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Superstrong coupling in circuit quantum electrodynamics
Roman Kuzmin1, Nitish Mehta1, Nicholas Grabon1, Raymond Mencia1 and Vladimir E. Manucharyan1

Vacuum fluctuations fundamentally affect an atom by inducing a finite excited state lifetime along with a Lamb shift of its transition
frequency. Here we report the reverse effect: modification of vacuum modes by a single atom in circuit quantum electrodynamics.
Our one-dimensional vacuum is a long section of a high wave impedance (comparable to resistance quantum) superconducting
transmission line. It is directly wired to a transmon qubit circuit. Owing to the combination of high impedance and galvanic
connection, the transmon’s spontaneous emission linewidth can greatly exceed the discrete transmission line modes spacing. This
condition defines a previously unexplored superstrong coupling regime of quantum electrodynamics where many frequency-
resolved vacuum modes hybridize with a single atom. We establish this regime by observing the spontaneous emission line of the
transmon, revealed through the mode-by-mode measurement of the vacuum’s density of states. The linewidth as well as the atom-
induced dispersive photon−photon interaction are accurately described by a physically transparent Caldeira−Leggett model, with
the transmon’s quartic nonlinearity treated as a perturbation. Nonperturbative modification of vacuum, including inelastic
scattering of single photons, can be enabled by the superstrong coupling regime upon replacing the transmon by more
anharmonic qubits, with broad implications for simulating quantum impurity models of many-body physics.
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INTRODUCTION
Our device consists of a split Josephson junction terminating a
two-wire transmission line, which itself is made of a linear chain of
4 × 104 junctions (Fig. 1a, b). The opposite end of the line is
connected to a dipole antenna for performing local RF-
spectroscopy. Recently it was shown that the collective electro-
magnetic modes of such chains are microwave photons with a
velocity as low as v ≈ 106 m/s and wave impedance as high as Z∞
~ RQ, where RQ= h/(2e)2 ≈ 6.5 kΩ is the superconducting resis-
tance quantum.1 This was a significant step forward following the
earlier experiments on electromagnetic properties of short
Josephson chains.2–7 A propagating photon corresponds to a
plane wave of voltage/current across/along the two chains,
similarly to a coaxial cable. At low frequencies the dispersion is
nearly linear and there is a band edge at about ωp/2π ≈ 20 GHz
due to the Josephson plasma resonance of individual chain
junctions. The split-junction differs from the rest once its
Josephson energy EJ(Φ) and hence the plasma mode frequency
ω0(Φ) is detuned below ωp by an external flux Φ through the loop.
The anharmonicity of this mode is approximately given by the
charging energy EC= e2/2CJ of the split-junction’s oxide capaci-
tance CJ. For EC/h ≈ 300 MHz, a disconnected split-junction is
similar to a conventional transmon qubit.8 The electromagnetic
vacuum seen by such a transmon is formed by the standing wave
modes of the finite length L transmission line.
Cavity QED typically describes a reversible exchange of an

excitation between a single resonant mode and a qubit at the
vacuum Rabi frequency g.9–11 For a long transmission line, the
excitation exchange can occur faster than the time 2L/v that takes
the photon to traverse the line. This would dramatically modify
the mode wave function, e.g. replacing a node of electric field
with an antinode, because to establish it a photon must complete
the round trip. The fact that a single atom (qubit) can alter the

photon’s spatial profile motivated the term superstrong coupling
in the original proposal.12 In the frequency domain, the condition
for superstrong coupling is gρ > 1, where ρ= 2L/v is the density of
vacuum modes (1/ρ is the free spectral range), which means the
qubit exchanges an excitation with multiple vacuum modes
simultaneously. For a single mode system, another regime beyond
strong coupling takes place at g ~ω0, which was termed
ultrastrong coupling.13,14 In this regime the total number of
excitations is no longer conserved, which leads to an entangled
qubit-photon ground state.15 From the many-body physics
perspective, the most intriguing scenario is the combination of
ultrastrong and superstrong regimes, where formation of multi-
mode entanglement is expected.16 In fact, quantum electrody-
namics in this case maps onto the strongly correlated (Kondo-like)
quantum impurity models of condensed matter physics.17–22 The
advantage of simulating such models in a quantum optics setting
is that, for sufficiently large gρ and g/ω0, the many-body effects
can be completely developed, while each microscopic mode
remains individually accessible due to the finite system size.
Moreover, the system size itself becomes an experimental control
knob.
Spectroscopic signatures of ultrastrong coupling were previously

