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Adiabatic two-qubit gates in capacitively coupled quantum
dot hybrid qubits
Adam Frees 1, Sebastian Mehl2,3, John King Gamble4,5, Mark Friesen 1 and S. N. Coppersmith 1,6

The ability to tune qubits to flat points in their energy dispersions (“sweet spots”) is an important tool for mitigating the effects of
charge noise and dephasing in solid-state devices. However, the number of derivatives that must be simultaneously set to zero
grows exponentially with the number of coupled qubits, making the task untenable for as few as two qubits. This is a particular
problem for adiabatic gates, due to their slower speeds. Here, we propose an adiabatic two-qubit gate for quantum dot hybrid
qubits, based on the tunable, electrostatic coupling between distinct charge configurations. We confirm the absence of a
conventional sweet spot, but show that controlled-Z (CZ) gates can nonetheless be optimized to have fidelities of ~99% for a
typical level of quasistatic charge noise (σε≃ 1 μeV). We then develop the concept of a dynamical sweet spot (DSS), for which the
time-averaged energy derivatives are set to zero, and identify a simple pulse sequence that achieves an approximate DSS for a CZ
gate, with a 5× improvement in the fidelity. We observe that the results depend on the number of tunable parameters in the pulse
sequence, and speculate that a more elaborate sequence could potentially attain a true DSS.
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INTRODUCTION
Since their original proposal,1 semiconductor quantum dot qubits
have progressed greatly, demonstrating excellent qubit coherence
and performance through the use of sweet spots2–12 and control
of the spin degree of freedom.13–16 There has also been
remarkable progress in systems with small numbers of donor-
bound electrons.17–25 Recently, two-qubit gates26,27 and algo-
rithms28 have been realized using exchange-coupled single-spin
qubits. Capacitive coupling has also been employed to entangle
and perform two-qubit operations between singlet-triplet
qubits,29,30 and has been proposed as the basis for two-qubit
gates between resonant-exchange qubits31 and flip-flop qubits.23

In these experiments and proposals, the two-qubit gate times are
typically measured in microseconds or hundreds of nanoseconds,
which is much longer than typical single-qubit gate times. In
contrast, the predicted two-qubit gate times for capacitively
coupled quantum dot hybrid qubits32,33 (QDHQs) are comparable
to single-qubit gates, which are of order 10 ns.10,34 However, the
methods proposed in refs. 32,33 rely on applying quickly varying
electrical pulses, which can cause leakage from the qubit
subspace.34

In this paper, we study an adiabatic entangling protocol based
on capacitive couplings between QDHQs. The gate is inspired by
an early proposal for entangling singlet-triplet qubits.35 Although
the necessary voltage changes are slow relative to the qubit
frequencies, we show that high-fidelity adiabatic gates can be
achieved in under 50 ns, which is significantly faster than those in
recent singlet-triplet experiments.29,30 While the pulse sequences
used in adiabatic protocols are more resilient against pulse errors
than nonadiabatic pulses and are less susceptible to leakage

errors, a potential concern is that they could be more susceptible
to charge noise due to slower speeds. It is, therefore, crucial to
study the effect of charge noise on the gate fidelities.
We begin by considering the system of two capacitively

coupled QDHQs, deriving the effective couplings between the
two qubits, and describing how a slowly varying electrical pulse
on the qubits can yield an entangling gate. Next, we optimize the
pulse sequence for a two-qubit system to maximize the process
fidelity of the resulting gate. We find that gate fidelities > 99% are
feasible, assuming quasistatic charge noise with a standard
deviation of σε= 1 μeV, and that the infidelity scales roughly as
σ2ε . Finally, we show that gate fidelities can be further improved to
~99.9% by modifying pulse sequences to impose a “dynamical
sweet spot,” (DSS) a technique similar to dynamical decoupling.36

