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From contextuality of a single photon to realism of an
electromagnetic wave
Marcin Markiewicz1, Dagomir Kaszlikowski2,3, Paweł Kurzyński4,2 and Antoni Wójcik4

Violations of Bell inequalities have been an incontestable indicator of non-classicality since the seminal paper by John Bell.
However, recent claims of Bell inequalities violations with classical light have cast some doubts on their significance as hallmarks of
non-classicality. Here, we challenge those claims. The crux of the problem is that such classical experiments simulate quantum
probabilities with intensities of classical fields. However, fields intensities measurements are radically different from single-photon
detections, which are primitives of any genuine Bell experiment. We show that this fundamental difference between field
intensities measurements and single photon detections shifts the classical bound of relevant Bell inequalities to its non-signaling
limit, leaving no place for their violations.
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INTRODUCTION
The quantum-to-classical transition in optical interferometry can
be observed either in a single-particle or multi-particle inter-
ference.1 The multi-particle interference is commonly regarded as
more fundamental, including purely quantum phenomena such as
the Hong-Ou-Mandel (HOM) effect2 and multi-photon violations of
Bell inequalities.3 The quantum-to-classical transition in these
phenomena has different origins. In the HOM setting it can be
attributed to the strength of particle indistinguishability4 whereas
multi-photon Bell inequality violations are tied to the coherence
strength between entangled photons or, in the limit of many
particles, to the vanishing ability of revealing single particle
properties with multi-photon measurements.5

A single-photon interference scenario is much simpler to
describe. To illustrate it, let us consider the simplest case—a
Young double-slit experiment.6 Here the classical limit is achieved
by increasing the average number of photons prepared in a
coherent state or a mixture of such states. In this limit, the
interference pattern does not change. What changes is the
physical meaning of a mathematical formalism used to describe
the experiment—the probability amplitudes of a single photon
become amplitudes of a classical electromagnetic wave. Straight-
forward as it seems, a relatively recent ‘discovery’ of Bell inequality
violations with classical light, dubbed ‘classical entanglement’,
makes the whole classical to quantum transition less obvious.
Everything started in 1996 with a paper by Patrick Suppes et al.7

They proposed an interferomteric experiment to violate a Bell
inequality with classical light. A year later Robert Spreeuw
introduced the concept of classical entanglement between two
different degrees of freedom of a single classical light beam.8

Moreover, he showed that this entanglement leads to violations of
the CHSH (Clauser-Horne-Shimony-Holt) inequality.9 He subse-
quently generalised this idea to more degrees of freedom,

demonstrating a classical version of the GHZ (Greenberger-
Horne-Zeilinger) paradox.10

Classical entanglement occurs between two or more properties
of an individual system and as such it does not require spatial
separation unlike the standard EPR scenario. Because of this, the
classical entanglement was largely dismissed by other researchers
as a mere curiosity, irrelevant in the context of quantum non-
locality.11 However a few years later a variety of papers appeared,
discussing a similar concept of intrasystem entanglement in
different physical implementations. Eberly, Qian et al. and further
Aiello et al. in a series of papers12–14 developed a theory of
“bipartite” entanglement between polarisation and position
degrees of freedom in stochastic light beams.15 Later, Eberly
et al. performed an experiment achieving a strong violation of the
CHSH inequality with entangled states of stochastic light fields.16

A similar violation of the CHSH inequality with classical entangle-
ment between fields in two optical resonators was proposed by
Snoke.17 Finally Frustaglia et al.18 derived a procedure, following
earlier ideas of Cerf et al.19 and Spreeuw,10 which allows to
reconstruct probability distributions coming from any quantum
correlations tests using classical optical circuits. As an illustration
of their method, the authors of18 performed an experiment with
microwave circuits showing violations of the CHSH9 and Mermin20

type inequalities.
Experimental demonstrations of Bell inequalities violations with

classical light have profound physical implications. Snoke17 and
Qian et al.16 hypothesised that a Bell inequality violation does not
testify a presence of quantum entanglement in a given physical
system—it may as well be a classical entanglement. Another
hypothesis by Frustaglia et. al.18 is that the bounds on the strength
of quantum correlations (so called Tsirelson bounds) are not
restricted to quantum physics, but arise naturally in classical
systems which simulate quantum correlations. If these claims were
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true, we would have to reconsider the role of Bell inequalities in
probing quantum to classical transition.
In this paper we challenge these claims by showing that one

does not observe any violation in classical regime if the Bell
inequalities are properly derived. More precisely, Bell inequalities
test if probability distributions of measurement results are
contextual21—the feature commonly accepted as an indicator of
non-classicality. From the mathematical perspective, Bell inequal-
ities are based on properties of exclusivity relations between
jointly measurable events.22 A proper structure of such exclusivity
implies existence of a test that can distinguish between contextual
(non-classical) and non-contextual (classical) probability
distributions.
We show a non-contextual physical model based on quantum-

to-classical transition from single photons to classical waves. Our
model proves that classical waves are not contextual and thus
they can be still called classical. Moreover, we demonstrate that
the proper classical bounds, i.e., the bounds respecting the correct
exclusivity structure of detection events for Bell tests with classical
light are equal to the non-signaling bounds on the correlations’
strength. Therefore, there is no place for any classical contextuality
in such systems.