reported in experiments on flux qubits and transmons.23–26

The superstrong coupling condition gρ > 1 remains challenging
even for circuit QED. A pioneering experiment in this direction was
done by capacitively coupling a transmon qubit to a nearly one-
meter long coplanar waveguide transmission line with Z∞ ≈
50Ω.27 The conditions gρ ≈ 0.3 and g ≈ 30 MHz were achieved and
multimode fluorescence was observed under a strong driving of
the dressed qubit. However, the coupling was too low to expect
quantum many-body effects with single photons. In a recent
experiment the coupling was increased to g ≈ 160 MHz by using a
higher impedance transmission line (Z∞ ≈ 1.6 kΩ) made using
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Josephson junction chains.28 Unfortunately, the mode density was
also reduced due to the limited chain length, resulting in gρ ≈ 0.4.
Moreover, increasing the coupling requires reducing the para-
meter EJ/EC of the transmon, which comes at the price of charge
noise decoherence.29,30 Besides circuit QED, hybrid quantum
acoustic systems are promising for creating vacua with a high
density of discrete modes.31,32

Remarkably, the coupling strength becomes practically unlim-
ited with the galvanic connection used in our experiment.33 This is
apparent in the L→∞ limit, where the line, as viewed by the
transmon, can be replaced by an ideal resistance Z∞ (Fig. 1c). The
coupling is now characterized by the spontaneous emission rate Γ.
On one hand (for a large but finite L) Fermi’s golden rule gives Γ=
2πg2ρ.34 On the other hand, correspondence principle requires
that the excited state lifetime T1≡ 1/2πΓ is given by a classical
expression T1= Z∞CJ (the “RC” charge relaxation time). This gives
Γ= 2.5 GHz/Z∞[kΩ], i.e. a typical transmon is overdamped by a
conventional 50Ω vacuum. Same effect takes place with flux
qubits.35 The main innovation of our experiment is to utilize a high
wave impedance (Z∞ ≈ 5–10 kΩ) in order to weaken the galvanic
coupling to the range Γtω0=2π where the atomic transition is
well-defined. The superstrong regime parameter gρ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

Γρ=2π
p

can be adjusted independently of Γ by varying the line length.

RESULTS
In this work we achieved superstrong coupling with gρ ≈ 1.3 and
we illustrate this by observing the phenomenon of spontaneous
emission into a finite-size vacuum. As the parameter gρ grows
above a unity, progressively more vacuum modes hybridize with
the atom to the degree that the distinction between the two
cannot be made. The spectrum no longer contains the individual
2g-splittings, and the atomic transition is replaced by a band of
about Γρ states defining the spontaneous emission linewidth Γ.
Clearly, reaching Γρ � 1 is needed for the many-body physics, in
the two relevant experiments Γρt1.27,28 Here Γρ= 2π(gρ)2 ≈ 10,
which allowed us to observe, for the first time, the radiative
broadening of an atom by measuring the frequency shifts that it
induced on a large number of individual vacuum modes.
We start with constructing a Hamiltonian model of galvanic

light-matter coupling in our circuit. Accounting for the atom-
induced distortions in the modes spatial profile can be

challenging.36 Consequently, even for Γ � ω0 the multimode
Jaynes−Cummings model predicts divergent values of physical
observables.37,38 Here we avoided these problems by choosing an
appropriate circuit model of our system (Fig. 1d). An open section
of a transmission line can be modeled by an infinite set of serial
LjCj-circuits (j= 1, 2,…) connected in parallel. The frequency and
characteristic impedance of each oscillator are given by ωj ≡ 1/
(LjCj)

1/2= 2π(j− 1/2)/ρ and zj ≡ (Lj/Cj)
1/2= Z∞ωjρ/4, respectively.