RESULTS
The QDHQ consists of three electrons shared between two
quantum dots. The minimal Hilbert space of the qubit can be

defined as the spin states |·S〉= |↓〉|S〉, j � Ti ¼
ffiffi
1
3

q
j #ijT0i�ffiffi

2
3

q
j "ijT�i, and |S·〉= |S〉|↓〉,37,38 where |·S〉 and |·T〉 correspond

to (1,2) charge configurations (one electron in the left dot, two
electrons in the right), |S·〉 corresponds to a (2,1) charge
configuration, and the singlet state, jSi ¼ 1=

ffiffiffi
2

p j #"i � j "#ið Þ,
and triplet states, jT0i ¼ 1=

ffiffiffi
2

p j #"i þ j "#ið Þ and |T−〉 = |↓↓〉, refer
to the dot with two electrons. In this basis, the single-qubit
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Hamiltonian is

H1q ¼
�ε=2 0 Δ1

0 �ε=2þ EST �Δ2

Δ1 �Δ2 ε=2

0
B@

1
CA; (1)

where the detuning parameter, ε, corresponds to the energy
separation between the quantum dots, Δ1 is the tunnel coupling
between states |·S〉 and |S·〉, Δ2 is the tunnel coupling between
states |·T〉 and |S·〉, and EST is the energy splitting between the
singlet-like and triplet-like basis states, |·S〉 and |·T〉. A typical
energy spectrum for H1q is plotted as a function of detuning in
Fig. 1a. Here, the two lowest-energy eigenstates |0〉 and |1〉 form
the qubit, while the remaining state |L〉 is regarded as a leakage
state.
The basis states and charge configurations hybridize as a

function of the detuning. The large detuning regime (right-most
dashed line in Fig. 1a) is characterized by the asymptotic behavior
|0〉≃ |·S〉 and |1〉≃ |·T〉, for which both states have the same charge
configuration, as depicted in Fig. 1b. Here, the information is
stored entirely in the spin degree of freedom and the qubit is well
protected from charge noise;10 however, the single-qubit gate
speeds can be slow.39,40 (Below, we show the same is true for two-
qubit gates.) To perform efficient gates, we must therefore lower
the detuning, bringing it near the anticrossing region (left-most
dashed line in Fig. 1a). In this regime, |·S〉 and |·T〉 begin to
hybridize with |S·〉, which has a (2,1) charge configuration, as
depicted in Fig. 1c. Since the admixture of (2,1) is different for |0〉
and |1〉, the qubit states acquire distinct dipole moments that can
be used to mediate two-qubit dipole–dipole interactions, but

which also couple to environmental charge noise. The goal of this
work is to optimize the control parameters, to achieve high-fidelity
two-qubit gates.
We can formalize the concept of a dipole moment by defining

the operator x̂ ¼ diagfd=2; d=2;�d=2g, describing the position of
the third electron in the double dot, as depicted in Fig. 1b, c. Here,
for simplicity, we assume that states |·S〉 and |·T〉 have identical
charge configurations. The dimensionless dipole operator is,
therefore, given by P ¼ �x̂=d ¼ diagf�1=2;�1=2; 1=2g, which
is related to Eq. (1) through P ¼ ∂H1q=∂ε, where ε plays the role
of an electric field along the axis between the dots. The two-qubit
Coulomb interaction can be expressed in terms of the dipole
moments Pð1Þ and Pð2Þ of qubits 1 and 2. We first note that the
Coulomb interaction is classical, and therefore diagonal, when
expressed in a charge-state basis. In analogy with charge qubits,
the interaction can then be fully specified by bð0ÞI ð1Þ � Ið2Þþ
bð1ÞPð1Þ � Ið2Þ þ bð2ÞI ð1Þ � Pð2Þ þ bð3ÞPð1Þ � Pð2Þ. The first term in
this expression is a uniform energy shift, which can be ignored.
The second and third terms can be absorbed into the detuning
parameters through the transformation ε(i)→ ε(i)+ b(i) (i= 1, 2).
Finally, defining g as the change in Coulomb energy when one of
the qubits flips its charge configuration, the two-qubit Hamilto-
nian becomes

H2q ¼ Hð1Þ
1q � Ið2Þ þ Ið1Þ � Hð2Þ

1q þ gPð1Þ � Pð2Þ: (2)

This form is generic and does not depend on qubit geometry.
However, the value of g depends on the geometry, and has been
found to be of order 75 μeV for a linear dot array.41 The full 9D
basis set for Eq. (2) is given by {|⋅S〉,|·T〉,|S·〉}(1)⊗ {|·S〉,|·T〉,|S·〉}(2), and