RESULTS
Photon distribution in the classical limit
Consider a single photon in a polarisation state

ffiffiffiffiffi
pH

p
Hj i þ ffiffiffiffiffi

pV
p

Vj i,
where H and V denote horizontal and vertical polarisations,
respectively, and pH+ pV= 1. When incident on a polarising beam
splitter (PBS), the photon can either go through and become H
polarised, or be reflected and become V polarised. These are two
possibilities occuring randomly with probabilities pH and pV, if one
decides to detect the photon after the PBS. Denote these two
possible outcomes as {0, 1} and {1, 0}. This scenario is a physical
implementation of a binary ±1 random variable X, where the
outcome {1, 0} is associated with the value +1 and {0, 1} with −1.
Next, let us consider two indistinguishable photons in the

above state entering the same PBS port. They are uncorrelated
and therefore they scatter on the PBS independently.23 The
photons cannot be distinguished and therefore there are only
three exclusive outcomes: {2, 0}, {1, 1} and {0, 2}. These outcomes
cannot be interpreted as products of two single-photon outcomes
becasue of indistinguishability, i.e., events {1, 0} × {1, 0}, {1, 0} × {0,
1}, {0, 1} × {1, 0}, and {0, 1} × {0, 1} are meaningless. Moreover,
unlike in the single-photon case, for two photons, statements
“photon is detected on the left” and “photon is detected on the
right” are not exclusive because there is a chance that photons
can be detected on both sides. Interestingly, the average number
of photons in each output is proportional to single-photon
scattering probabilities, i.e., nH ¼ 2pH and nV ¼ 2pV.
In general, for N photons scattering on the PBS one can observe

N+ 1 exclusive outcomes: {N, 0}, {N− 1, 1}, etc. Note, that
although the scenario consists of only two distinguishable modes,
the exclusivity structure depends on the number of photons, since
the number of exclusive events scales linearly with N. This is
drastically fewer than 2N outcomes observable for distinguishable
particles. For N photons the single-photon random variable X is ill-
defined because of indistinguishability. However, it is possible to
define a random variable whose outcomes are given by
X ¼ nH � nVð Þ=N, i.e., the difference between photon numbers
in the output ports divided by the total number of photons. Note,
that �1 � X � 1 and X ¼ X for N= 1. Additionally, since each
photon is transformed independently and according to the same
rule, the average number of photons in each polarisation mode is
given by nH ¼ NpH and nV ¼ NpV. Because of this Xh i ¼ pH � pV
does not depend on N and the most probable outcome state is
nH; nVf g.

Finally, let us discuss the classical limit. In this case the total
number of photons is undetermined but their average number is
large Nh i � 1ð Þ. In quantum theory such situations are usually
represented by a high amplitude coherent state.24 Once we go to
the classical limit, it is quite natural to treat the beam of light as a
continuous object that can be split into portions in an arbitrary
way. The PBS transforms a single beam with intensity I into two
beams, the H polarised beam with intensity IH and the V polarised
one with IV. This is predicted by both, classical and quantum
theories. In the classical limit the average value of random variable
X becomes (IH− IV)/I. However, since the intensities of two beams
are given by IH= IpH and IV= IpV, we get Xh i ¼ pH � pV, as
expected. Note, that for Poissonian light the fluctuations of X
scale as 1=

ffiffiffiffi
N

p
, therefore in the classical limit X can be treated as a

deterministic variable.
The above scenarios are schematically represented in Fig. 1.

Although we considered only a single PBS, the similarity between
classical intensities and probabilities generated by photonic
distributions would also hold if one used an arbitrary number of
linear optical devices (PBS, standard beam splitters (BS), phase
shifters, etc). In this case the whole setup is equivalent to a
multiport corresponding to a more complex random variable or a
sequence of random variables.
To summarise, we see that the same average value Xh i is

predicted by both, quantum and classical theories, since this value
does not depend on N. Nevertheless, the underlying exclusivity
structure of the outcomes of X strongly depends on N. This fact
causes some bizarre interpretation difficulties in experimental Bell-
type scenarios with classical light. We will discuss this problem in
more details in the following sections.

