¼
trρ̂1Sj jvacihvacj ¼: Pvacj . From this assumption, by expanding the orthonor-
mal basis of Sj with the photon number states, ψ0j iSjRj (a purification of ρ̂0Sj )
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and ψ0
1

�� �
SjRj

(a purification of ρ̂1Sj ) can be written as

ψ0j iSjRj¼
ffiffiffiffiffiffiffiffi
Pvacj

q
vacj iSj u0j iRjþ

ffiffiffiffiffiffiffi
P1j;0

q
1j iSj u1j iRjþ 	 	 	 ; (24)

ψ0
1

�� �
SjRj

¼
ffiffiffiffiffiffiffiffi
Pvacj

q
vacj iSj v0j iRjþ

ffiffiffiffiffiffiffi
P1j;1

q
1j iSj v1j iRjþ 	 	 	 : (25)

Here, |u0〉, |u1〉, |v0〉 and |v1〉 are normalized vectors of system Rj, and

P1j;bAj
:¼ trρ̂

bAj
Sj
j1ih1j. Since a purification has a freedom of choosing a unitary

operator Û on system Rj, the following state ψ1j iSjRj is also a purification of ρ̂1Sj :

ψ1j iSjRj ¼
ffiffiffiffiffiffiffiffi
Pvacj

q
vacj iSj Û v0j iRj þ

ffiffiffiffiffiffiffi
P1j;1

q
1j iSj Û v1j iRjþ 	 	 	 : (26)

In the following discussions, Û is chosen such that Ûjv0i ¼ ju0i holds. Note
from Eq. (5) that if zj= 1, the jth state can be written as Φ�j iSjRj :¼
ψ0j iSjRj� ψ1j iSjRj

� �
=N , where N is an appropriate normalization constant.

Using Eqs. (24) and (26) gives the vacuum emission probability of Φ�j iSjRj as
trP̂ Φ�j iSjRj

h i
jvaci vach jSj¼ 0: (27)

This equation means that if zj= 1, the state in system Sj contains at least one
photon. That is,

zj ¼ 1 ! nj � 1: (28)

Therefore, we obtain

wtðzÞ � a ! nblock ¼
X3
j¼1

nj � a; (29)

and from Eq. (3), the following inequality holds

PrfwtðzÞ � ag � Prfnblock � ag � qa: (30)

Proof of Theorem 1
Here, we prove Theorem 1 in the main text. For this, we first find an upper-
bound on the phase error probability trêphσ̂ in terms of the bit error
probability trêbitσ̂, which holds for any state σ̂. According to Eq. (21), since
êph is diagonalized in the basis |z〉A and P̂0êphP̂0 ¼ 0, we have

trêphσ̂ ¼ trP̂1êphP̂1σ̂ þ P3
a¼2

trP̂aêphP̂aσ̂

� trP̂1êphP̂1σ̂ þ P3
a¼2

trP̂aσ̂:

(31)

To upper-bound trP̂1êphP̂1σ̂ with experimentally available data, we employ
the following Lemmas 1 and 2 (see Sections I and II in the Supplementary
Information for their proofs).

Lemma 1.

P̂1êphP̂1 � λP̂1êbitP̂1 (32)

with λ :¼ 3þ ffiffiffi
5

p
.

Lemma 2. For any density operator σ̂,

trP̂1êbitP̂1σ̂ � trêbitσ̂ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trσ̂P̂1 	 trσ̂P̂3

q
: (33)

Applying Lemmas 1 and 2 to Eq. (31) leads to

trêphσ̂ � λ trêbitσ̂ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trσ̂P̂1 	 trσ̂P̂3

q� �
þ
X3
a¼2

trP̂aσ̂: (34)

With the relation between the bit and phase error probabilities, the next
step is to derive an upper bound on the number of phase errors with
experimentally available data. For this, we use Azuma’s inequality33 to
achieve this goal. Suppose that there are Ndet detected systems AB, and
Alice and Bob sequentially measure each detected state in order. Let us
consider the following specific way for choosing the sampled bits among
the detected events; Alice probabilistically associates each detected event
with a sample pair with probability 1− t or a code pair with probability t,
where 0 < t < 1. The sample pairs are employed for random sampling to
obtain ebit whereas the code pairs are for distilling secret key. For each
code (sample) pair, Alice and Bob measure their systems to learn whether a
phase (bit) error occurs or not. If a code (sample) pair entails a phase (bit)

error, we call such an event “ph” (“bit”), otherwise we call “ph” (“bit”). Also,
for each code pair, Alice measures her system A in the Z-basis to obtain the
outcome wt(z)= a∈ {0, 1, 2, 3}. Such simulataneous measurements are
allowed because ½êph; P̂a� ¼ 0 holds for any a (0 ≤ a ≤ 3). In this stochastic
trial, the set of the measurement outcomes for each detected event is
given by S :¼ fbit;bitg∪ ðS3

a¼0 fph ^ agÞ∪ ðS3
a¼0 fph ^ agÞ, and let ξ i 2

S denote the ith measurement outcome with 1 ≤ i ≤ Ndet.
Next, let us introduce various parameters that are needed in later

discussions. The phase error rate in the code pair and the bit error rate in
the sample pair are defined as

eph ¼
P3

a¼0

PNdet
i¼1 δξ i ;ph^a

Ncode
; ebit ¼

PNdet
i¼1 δξ i ;bit
Nsample

; (35)

where Ncode and Nsample respectively denote the number of code and
sample pairs. We define the number Nl