Fig. 1 Implementing a CZ gate between capacitively coupled QDHQs. a Energy dispersion of a single QDHQ as a function of detuning, as
defined in Eq. (1), for typical experimental values given by [10] Δ1= 18.1 μeV, Δ2= 46.7 μeV, and EST= 51.7 μeV. On the right-hand side of the
plot, the logical states |0〉 and |1〉 converge to the basis states |·S〉 (indicated in blue) and |·T〉 (red), as defined in the main text, while the
leakage state |L〉 converges to |S·〉 (yellow). b, c Charge distributions of a third electron added to an underlying (1, 1) charge configuration at
two different values of ε. b In the large-ε regime (right-most dashed line in (a)), the qubit states have very similar charge distributions (same
color coding as (a)). c For ε near the charge transition (left-most dashed line in (a)), some charge moves from the right dot to the left dot,
especially for state |1〉, setting up a dipole moment between states |0〉 and |1〉. d, e Effective two-qubit coupling versus ε= ε(1)= ε(2), plotted
on linear–linear (d) and log-log (e) scales. When ε is large, the coupling is negligible and decreases as ε−4 (see Eq. (S13)). When ε is
simultaneously lowered on both qubits, their dipole moments grow, and the effective coupling increases. f Detuning pulse sequences for
qubits 1 and 2 (dashed and solid lines, respectively; see Supplementary Section S342 for details)
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the corresponding matrix representation for H2q is given in
Supplementary Section S1.42

We first discuss qubit initialization and the implementation of
single-qubit gates. In the large-detuning regime, the qubit logical
states are energetically well separated from the leakage states, as
shown in Supplementary Fig. S1,42 allowing leakage-free qubit
initialization. To gain insight into gate operations, we perform a
canonical transformation to decouple the logical states from the
leakage states in the large-detuning limit. In addition, we evaluate
this Hamiltonian in the adiabatic basis (the basis that diagonalizes
H2q), yielding the effective Hamiltonian

H2q;eff ’ ��hωz1
2 σ

ð1Þ
z � Ið2Þ þ ��hωz2

2 Ið1Þ � σ
ð2Þ
z þ �hωzz

2 σ
ð1Þ
z � σ

ð2Þ
z ; (3)

where the leading-order contributions to the single-qubit

prefactors are of order �hωzi ¼ EðiÞST þO ΔðiÞ2
z =εðiÞ

h i
, and the effective

two-qubit coupling ℏωzz is discussed below. (See Supplementary
Section S142 for details of the calculation.) Here, the sub- (or

super)-script i identifies the qubit, ΔðiÞ2
z is a quadratic function of

the tunnel couplings, and the identity and Pauli matrices, I(i) and
σ
ðiÞ
z , act on the logical subspace. Although the detuning

parameters provide some control over the qubit resonant
frequencies, ωz1 and ωz2, EST typically varies significantly from
dot to dot, resulting in well separated resonances. Single-qubit
gates thus proceed by lowering one of the detunings (say, ε(1))
from its high value to a regime where fast ac gates can be
performed (e.g., the first dashed line in Fig. 1a). At this point, the
dipole on qubit 1 is nonnegligible; however, we can operate it
near a single-qubit sweet spot to minimize dephasing, as
described in Supplementary Section S2.42 Since ε(2) remains at a
large value, there is no danger of implementing either a single-
qubit gate on qubit 2, or a two-qubit gate. Superimposing an ac
drive on ε(1) at the resonant frequency of qubit 1 yields an
additional term in Eq. (3) proportional to cosðωz1tÞ σð1Þ

x � Ið2Þ,
which induces Rabi oscillations about the x̂-axis of the qubit;
additional modulation of the phase in cos(ωz1t + ϕ) enables
rotations about an arbitrary axis in the x–y plane. To suppress the
coupling of the dipole moment to external charge noise, we
return ε(1) to its large value when the gate is finished.
Next, we consider two-qubit gate operations, which are

performed adiabatically, and do not involve ac driving. The
canonical transformation leading to Eq. (3) yields the leading
order result at high detuning, �hωzz ¼ O½gΔ4=εð1Þ