Correlations in the classical limit
Next, we show that unlike photonic distribution, the correlations
between spatially separated photons strongly depend on N and
on the exclusivity structure of detection events. The problem of
quantum correlations in the classical limit was discussed in details
before (see for example ref. 5) so we provide here only a simple
example.
Consider a pair of photons in an entangled polarisation stateffiffiffiffiffi
pH

p
HHj i þ ffiffiffiffiffi

pV
p

VVj i. These two photons are shared between two
spatially separated parties, Alice and Bob, who measure their
photons polarisations with respective PBSs. As before, we
represent the two polarisation possibilities by {1, 0} and {0, 1}.
Moreover, we can also use the ±1 random variables XA and XB,
defined in the same way as X above, to represent the
measurement of Alice and Bob. Alice and Bob register either {1,
0} × {1, 0} with probability pV, or {0, 1} × {0, 1} with probability pH.
The average values and the corresponding correlations are 〈XA〉=
〈XB〉= pH− pV and 〈XAXB〉= 1.
Next, let us consider N such photonic pairs shared between

Alice and Bob who measure polarisation on all pairs at the same
time. As before, the local measurements are represented by the
random variables XA ¼ nAH � nAVð Þ=N and XB ¼ nBH � nBVð Þ=N.
Again, there are correlations between the photonic pairs giving
nAH= nBH= nH and nAV= nBV= nV, hence Alice registers the same
photon distribution as Bob and XA ¼ XB. However, for N
entangled pairs the correlations XAXBh i are much weaker. Note,
that the outcome {n, N− n} × {n, N− n} happens with probability

N!
n!ðN� nÞ! p

n
Vp

N�n
H , thus

XAXBh i ¼ PN
n¼0

2n�N
N

� �2 N!
n!ðN� nÞ! p

n
Vp

N�n
H

¼ N� 4pVpHðN� 1Þ
N :

(1)

For example, for pH= pV= 1/2 one gets XAXBh i ¼ 1=N. Interest-
ingly, XAh i ¼ XBh i ¼ pH � pV and in the limit of the large number
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of photons

lim
N!1

XAXBh i ¼ 1� 4pVpH ¼ XAh i XBh i: (2)

To conclude, the values XAh i and XBh i do not depend on N.
However, the correlation between XA and XB, XAXBh i, does. As a
consequence, in the classical limit of large 〈N〉 the two random
variables get practically uncorrelated. Therefore, the classical limit
of Bell-type scenarios based on correlations between many
particles can always be explained by a classical theory (for more
details see ref. 5 and the methods). The idea of a classical
simulation of quantum correlations using classical beams uses
different approach, and in the next section we focus on
correlations between random variables defined for the same
particle.

Bell inequalities in the clasical limit
The idea of hidden variables goes back to the father founders of
quantum theory. Some of them, like Einstein, could not accept the
fact that the theory is fundamentally random. A programme to
explain the quantum randomness as a lack of knowledge of the
system’s state was developed. In particular, it was assumed that
the quantum state provides only a partial information about the
true state of the system. The remaining information exists,
encoded in some parameters, but is inaccessible to an experi-
menter. These inaccessible parameters were called hidden
variables. The standard hidden variable approach to quantum
theory studies if it is possible to assign outcomes to all possible
measurements in a consistent way, without violating commonly
accepted features of nature, such as locality or non-contextuality.
Bell inequalities11 serve as the most common tool to check
whether a hidden-variable description is possible for a given
experimental scenario.

Let us consider the CHSH scenario,9 which is the simplest Bell
test involving four ±1 binary random variables A0, A1, B0, and B1. In
a classical theory these four random variables are jointly
distributed which implies that the following inequality must be
satisfied

�2 � A1B1h i þ A0B1h i þ A1B0h i � A0B0h i � 2; (3)

where

AiBj
� � ¼ X

ai ;bj¼± 1

aibjp Ai ¼ ai; Bj ¼ bj
� �

: (4)

In quantum theory it is possible to find a set of binary
observables represented by Hermitian matrices, such that [Ai, Bj]≡
AiBj− BjAi= 0 (for i, j= 0, 1), but [A0, A1] ≠ 0 and [B0, B1] ≠ 0. This
means that Ai and Bj can be jointly measured, but it is not possible
to jointly measure A0 and A1 or B0 and B1. Interestingly, for
quantum correlations 〈AiBj〉 the inequality (3) can be violated up to
± 2

ffiffiffi
2

p
for an optimal choice of the state and observables. The

violation implies that the measured correlations cannot be
described by classical theories.
The simplest quantum system where such a scenario is possible

has four levels. In the original Bell-type scenario we have two
spatially separated systems, e.g., two polarisation entangled
photons discussed in the previous section, see also Fig. 2a. In
this case A0 and A1 correspond to the polarisation properties of
the first photon, whereas B0 and B1 correspond to the polarisation
properties of the second photon. However, using the arguments
from the previous section, a large number of indistinguishable
entangled pairs would produce 〈AiBj〉 ≈ 〈Ai〉〈Bj〉 in the classical
limit. Thus, the CHSH inequality (3) would not be violated.
Let us now discuss another implementation of the CHSH

scenario. This time the four-level system is made of a single
photon which can occupy four modes, e.g., two polarisation
modes (H and V) and two spatial modes (a and b). As a result the