39

A weak wave dispersion can be taken into account by introducing
a slow frequency dependence to both ρ and Z∞. We also introduce
the bare transmon transition frequency ω0= ((8EJEC)

1/2− EC/2)/ℏ
and linearized impedance z0= RQ(2EC/π

2EJ)
1/2. Defining the

annihilation (creation) operators a0ðay0Þ for the bare transmon
and ajðayj Þ for the uncoupled bath modes, the Hamiltonian reads:

H=�h¼ ω0a
y
0a0 � Kðay0a0Þ2 þ

P
j>0

ωja
y
j aj

�ða0 þ ay0Þ
P
j>0

gjðaj þ ayj Þ þ
P
j>0

gj
ω
1=2
0

ðaj þ ayj Þ
 !2

;

(1)

where K= EC/2ℏ and individual couplings are given by gj=ω0(z0/
zj)

1/2/2.30 The vacuum Rabi frequency g is given by g= gj(ωj→ω0)/
2π and we indeed confirm that Γ= 1/2πZ∞CJ.
The Hamiltonian (1) is a textbook Caldeira−Leggett model of a

quantum degree of freedom interacting with an Ohmic bath.40

The last term is the rigorously derived “A2”-term of quantum
optics. Note that in our model g2j � 1=j, which regularizes
perturbative series automatically, without the need for sophisti-
cated analysis recently proposed for a capacitively connected
transmon.37,38

Spectroscopy data as a function of drive frequency and flux
through the split-junction’s loop are shown in Fig. 2. We observe a
dense set of regularly spaced resonances, with a mode spacing of
about 1/ρ ≈ 50–60 MHz, which is disturbed periodically in flux
(only a fraction of the period is shown). This flux-dependent
disturbance is associated with the tuning of the transmon’s
resonance across the spectrum of the transmission line. The
unique feature of these data compared to previous multimode
circuit experiments27,31 is that there are no individual vacuum Rabi
splittings. In fact, at a fixed flux, the raw reflection trace vs.
frequency contains no obvious sign of the atomic transition (Fig.
2b). However, upon tuning the flux, we observe that multiple
resonances shift by nearly the same amount, indicating that many
modes are equally sensitive to the tuning of the transmon (see
three insets in Fig. 2a).
A clear picture of an atom simultaneously coupled to many

vacuum modes comes from extracting the density of states (DOS)
conventionally defined as (π/L)/(ωj+ 1− ωj), where ωj is the
measured frequency of jth mode. This quantity is readily available
since every individual mode is frequency-resolved in our reflection
spectroscopy. The obtained DOS has a broad peak, involving
about 20 consequent modes, and slowly increasing with
frequency background (Fig. 3a). From fitting the background to
a simple model of transmission line DOS, we extract the bare
junctions plasma frequency ωp/2π= 22.6 GHz and the wave
impedance Z∞= 4.9 kΩ (Methods). The peak line-shape fits well
to a simple Lorentzian function with unit area, which correctly
reflects one additional state coming from the transmon. The DOS
peak position shifts with flux and perfectly follows the dis-
connected transmon’s resonance, assuming a reasonable junction
asymmetry and that the maximal plasma frequency is that of the
other chain junctions (Fig. 3c). Importantly, the fitted peak width is
frequency-independent and matches the theoretical radiative
linewidth Γ ≈ 1/2πZ∞CJ ≈ 600 MHz, within ±50 MHz. In a control
experiment, we have checked that a device with a twice higher
wave impedance, Z∞= 9.8 kΩ, fabricated using a skinnier junction
chain, narrows the DOS peak precisely by a factor of two (Fig. 3b).

Fig. 1 a Optical image of the device, showing (left to right) the
coupling antenna, sections of the Josephson transmission line, and
the split-junction termination. b Distributed circuit model of the
device. The system is probed from the opposite to the split-junction
end. c Equivalent circuit model of a semi-infinite transmission line
with the wave impedance Z∞ shunting the split-junction. d A
lumped element equivalent circuit model of b for a finite-length line
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To test the Hamiltonian (1) further, we measure the atom-
induced photon−photon interactions. Neglecting the transmon’s
nonlinearity at first, the Hamiltonian (1) is quadratic and can be
diagonalized exactly to obtain the flux-dependent normal mode
frequencies ~ωjðΦÞ. The result very well reproduces the spectro-
scopy data in Fig. 2. Expressing the Kerr term in terms of the
“quasiparticle” photon creation cj and annihilation cyj operators,
and keeping only energy-conserving terms, we can approximate
the Hamiltonian (1) as:

H=h �
X
j

~ωjc
y
j cj � Kjðcyj cjÞ2

� �
�
X
i≠j

χ i;jðcyi cicyj cjÞ: (2)

Here the Kj is the induced Kerr shift of the j-mode frequency due
to a single photon, which plays the role of the on-site repulsion in
Bose−Hubbard models.41 The χi,j is the induced cross-Kerr shift of
the mode i due to a single photon in the mode j7 (Methods).