2
εð2Þ

2�, where Δ4 is
a quartic function of the tunnel couplings in both qubits. As
anticipated, the adiabatic gate speed |ωzz|/2π depends linearly on
g, and requires ε(1) and ε(2) to be simultaneously reduced from their
high values to initiate a two-qubit gate. The canonical transforma-
tion breaks down when ε(1) and ε(2) take their low values; however,
under adiabatic operation, the projection onto the logical sub-
space, Eq. (3), is still meaningful. We can compute ℏωzz at arbitrary
detuning values by evaluating H2q in its adiabatic basis and
projecting it onto the 4D logical subspace, H2q ! H4D. We then
identify �hωzz ¼ 1

2 Tr½ðσð1Þ
z � σ

ð2Þ
z ÞH4D� ¼ 1

2 ðE00� E01 � E10 þ E11Þ,
where Eij is the energy eigenvalue corresponding to the two-
qubit logical state |ij〉. In Fig. 1d, e, we plot numerical results for
ℏωzz assuming typical qubit parameters and ε≡ ε(1)= ε(2). Here, we
observe the predicted asymptotic behavior ℏωzz∝ ε−4. We also
note that ℏωzz changes sign when ε is of order g, in the low-
detuning regime where the canonical transformation breaks down.
A simple protocol for implementing adiabatic two-qubit gates is

shown in Fig. 1f, and can be summarized as follows. We begin
with the detuning parameters ε(1) and ε(2) set to “high” values of
500 μeV, and smoothly lower them to the “low” values ε

ð1Þ
wait and

ε
ð2Þ
wait over a ramp time τramp. The detunings are held constant at
these values for a waiting period τwait, and then smoothly returned

to ε(1)= ε(2)= 500 μeV over the same ramp time τramp. The
parameters defining the pulse sequence are chosen to approxi-
mately yield a controlled-Z (CZ) gate operation. This protocol also
produces incidental single-qubit Z(1) and Z(2) rotations, which can
be eliminated, if necessary, by applying additional Z(1) and Z(2)

gates. Explicit functional forms for ε(1)(t) and ε(2)(t) are given in
Supplementary Section S3.42

We now compute the two-qubit gate fidelity for this sequence
including both leakage and charge noise. While we do not
explicitly consider the effects of relaxation error, in Supplementary
Section S942 we provide a rough estimate of the expected T1
times, finding them larger than the gate time. Leakage
corresponds to the filling of quantum levels outside the logical
subspace, and is primarily caused by nonadiabatic gate pulses. It is
taken into account in our simulations by retaining the full 9D
Hilbert space, comprising both logical and leakage states. In
Methods section, we describe a method for computing the
process fidelity of a CZ gate in the presence of charge noise. This
procedure allows us to identify optimal values of τramp and τwait,
consistent with fast pulse sequences, low leakage, and high
fidelity. Figure 2 shows the results of such fidelity calculations, for

a range of εð1Þwait and ε
ð2Þ
wait values, assuming the typical quantum dot

parameters Eð1ÞST ¼ 52 μeV, Eð2ÞST ¼ 47 μeV, g= 75 μeV, and σε=
1 μeV. Here, we choose Δ

ðiÞ
1 ¼ 0:64EðiÞST and Δ

ðiÞ
2 ¼ 0:58EðiÞST , which

suppresses the single-qubit dephasing, as discussed in Supple-
mentary Section S2.42 We also omit pulse sequences with total
gate times τtotal= 2τramp+ τwait > 50 ns (the cross-hatched regions
in the plot), to ensure that entangling gates are performed on a
timescale comparable to the QDHQ single-qubit gates.34 The
fastest pulse sequence in the viable regime corresponds to

ε
ð1Þ
wait ¼ 90 μeV, ε

ð2Þ
wait ¼ 110 μeV, τramp= 2.4 ns, and τwait= 2.8 ns

(τtotal= 7.6 ns), and exhibits an average process infidelity of 9.9 ×

10−3. The highest-fidelity sequence corresponds to ε
ð1Þ
wait ¼ 80 μeV,

ε
ð2Þ
wait ¼ 100 μeV, τramp= 4.0 ns, and τwait= 8.0 ns (τtotal= 16.0 ns),
with an average process infidelity of 9.2 × 10−3. This optimized
value depends on the standard deviation of the charge noise, σε.
In Fig. 2b, we plot the minimized CZ gate infidelity I as a function
of σε, revealing the scaling behavior I / σ2

ε .