Single photon

{1,0} {0,1}

Two photons

{2,0} {1,1} {0,2}

Beam of light

IH IV

I

{IH,IV}

N photons (typical state)

{NpH,NpV}

Fig. 1 Schematic representation of the classical limit in an experiment with uncorrelated photons. Single photon on a polarising beam splitter
(PBS) can either go through or reflect. There are two exclusive outcomes: the photon is either registered on the left with the polarisation V or
on the right with the polarisation H. The corresponding probabilities are pV and pH, respectively (pH+ pV= 1). Two photons on the PBS can
produce three exclusive outcomes: both on the left with probability p2V , one on the left and one on the right with probability 2pHpV, and both
on the right with probability p2H . N photons on the PBS can produce N+ 1 exclusive outcomes, however the most probable events are those
with approximately NpV photons on the left and NpH photons on the right. A classical beam of light of intensity I is split on the PBS into two
beams. In principle there is a continuum of outcomes, however one always observes the one with the corresponding intensities IH and IV,
where IH= IpH and IV= IpV
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photon can be in one of four possible states aH, aV, bH and bV, or in
an arbitrary superposition of them. The properties A0 and A1 can
be associated with spatial modes, whereas B0 and B1 can be
associated with polarisation. For example, A0 can assign +1 to
mode a and −1 to b. On the other hand, A1 can assign ±1 to
orthogonal superpositions of modes, like |a〉 ± |b〉. Similarly, B0 can
assign +1 to polarisation H and −1 to V, whereas B1 can assign +1
to the right-handed circular polarisation and −1 to the left-
handed one.
The Hilbert space of the system is a tensor product of two

Hilbert spaces: the one corresponding to spatial modes and
another one to polarisation. However, this time the system cannot
be divided into parts that can be separated from each other. Still,
it is possible to speak of entanglement between these two
degrees of freedom, but this entanglement has nothing to do with
nonlocality. Nevertheless, violation of the CHSH inequality with Ai
and Bj confirms the presence of entanglement between spatial
modes and polarisation. This entanglement gives non-classical
correlations that can be attributed to contextuality rather than to
nonlocality.
The properties Ai and Bj can be measured sequentially, as in the

ref. 18 and the measurement of one property does not disturb the
measurement of the other. More precisely, such a measurement
can be implemented in a setup in which the system goes through
the measuring device corresponding to Ai and then through one
of the two measuring devices corresponding to Bj. The schematic
representation of this setup is shown in Fig. 2b. Because Ai and Bj
commute, the results of the measurements do not depend on
their order, i.e., Bj can be measured before Ai. The measurements

lead to four possible outcomes that we denote by (+ + |ij), (+ − |
ij), (− + |ij) and (− − |ij). The result (+ − |ij) corresponds to Ai=+1
and Bj=−1.
A single run of the experiment makes one of the four detectors,

placed after the outputs, click. The probabilities of these clicks are
p(+ + |ij), p(+ − |ij), p(− + |ij) and p(− − |ij). They can be
estimated after many experimental runs and used to evaluate
correlations 〈AiBj〉= p(+ + |ij)− p(+ − |ij)− p(− + |ij)+ p(− − |ij).
One can observe violation of the CHSH inequality if in each
experimental run the photon is prepared in the same special state
and the measurements Ai and Bj are properly chosen. Although
the setup is interpreted as a measurement of two random
variables, it can also be viewed as a measurement of a single
degenerate random variable Xij whose outcomes are products of
the outcomes of Ai and Bj. Therefore, 〈AiBj〉= 〈Xij〉.
What would happen if in a single experimental run one used

many identical photons or a classical beam of light? From our
initial discussion we know that the intensities at the outputs
would be proportional to Np(+ + |ij), Np(+ − |ij), Np(− + |ij) and
Np(− − |ij), where N is the number of photons. In the classical limit
one would deal with a beam of light whose intensities would be I
(+ + |ij), I(+ − |ij), I(− + |ij) and I(− − |ij). Moreover, I(+ + |ij)/I= p
(+ + |ij), etc., where I is the input intensity.
In addition, one could consider a random variable

X ij ¼ n þþ jijð Þ � n þ� jijð Þ � n �þ jijð Þ þ n �� jijð Þ
N

; (5)

where n(+ + |ij) is the number of photons in the output (+ + |ij),
etc. For a single photon 〈AiBj〉= 〈Xij〉= X ij

� �
. For N > 1 it is

(++|00)

(- -|00)

(- +|01)

(+ -|01)

(+ -|10)

(+ -|11)

(- +|10)