We verified the presence of the induced Kerr effect using high-
power spectroscopy. The modes inside the DOS peak clearly shift
much more in response to a high-power driving compared to the
modes outside of it (Fig. 4a). At some threshold power, we observe
that the resonances within the DOS peak snap onto their
uncoupled values. This effect, standard in circuit QED,42 can be
also explained as the split-junction effectively acquires an infinite
inductance because the swing of its overdriven phase exceeds 2π.
The cross-Kerr interaction can be characterized more accurately.

For a chosen flux bias, we drive a mode j= 108, corresponding to
the peak in the DOS at a convenient atomic frequency around
7 GHz. The power is such that the mode is populated by an
approximately one photon on average. The neighboring modes i
= j ± 1, j ± 2,… are scanned with a low-power drive to obtain the
resulting frequency shifts. This allows for a measurement of the
dependence of χi,j on i− j and comparison with our perturbative
calculation. The χi,j is maximal for the DOS peak maximum, and

Fig. 2 a Reflection magnitude as a function of drive frequency and flux through the loop. The color scale (not shown) is optimized to make
the position of resonances maximally visible. The three insets have the same width along the frequency axis and correspond to the three
boxed regions on the main plot. b An example slice of a at the external flux 0.525 × h/2e, shown by the horizontal dashed line, where the
atomic resonance is expected at around 7 GHz

Fig. 3 a Single-particle density of photon states (DOS) vs. frequency (see text). The fluctuations are reproducible and reflect a small disorder in
the junction parameters. The fit (solid line) is a combination of a Lorentzian resonance shape combined with the background transmission line
DOS growing due to the van Hove singularity at the plasma frequency ωp/2π= 22.6 GHz. b DOS extracted for a device with Z∞= 9.8 kΩ. c DOS
from a plotted vs. flux. The two dashed lines indicate the fit to a transmon’s transition and a fixed width of the DOS peak
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drops rapidly as the i-modes leave the Γ-neighborhood of the
atomic resonance. Although the measured shifts have some
fluctuations of the presently unknown nature, the overall data
match the theory well using the photon number to drive power
conversion as the only adjustable parameter (Methods).

DISCUSSION
The origin of a weak ðK � ΓÞ photon−photon interaction strength
is interesting and can be understood as follows. A mode of the
bare transmon (a0) is approximately an equal superposition of
Γρ ≈ 10 normal modes (cj) of the combined system. Normalization
requires that each mode amplitude is 1/(Γρ)1/2. Therefore, the
induced Kerr and cross-Kerr shifts per photon due to the quartic
nonlinearity scale as EC/(Γρ)

2 ~ EC/100, which agrees with the data
(Methods). Somewhat counterintuitively, increasing the light-
matter coupling in the microscopic Hamiltonian (1) leads to the
dissolution of the transmon’s quartic nonlinearity over a large
number of linear modes, thereby suppressing the many-body
effects.
Fortunately, nonlinearity can be dramatically enhanced in our

system by reducing the size of the split-junction such that
EJ=EC � 1. Because of large quantum fluctuations of the Joseph-
son phase, enabled by Z1 � RQ,

3 the series expansion of
the cosine nonlinearity becomes invalid. Moreover, owing to the
galvanic connection, the offset charge noise is eliminated by the
large zero-frequency capacitance of the transmission line. In fact,
for EJ=EC � 1, our galvanic circuit QED system must be described
by the boundary sine-Gordon quantum field theory. This quantum
impurity model has a critical point at Z∞= RQ.

17,18 It plays an
important role in a broad range of phenomena, from dissipative
quantum phase transitions,43,44 to interacting electrons in one
dimension.45 Alternatively, the small junction can be replaced by
either a flux35 or fluxonium2,30,46,47 two-level-like qubits to

implement the spin-1/2 Kondo impurity model in the bosonic
representation.
In summary, we have demonstrated an ideal superconducting

resistor, with a value exceeding resistance quantum RQ ≈ 6.5 kΩ,
operating at frequencies beyond 10 GHz, and whose internal
modes are frequency-resolved and hence are individually
accessible. The spontaneous emission of a transmon qubit
galvanically wired to it is not modified by the discreetness of
the resistor spectral function at time scales shorter than the
photon round trip time ρ, as long as the coupling to individual
modes exceeds the mode spacing 1/ρ ≈ 50–100MHz. The
spontaneous emission linewidth is revealed by frequency shifts
of the resistor’s individual modes. This situation defines a
superstrong regime of light-matter coupling, relevant for exploring
many-body physics with photons.