Fig. 2 Optimized infidelities of sub-50 ns adiabatic CZ gates. a
Process infidelities obtained in the presence of quasistatic charge
noise, with a standard deviation of σε= 1 μeV; other Hamiltonian
parameters are given in the main text. Following the optimization
procedure described in “Methods”, we obtain variable gate times, as
indicated by the contours; however, we discard total gate times with
τtotal= 2τramp+ τwait > 50 ns (cross-hatched region) to ensure that
the two-qubit gate is comparable in length to single-qubit gates.
The highest fidelity pulse sequence is obtained at
ðεð1Þwait; ε

ð2Þ
waitÞ ¼ ð80; 100Þ μeV. b Minimum CZ gate infidelities (black

squares and dashed black line) plotted as a function of the standard
deviation of the charge noise, σε. The infidelity roughly falls off as σ2ε
(solid black line)
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The strong dependence of infidelity on σε indicates that
dephasing, rather than leakage, is the main source of gate errors.
In Supplementary Section S7,42 we explain the observed behavior
by assuming that charge noise is quasistatic, obtaining

I cn � 1
4
σ2
ε

X
i¼1;2

X
j¼z1;z2;zz

Z
∂ωj

∂εðiÞ
dt

� �2

; (4)

as expected in the absence of a sweet spot.6 To confirm the
absence of a sweet spot, we perform an exhaustive search over

the detuning (ε(i)), tunnel coupling Δ
ðiÞ
j

� �
, and Coulomb (g)

parameters in Eq. (2), finding that it is impossible to simulta-
neously set ∂ωj/∂ε

(i)= 0, for all i and j, in the parameter range of
interest. However, it is clear that this conventional, time-
independent definition of a sweet spot is overly restrictive for
ensuring that I cn � 0 in Eq. (4).
We now introduce the concept of a DSS in which the time-

averaged derivatives in Eq. (4) are made to vanish, as sketched in
Fig. 3a. Through an exhaustive search (Fig. 2a), we have already
demonstrated that no DSS exists for the simple pulse sequence of
Fig. 1f. Moreover, because of the monotonic dependence of ωj on
ε(i) (for example, see Supplementary Fig. S142), it appears unlikely
that a more elaborate detuning pulse sequence could provide
significant improvements in the fidelity. We, therefore, augment

the detuning sequence with a tunnel-coupling sequence, ΔðiÞ
j ðtÞ (i,

j = 1, 2). Our initial investigations suggest that a relatively large

number of pulse parameters are needed to achieve significant
improvements in the fidelity. We, therefore, consider the more
elaborate pulse shape, shown in Fig. 3b, which incorporates seven
parameters for each of four tunnel couplings.
Because of the large number of parameters in the combined

detuning-tunnel-coupling sequence, we do not attempt an
exhaustive search in this case. Instead, we maximize the CZ gate
fidelity by performing a hundred separate
Broyden–Fletcher–Goldfarb–Shanno43–46 searches using the
method of ref. 47, and adopting a basin-hopping protocol with
randomized initial values to help escape any local minima.48 To
simplify the calculation, we adopt the following hybrid infidelity
functional: I total ¼ I cn þ Inf þ Ina, which treats the charge noise
(cn), noise-free (nf), and nonadiabatic (na) infidelity contributions
separately. Calculating I total is computationally efficient because
all three contributions, including the charge noise term defined in
Eq. (4), do not require taking an average over charge noise. The
noise-free term describes the CZ gate infidelity in the absence of
charge noise, as described in “Methods”. We find that minimizing
just the I cn and Inf terms (without Ina) yields extremely short and
fast pulse sequences that first populate then depopulate the
leakage state. Since I cn was derived assuming an adiabatic pulse,
these short and fast pulses are not guaranteed to have low
process infidelity. Hence we also introduce the Ina term, as
defined in Methods, to explicitly penalize nonadiabatic evolution.
We now obtain two different sets of solutions for the detuning-