(- +|11)

cb

a

SA B

Measurement of (+ -|01)0 1 0 1

+ - + -

S

A
0

1

+ -

B
0

1

+ -

B
0

1

+ -

Fig. 2 Clauser-Horne-Shimony-Holt (CHSH) Bell-type scenario. a Nonlocal setting in which a source S emits two correlated particles flying to
Alice and Bob. Each of them performs one of the two measurements (denoted by 0 or 1). Each measurement produces a binary outcome (±1).
Here, we present an instance in which Alice chooses to measure 0 and Bob chooses to measure 1. Alice’s outcome is + and Bob’s is −, hence
they jointly register an event (+ − |01). b The same instance, but in a local scenario. Classical entanglement can only be tested in such
scenarios. The measurement of A is performed before B. It is generally assumed that both properties are compatible (they commute in QM
sense), therefore the order of measurement is irrelevant. c The exclusivity graph for the CHSH scenario. The vertices correspond to
measurement events and the edges represent the exclusivity relations. Orange edges correspond to exclusivity of measurement outcomes for
the same settings, e.g., (+ + |ij) and (− − |ij). Grey edges correspond to exclusivity of measurement outcomes in which the second
measurement has different settings, e.g., (+ + |i0) and (− − |i1). This exclusivity can be tested in the setting represented in b, by choosing B0
for the second left measuring device and B1 for the second right measuring device—detailed discussion in the text
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impossible to assign definite values to Ai, Bj and to assign Xij to
individual photons. However, X ij

� �
can be evaluated and in the

classical limit one gets

X ij
� � ¼ I þþ jijð Þ � I þ� jijð Þ � I �þ jijð Þ þ I �� jijð Þ

I
: (6)

Thus, it is possible to prepare a classical state of light such that

X11h i þ X01h i þ X 10h i � X 00h i ¼ ± 2
ffiffiffi
2

p
: (7)

The above may lead to a discussion whether the classical light
has some nonclassical properties.7,8,10,12–14,16–18 In the following
sections we show that for more than one photon the classical
bound is different than ±2. One needs to remember that although
X ij
� �

does not depend on N, the random variable X ij and the
corresponding exclusivity structure of events strongly depends on
N, therefore in order to understand what is really going on it is
better to examine the CHSH scenario from the point of view of
events, not averages.

Exclusivity and classical bounds
The contextuality and non-locality scenarios can be studied within
the graph theoretical model developed by Cabello, Severini, and
Winter.22 This model is based on the exclusivity structure of
measurable events and offers three different approaches to
deriving bounds on sums of probabilities of measurable events.
The first approach assigns logical truth/false values to each event
and the resulting bound on the sum of probabilities, obtained by
optimising over all possible assignments, is known as the classical
bound. The second approach is equivalent to the quantum
mechanical way of assigning probabilities to the events, which is
based on the Born rule. The corresponding quantum bound is
known as Lovasz theta function and is equal or greater than the
classical bound. Finally, the third approach uses the minimal
assumption, namely that the sum of probabilities of mutually
pairwise exclusive events is bounded by one. This assumption is
known as the E-principle25 and the corresponding bound is known
as the non-signaling bound, since general non-signaling theories
obey the E-principle. The non-signaling bound is equal or grater
than both, classical and quantum bounds. It is worth to mention
that there is a growing interest in finding ways to derive quantum
bounds from non-signaling bounds using additional physical
assumptions.25–27 In the following we discuss the CHSH scenario
from the point of view of its exclusivity structure.
The CHSH inequality can be rewritten with probabilities of

detection events. Since 〈AiBj〉= 1− 2p(+ − |ij)− 2p(− + |ij)= 2p
(+ + |ij)+ 2p(− − |ij)− 1, the inequality (3) becomes

p þ� j11ð Þ þ p �þ j11ð Þ þ p þ� j01ð Þþ
p �þ j01ð Þ þ p þ� j10ð Þ þ p �þ j10ð Þþ

p þþ j00ð Þ þ p �� j00ð Þ � 3:

(8)

This inequality can be derived in a completely different way.
The upper bound equal to three comes from the exclusivity
structure of events. Firstly, the events (+ + |ij), (− − |ij), (+ − |ij),
and (−+ |ij) are pairwise exclusive. This is because they
correspond to different outcomes of the same measurements.
For example, (+ + |00) cannot happen together with (− − |00). In
addition, two events are exclusive if they share the same
measurement settings and the corresponding outcomes are
different. This means that (+#|ij) is exclusive to (−#|ik) and (# +
|ij) is exclusive to (# − |kj); Here # denotes an arbitrary outcome.
For example, (+ − |10) is exclusive to (− + |11) and (− − |00) is
exclusive to (− + |10). Such example can be realised in quantum
theory by events corresponding to projections onto states |0〉 ⊗ |
0〉 and |1〉 ⊗ (α|0〉+ β|1〉). Although |0〉 and α|0〉+ β|1〉 are in
general nonorthogonal states, the exclusivity is provided by the
orthogonality of |0〉 and |1〉 in the first Hilbert space. Verification of
this type of exclusivity can be implemented in the sequential