Ω of events that take Ω 2 S among l
trials as

Nl
Ω :¼

Xl

i¼1

δξ i ;Ω; (36)

and the sum PlΩ of probabilities of obtaining Ω at the ith trial conditioned

on the previous outcomes ξk
n oi�1

k¼0
with ξ0 being constant as

PlΩ :¼
Xl

i¼1

Prfξ i ¼ Ωjfξkgi�1
k¼0g: (37)

We can show that the sequence of random variables fX0
γ ; ¼ ; XNdet

γ g (with
γ∈ {ph, bit, a}), which are defined as

Xl
ph :¼

X3
a¼0

ðPlph^a � Nl
ph^aÞ (38)

Xl
bit :¼ Plbit � Nl

bit (39)

Xl
a :¼ ðPlph^a þ Pl

ph^aÞ � ðNl
ph^a þ Nl

ph^aÞ (40)

and X0
γ :¼ 0, satisfies the Martingale condition with respect to random

variables fξ0; ξ1; :::; ξNdetg, that is ∀l, E½Xl
γjfξkgl�1

k¼0� ¼ Xl�1
γ . Here, E[X|Y]

denotes the expectation of X conditioned on Y. Also, fX0
γ ; :::; X

Ndet
γ g satisfies

a bounded difference condition, namely, ∀l, jXl
γ � Xl�1

γ j � 1. Once
Martingale and the bounded difference conditions are satisfied, we can
apply Azuma’s inequality; it follows that ∀ζ > 0 and ∀Ndet > 0

PrfjXNdet
γ j gt; Ndetζg � 2e�

Ndet ζ
2

2 : (41)

Since Eq. (34) holds for any σ̂, by using Cauchy–Schwarz inequality:Pm
i¼1 xiyi �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1 x

2
i

� � Pm
i¼1 y

2
i

� �q
, we have

~PNdet
ph

t
� λ

PNdet
bit

1� t
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~PNdet
a�1

t

~PNdet
a¼3

t

s0
@

1
Aþ

~PNdet
a�2

t
; (42)

where ~PNdet
ph :¼ P3

a¼0 P
Ndet
ph^a and ~PNdet

a :¼ PNdet
ph^a þ PNdet

ph^a .
By employing the consequence of Azuma’s inequality in Eq. (41) to each

of all the five sums of conditional probabilities in Eq. (42), we obtain

1
t

~N
Ndet
ph

Ndet
� ζ

� �
� λ

1�t
N
Ndet
bit
Ndet

þ ζ

� �
þ 1

t

~N
Ndet
a�2

Ndet
þ ζ

� �
þ λ

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~N
Ndet
a¼1
Ndet

þ ζ

� �
~N
Ndet
a¼3
Ndet

þ ζ

� �s
;

(43)

where ~NNdet
ph :¼ P3

a¼0 N
Ndet
ph^a and ~NNdet

a :¼ NNdet
ph^a þ NNdet

ph^a. When Ndet gets

larger with any fixed ζ > 0, the probability of violating Eq. (43) decreases
exponentially. Here and henceforth, we consider the limit of large Ndet and
neglect ζ. In this asymptotic limit, as Ncode→ tNdet and Nsample→ (1− t)Ndet

in Eq. (35), we obtain

eph � λebit þ 1
t

~NNdet
a�2

Ndet
þ λ

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~NNdet
a¼1

Ndet

~NNdet
a¼3

Ndet

s
: (44)

The last task for deriving the upper bound on eph is to upper-bound ~NNdet
a�n

with experimentally available data. In so doing, in addition to the detected
instances, we assume that Alice and Bob randomly associate each of the
non-detected instances with a code instance with probability t or a sample
instance with probability 1− t. Then, we have that the the number ~NNdet

a�n of
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obtaining the outcome a ≥ n among the detected instances can never be
larger than the one MNem

a�n among the emitted code blocks. Since the
probability of obtaining a code pair and the outcome a ≥ n when Alice
emits the ith block is upper-bounded by qn according to Eq. (30), we can
imagine independent trials with probability qn. Therefore, we can use
Chernoff bound and obtain

~NNdet
a�n

Nem
� MNem

a�n

Nem
� qn þ χ: (45)

When the number Nem of emitted blocks gets larger for any fixed χ > 0, the
probability of violating this inequality decreases exponentially. In the
condition of asymptotic limit of Nem, we neglect χ in the following
discussions. By substituting Eq. (45) to (44), we finally obtain

eph � λebit þ λ
ffiffiffiffiffiffiffiffiffiffi
q1q3

p þ q2
Q

: (46)

This ends the proof of Theorem 1.
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