tunnel-coupling pulse sequence. In the first, all the tunnel

Fig. 3 Dynamical sweet spot (DSS) and a tunnel-coupling pulse sequence. a Two-qubit energy levels plotted schematically as a function of a
single detuning variable. At any given time, it is difficult to arrange for all the energy dispersions to be parallel, as indicated on the left, leaving
the qubits susceptible to dephasing. However, it may be possible to construct a pulse sequence for which the levels vary in time (shaded
regions), such that their time-averaged dispersions are parallel, yielding a DSS that is more resilient to quasistatic fluctuations of the detuning.
Here, we explore a DSS construction in which the detuning pulse sequence of Fig. 1f is augmented with the tunnel coupling pulse sequence
defined in (b) and Supplemental Section S3.42 The latter is simple enough that it can be optimized using the method described in the main
text, but complex enough that it provides a significant improvement in the CZ gate fidelity. c Infidelities calculated for three different pulse
sequences as a function of the standard deviation of the quasistatic charge noise σε. The markers correspond to full gate simulations averaged
over a charge noise distribution, as described in “Methods”. The dashed lines correspond to the much simpler infidelity estimate of Eq. (4). For
the blue line and triangles, the tunnel couplings are held constant, as in Fig. 1. For the green line and squares, the tunnel couplings are pulsed
as in (c) with the ratios ΔðiÞ

1 =Δ
ðiÞ
2 held constant. For the orange line and circles, the tunnel coupling sequence is optimized with no constraints
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coupling parameters in Fig. 3b, as well as τramp and τwait, are varied
independently, under the constraint that the detuning and tunnel
coupling sequences have the same length; this sequence contains
26 free parameters. The second case is similar, except that the
ratio between the tunnel couplings in each double dot is assumed

to be fixed throughout the sequence, with Δ
ðiÞ
1 ðtÞ=ΔðiÞ

2 ðtÞ ¼ 1:1034,
as consistent with Supplementary Section S2;42 this sequence
contains 14 free parameters. In both cases, we set the detuning
parameters to the values giving the fastest detuning-only pulse

sequence in Fig. 2 (εð1Þwait ¼ 90 μeV and ε
ð2Þ
wait ¼ 110 μeV), and we use

τramp= 2.4 ns and τwait= 2.8 ns as the starting points for our
optimization procedure; initial values of the other parameters are
chosen randomly, according to the basin-hopping protocol. The
results of this procedure are presented in Supplementary Table
S1.42 Using these results, we recompute the infidelity as described
in “Methods”, performing an average over the charge noise.
Infidelity results using the tunnel coupling pulse sequence are

plotted in Fig. 3c as a function of charge noise, σε. Here, we
observe clear improvements compared to the detuning-only
sequence, with the best results obtained for the sequence with
the largest number of pulse parameters. Supplementary Section
S842 suggests that this result can largely be attributed to the
suppression of the time-averaged derivatives ∂ωj/∂ε

(i), as consis-
tent with a DSS. For a true sweet spot, we would expect a power-
law exponent in I / σα

ε , with α > 2. Although the large-σε data in
Fig. 3c hint at such behavior, Supplementary Fig. S642 indicates
that a full suppression of the time-averaged derivatives has not
yet been achieved in the current pulse sequences.

DISCUSSION
We have proposed a scheme for entangling capacitively coupled
quantum-dot hybrid qubits by applying adiabatic pulse sequences
to detuning parameters. We have optimized the sequences in the
presence of quasistatic charge noise and computed the resulting
process fidelities for a CZ gate, obtaining fidelities approaching
99% for typical noise levels. Further improvements are obtained by
simultaneously applying pulse sequences to the tunnel couplings.
These results are explained by invoking the concept of a DSS, for
which the splittings between the two-qubit energy levels are
insensitive to fluctuations of the detuning parameters when
averaged over the whole pulse sequence. Our analysis shows that
a true DSS cannot be achieved using simple pulse sequences.
However, fidelities >99% are achieved when the pulse sequences
include a large number of tunable parameters. As indicated by
ref. 49, these fidelities can be further improved by exploring a wider
range of pulse shapes. Using the GRAPE algorithm,50 we have
identified high-frequency pulses that significantly improve the
expected performance under quasistatic charge noise. Despite the
potential improvement in fidelity, the experimental bandwidth
limitations make implementing some of these pulses impractical.
We speculate that a bandwidth-limited version51,52 of the GRAPE
algorithm50 could be used to explore a much larger parameter
space of adiabatic pulse sequences, possibly allowing us to identify
a true DSS. The GRAPE algorithm also provides a means for
exploring nonadiabatic pulse sequences. However, the simplicity
and relatively high fidelity achieved with the sequences studied
here, and the robustness of adiabatic gating methods, make the
current proposal attractive for two-qubit gates.