scenario represented in Fig. 2b in which the second left measuring
device is set to B0 and the second right to B1.
The exclusivity structure of the eight events can be represented

with the exclusivity graph22 whose vertices correspond to events
and edges to exclusivity between two events, see Fig. 2c. The
upper bound of (8) is derived under assumption that the eight
events are jointly distributed.28 The joined probability distribution
(JPD) is constructed over all possible assignments of 1/0 (truth/
false) values to these events. In principle there are 28 possible
assignments, however the value 1 cannot be simultaneously
assigned to two exclusive events. This significantly reduces the
number of possible assignments. The maximum value of the sum
of the eight probabilities is given by the maximal number of
events that can be assigned the value 1. The problem of finding
the maximal number of events that can be assigned 1 is
equivalent to the graph theoretical problem known as maximum
independent set.22 An independent set of a graph is a set of
disconnected vertices. We are looking for a set with the largest
possible number of vertices. In general, it is an NP-hard problem
but it is solvable for our graph. Note, that the set of events that are
assigned 1 must correspond to the independent set of the
exclusivity graph, since two events from such set cannot be
exclusive. It is easy to find that the maximum independent set of
the graph from Fig. 2c contains three vertices. Therefore, the sum
of the eight probabilities cannot be larger than three if these
probabilities originate from some JPD. Not surprisingly, quantum
theory can go as high as 2þ ffiffiffi

2
p

and it cannot be modelled with
any JPD.

(Non-)contextuality of many indistinguishable particles and a
proper classical bound
Hidden variable theories that aim to explain standard photonic
experiments associate outcomes with detector clicks. However,
here we show that this approach cannot be applied to
experiments where more than one indistinguishable photon
arrives at the detector. Instead, we propose an alternative hidden
variable model, which provides a classical explanation of the Bell-
like experiments done on electromagnetic waves. Within the
entire discussion we adapt an operational approach in which a
photon, or in general an indistinguishable particle, is identified
with a detector click. The 1/0 assignment corresponds to a
deterministic non-contextual (NC) model. The photon is assigned
at most one event from each set of pairwise exclusive events. Such
a set makes a measurement context—a set of events that can be
jointly measured. If a context is complete, i.e., it consists of all
possible measurement outcomes, the photon is assigned exactly
one event. However, in the scenario considered here all contexts
are not complete and contain exactly two events.
To properly discuss the problem of non-classicality of correla-

tions in Bell-type scenarios for classical light, we need to redefine
the introduced exclusivity graph model so that a transition from a
single photon to a macroscopic electromagnetic wave is
transparent. Instead of assigning events to a photon one should
tie a photon to an event. This is a subtle difference but it leads to
fundamental consequences once we deal with more than one
photon. More precisely, a photon is assigned to at most one single
event in each measurement context, where 1 corresponds to a
photon and 0 to no photon event. In this new picture the events
can be considered as modes and 1/0 as occupation numbers. The
NC model assigns a well defined occupation number to each
mode. The exclusivity of modes leads to conservation of the
particle number—since there is a single photon in the system
there could be at most a single photon in each context. If two
exclusive events (modes) were assigned one, then there would
exist a context containing two photons, which would contradict
conservation of the particle number. The above interpretation was
proposed for the first time in the ref. 29 This approach is discussed
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in details in the Methods section. It should be emphasised that the
introduced model is very general and describes the single-photon-
to-classical-wave transition in Bell-type scenarios irrespective of
the direct physical implementation, which may be introduced in
many different scenarios.7,10,14,16–19

In order to make our discussion as general as possible and not
restricted to the case of classical and quantum optics let us
consider the above described model for arbitrary indistinguishable
particles. Our generalised model allows for arbitrary schemes of
assigning particles to modes, therefore no physical constraints on
the statistics (bosonic or fermionic behaviour), correlations and
possible interactions are made. The only physical assumption we
impose, is that there exists a macroscopic limit of a strong beam of
the particles possessing two properties. The first one states that
the occupation number ratios tend to intensity ratios of the
macroscopic beam. The second one assumes that the ratio of the
standard deviation of the particle number in a given mode to the
average particle number tends to zero:

σn

nh i ! 0: (9)