METHODS
Device fabrication and measurement setup
The devices were fabricated on a highly resistive silicon substrate using the
standard Dolan bridge technique. The process involves e-beam lithogra-
phy on an MMA/PMMA bi-layer resist and the subsequent double-angle
deposition of aluminum with the intermediate oxidation step. The
spectroscopy measurements are done in a single-port reflection geometry
using the wireless interface described in ref. 1 A global magnetic field was
used to create a flux through the split-junction loop.

The density of states
The DOS in our system can be expressed as the sum of two contributions

DOSðωÞ ¼ 1

2πvð1� ðω=ωpÞ2Þ3=2
þ 1
2L

Γ

ðω� ω0Þ2 þ π2Γ2
:

The first term is the DOS for photons in a bare “telegraph” transmission
line. It is easily obtained from their dispersion relation

ωðkÞ ¼ vk=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðvk=ωpÞ2

q
. The second term takes into account one

Fig. 4 a Power-dependence of the spectroscopy signal for the DOS peak at 7.12 GHz. The modes inside the DOS peak shift more strongly with
power than the ones outside. b Dispersive shifts χi,j as a function of i-modes frequencies for a fixed second-tone driving of the mode j= 108 at
7.014 GHz, near the top of the DOS resonance (marked with an arrow). Blue markers indicate the same measurement for a largely detuned
atom. Theory (solid and dashed lines) has no adjustable parameters except for the Y-axis scale (Methods). The error bars are the SD of the
measured dispersive shifts. c Power-dependence of the shifts of selected modes indicated by matching markers
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additional state coming from the transmon. It is expressed as a Lorentzian
function normalized by the double transmission line length so the
integration over the full frequency range and the length results in exactly
one. By fitting the measured DOS to the above expression we found the
transmon’s resonance frequency ω0 and broadening Γ as well as the
photons velocity v and cut-off frequency ωp.

Self- and cross-Kerr coefficients
In order to find the expressions for Kj and χi,j we start from the Hamiltonian
(1) and limit the number of bath modes to N= 1000. Without the nonlinear
term the Hamiltonian (1) can be diagonalized with a unitary transformation
given by a matrix U. U is a block matrix, which ensures the commutation
relations are preserved in the new basis cy; c.

a

ay

� �
¼ u v

�v u

� �
c

cy

� �
:

Here a= (a0, a1,…, aN−1, aN)
T, ay ¼ ðay0; ay1; ¼ ; ayN�1; a

y
NÞT, etc., and u, v

are N+ 1 by N+ 1 matrices. We can now express the quartic transmon’s
nonlinearity � ða0 � ay0Þ4 in the new basis. Counting the terms ðcyj cjÞ2 and
cyi cic

y
j cj we arrive at the expressions

Kj ¼ 1
2 ECðv21j � u21jÞ2=h;

χ i;j ¼ 2ECðv21i � u21iÞðv21j � u21jÞ=h:
We checked that the same results can be obtained in the perturbative

calculation only starting from the linear circuit Hamiltonian.7

Measurement of the cross-Kerr shifts
The dispersive cross-Kerr interaction of photons caused by the Josephson
junction nonlinearity appears as a mode frequency shift which is linear in
the photon population of any other mode. We picked up the mode j= 108
and changed its photon population with the second microwave tone. For
every other mode in the vicinity of the DOS peak we performed a set of
reflection measurements with the second tone being consecutively on or
off. The mode frequency in every measurement was found from the fit of
the reflection coefficient, both the real and imaginary parts, to the
damped LC-oscillator model. The shift is then defined as an average mode
frequency change between the on and off state of the second tone. The
procedure was repeated for various second-tone powers. To eliminate the
detrimental effects of the flux jitter, we chose the shortest possible time
between two consecutive measurements. Moreover, the frequency of
the second tone was modulated with a time scale much smaller than
the measurement time and with an amplitude larger than the jitter
amplitude. This allowed us to create a constant population of the driving
mode disregarding its frequency fluctuation. We performed the same
measurements in the same frequency range but with the transmon’s
resonance largely detuned. We found cross-Kerr shifts smaller by three
orders of magnitude, which is consistent with our perturbative calculations
of the bare transmission line nonlinearity. This consistency made the rough
photon calibration possible.
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