METHODS
To study the time evolution resulting from the pulse sequences applied to
capacitively coupled qubits, we numerically integrate the Hamiltonian in
Eq. (2), for which the time-dependent control parameters ~εð1ÞðtÞ, ~εð2ÞðtÞ,
and ~ΔðtÞ depend on the particular pulse sequence. Here, ~ΔðtÞ refers to the
set of four intra-qubit tunnel couplings, and we define

~εðiÞðtÞ ¼ εðiÞðtÞ þ δεðiÞ, where εðiÞðtÞ is the ideal, noise-free detuning
sequence for qubit i, and the (quasi-static) noise term δεðiÞ is assumed to
remain constant for the duration of the sequence. The resulting unitary
operator is given by

U2qðtÞ ¼ exp �i=�h
Z t

0
H2q εð1Þðt0Þ; εð2Þðt0Þ;~Δðt0Þ

� �
dt0

� �
: (5)

In most cases, we take t to be the final time in the pulse sequence, with
one exception, described below.
We employ the following procedure to determine the detuning pulse

parameters used in Fig. 2. (For additional details, see Section S442 of the
Supplementary Materials). We first choose the fastest ramp time τramp

consistent with leakage errors <0.1% in the absence of charge noise. We then
compute U2q as a function of τwait for a fixed level of quasi-static charge noise.
(High-frequency noise can also affect the fidelity of slow QDHQ gates;53

however, we do not consider such processes here.) The process fidelity F is
computed, comparing U2q to a perfect CZ gate, modulo single-qubit rotations,
using the Choi–Jamiolkowski formalism,54 as described in Supplementary
Section S5.42 We then average F over charge noise, using the method
described below, and choose the value of τwait that maximizes hFi.
To optimize the detuning-tunnel-coupling pulse sequence used in Fig. 3,

we choose pulse parameters that minimize the total infidelity function
I total ¼ I cn þ Inf þ Ina, as discussed in the main text. Here, the noise-free
term Inf describes the CZ gate infidelity, computed using the
Choi–Jamiolkowski formalism, as described above, in the absence of
charge noise. In this work, we also introduce a penalty term to suppress
nonadiabatic evolution, defined as Ina ¼ maxt 1� 1

4

P hijðtÞjU2q

		

ðtÞjijð0Þij2�, where the sum is taken over the logical basis states (i, j)= (0,
1), and the function maxt picks out the maximal occupation of leakage
states, at any point in the pulse sequence. Note that the state |ij(0)〉 is an
eigenstate of H2q(t) at time t= 0, while |ij(t)〉 is the corresponding
eigenstate at time t. Under perfect adiabatic operation, the mapping U2q(t)|
ij(0)〉→ |ij(t)〉 is exact, yielding Ina ¼ 0; however, for nonadiabatic
operation, we obtain Ina gt; 0. In practice, we find that the exact form
of Ina does not significantly affect our results.
To average the fidelity over charge noise, we assume that the noise

terms δε(1) and δε(2) are uncorrelated and sample them independently at
17 values in the range between −25 and +25 μeV, corresponding to 1089
unique pairs. We then linearly interpolate F over the results and calculate
its average value, assuming a gaussian probability distribution with
standard deviation σε

pðδεð1Þ; δεð2ÞÞ ¼ 1
2πσ2ε

exp � δεð1Þ2 þ δεð2Þ2

2σ2ε

� �
: (6)
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