The last assumption guarantees that the ratios of intensities of
the macroscopic beam are fully deterministic. Note that the
physical example of single-photon-to-classical-wave transition
satisfies both conditions, since macroscopic EM wave can be
treated as a limit of a strong beam of photons in a coherent state
with particle number fluctuations following Poissonian statistics
with standard deviation σn of the form

ffiffiffiffiffiffiffi
nh ip
. In the introduced

model the notion of exclusivity changes its implementation.
Namely let us assume that at most N photons can be assigned to a
single event. Then each experimental context, that is any set of
mutually exclusive events, can be also filled with at most N
photons.
Let us now discuss the bound for a CHSH inequality within the

above model. One can rewrite the inequality (8) as

nðþ � j11Þh i þ nð� þ j11Þh i þ nðþ � j01Þh iþ
nð� þ j01Þh i þ nðþ � j10Þh i þ nð� þ j10Þh iþ

nðþ þ j00Þh i þ nð� � j00Þh i � C;
(10)

where n(+ + |ij), etc., are occupation numbers of the correspond-
ing events and C is the NC bound on the sum of these numbers,
which in the case of a single particle equals to three. A single
particle violates this bound.
Now, consider the same CHSH scenario, but this time inject two

indistinguishable particles to the system. The exclusivity and
particle number conservation imply that there could be at most
two particles per context. The possible occupation numbers are 0,
1, or 2. Since each context consists of only two events, one can
assign a single particle to each event, see Fig. 3. Therefore, for two
particles C ¼ 8, which is the maximal possible sum of non-

contextually assigned occupation numbers over all events. We see
that the bound depends on the number of particles. We divide
(10) by N and rewrite it as

nðþ�j11Þh i
N þ nð�þj11Þh i

N þ nðþ�j01Þh i
N þ

nð�þj01Þh i
N þ nðþ�j10Þh i

N þ nð�þj10Þh i
N þ

nðþþj00Þh i
N þ nð��j00Þh i

N � PCðNÞ;
(11)

where PCðNÞ ¼ C=N. For a single particle PCð1Þ ¼ 3, whereas for
two particles PCð2Þ ¼ 4. Therefore, for N= 2 there is no violation
and the measurements can be described by NC occupation
number assignments.
As far as we know, the value PCð2Þ ¼ 4 cannot be reached in

any experimental setup, although it is allowed in our model. This is
becasue the maximal quantum value of 2þ ffiffiffi

2
p

(attainable in the
CHSH scenario) does not depend on the physical implementation
of the experiment. In particular it does not depend on the
dimension of the state space of the physical system, which in our
case translates to independence on the particle number N.
Finally, let us consider the classical limit Nh i � 1. This time the

system is described by a classical beam of intensity I for which the
inequality (11) reads

Iðþ�j11Þ
I þ Ið�þj11Þ

I þ Iðþ�j01Þ
I þ

Ið�þj01Þ
I þ Iðþ�j10Þ

I þ Ið�þj10Þ
I þ

Iðþþj00Þ
I þ Ið��j00Þ

I � Pcl;

(12)

where N in the denominator of (11) was replaced by 〈N〉 due to
the particle number uncertainty. The maximal experimentally
attainable value of the left-hand side for an EM wave is still 2þ ffiffiffi

2
p

because the classical light beam in any linear optical setup
behaves in the same way as a single-photon probability
amplitude. The right-hand side can be evaluated in two ways.
Firstly, in the classical limit the total intensityI that is distributed
between the events can be treated as a continuous property.
Therefore, in the NC model one can assign I/2 to each event and
as a result Pcl ¼ 4. This is the main result in this section: The
corresponding CHSH inequality (12) cannot be violated by any
macroscopic beam following assumptions of our model, like for
example the classical light.
The other approach, which also confirms the above result, does

not assume that the intensity is a continuous property. We
consider two cases. First, let us take even N. The number of
particles per context cannot be greater than N and since each
context contains two events, one simply assigns N/2 particles per
context. This leads to PCðNÞ ¼ 4. Next, we consider odd N. In this
case it is easy to show that one can assign (N− 1)/2 particles to
five events and (N+ 1)/2 particles to three events, such that there
are at most N particles per each context, see Fig. 4. As a result one
gets PCðNÞ ¼ 4� 1

N. In the classical limit N is undetermined,

0

1

11

0 0

0 0

1

1

11

1 1

1 1

Fig. 3 Examples of particle-assignments to events in the CHSH exclusivity graph. Left—one particle, right—two particles

M. Markiewicz et al.

6

npj Quantum Information (2019)     5 Published in partnership with The University of New South Wales



therefore Pcl ¼ PCðNÞh i. However, since Nh i � 1 the dominating
terms in PCðNÞh i correspond to large values of N and hence
Pcl � 4.
To conclude, we see that in the experiments discussed above

light beams, as expected, do not exhibit any quantum behaviour.
Quantum behaviour is only possible for a single photon and
already for N > 1 one observes noncontextual (classical) behaviour.
This is because for N ≥ 2 the non-contextual bound PCðNÞ is either
4 or 4� 1

N and is always greater than the physically attainable
value of 2þ ffiffiffi

2
p � 3:41. We have only considered the CHSH

scenario, however in the Methods section we show that for an
arbitrary contextuality scenario the bound Pcl is always greater or
equal than what can be achieved in the classical limit and
therefore classical systems are always noncontextual and can
never violate any Bell-type inequality.

DISCUSSION
It is commonly accepted that the violation of some Bell inequality
is an indicator of non-classical behaviour. It turns out that these
violations are strongly related to the wave-particle duality. In
quantum theory the same object can manifest a wave-like
behaviour in one experiment and a particle-like behaviour in
some other experiment. The wave-particle duality does not occur
in classical theory, i.e., classical objects are either waves or
particles, but never both. No one ever doubts that classical
particles are localised and discrete whereas classical waves are
delocalised and continuous.
Bell inequalities are derived under assumption that measured

properties, such as position, are well defined and the phenom-
enon of superposition does not occur. This is a typical particle-like
approach which can be partially justified in quantum regime by
the fact that at the end of each experiment one registers a single
click of some detector. However, the violation of the correspond-
ing inequality implies that this assumption needs to be
reconsidered. This is because the measurements in the Bell tests
exploit the phenomenon of superposition and in this sense the
violation is a manifestation of the wave-like behaviour.
The situation is different in the classical theory in which there is

no wave-particle duality. In particular, the classical light behaves as
a wave all the time and instead of clicks one registers continuous
intensities. Therefore, there is no justification to apply the
standard Bell inequality to such system. In this case Bell
inequalities need to be rederived using properly chosen assump-
tions. This is what we show in this work.
Our results have the following implications on the previously

discussed Bell-type tests with classical light. It was stressed by
Snoke17 and Qian et al.16 that violation of some Bell inequality by
classical light is in fact a confirmation of the presence of some
kind of entanglement. Here we show that the value of 2þ ffiffiffi

2
p

obtainable by classical light can indicate some form of strong
correlations, but these correlations are fully describable by a
noncontextual model. Therefore, classical entanglement does not
give rise to contextual behaviour, it does not have any features of
quantum entanglement apart from mathematical analogy on the
level of complex vector spaces.
Next, Frustaglia et al.18 argued that the bounds on the strength

of quantum correlations (so called Tsirelson bounds) are not
restricted to quantum theory but arise naturally in classical
systems that simulate quantum correlations. There are attempts to
derive these bounds using only the exclusivity structure of
detection events.25,30 However, we showed that in the CHSH
scenario discussed above the classical bound resulting from the
exclusivity structure of detection events is Pcl ¼ 4. Therefore, the
value of 2þ ffiffiffi

2
p

in the classical regime must originate from some
physical constraints. Our model for assigning particles to modes
allows for an arbitrary distribution of particles across the modes,
since no concrete mechanism for such a distribution is specified.
Adding appropriate constraints on the possibility of interaction
between the particles and the way they can be correlated may
lead to a recovery of the Tsirelson bound.
It is interesting to understand why quantum systems and

classical light lead to the same value. The reason for this is that
quantum probability amplitudes and classical electromagnetic
amplitudes transform in the same way (apart from the non-
deterministic quantum collapse induced by the measurement).
This is why classical wave theory can simulate some aspects of
quantum theory. Nevertheless, the interpretation of both ampli-
tudes is completely different. The value of 2þ ffiffiffi

2
p

would be much
more fundamental if it resulted from both, the exclusivity structure
of events and from the transformations allowed by the theory.
Finally, we would like to note that our work leads to an open

problem. Is it possible to find a classical system, other than a
classical wave, which would provide a value larger than 2þ ffiffiffi

2
p

?
Perhaps there are some additional constraints preventing this
from happening.

METHODS
Nonlocality and contextuality
Original Bell inequalities are statistical tests that verify whether the
statistics of measurements’ outcomes performed on spatially separated
systems fulfil the conditions of locality and realism.9 Locality means that
any action executed on one system does not affect the other one. Realism
means that each measurable property has a well defined outcome,
irrespective of whether this property is measured or not. Initially Bell-type
tests were derived from the properties of probability distributions for
correlations of measurement outcomes.9 It was early recognised by Fine28

that any Bell inequality is equivalent to the existence of a joint probability
distribution (JPD) for all measurable properties.

N/2

N/2

N/2N/2

N/2 N/2

N/2 N/2

N+

N+ N+

N-

N-N-

N-

N-

Fig. 4 Assignment of particles to events in the exclusivity graph of the CHSH scenario. Left—even number of particles, right—odd number of
particles, where N+= (N+ 1)/2 and N−= (N− 1)/2
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Violation of Bell inequalities by quantum systems, typically referred to as
quantum nonlocality, is an example of a broader class of phenomena—
quantum contextuality.21 Simply speaking, contextuality is a property of a
physical system where the outcome of some property A may depend on
whether it is measured with B or with C. In typical contextuality scenario
one considers a system with a number of measurable properties. The goal
is to find a noncontextual (NC) assignment of outcomes to all
measurements, i.e., to assign an outcome to each property in a way that
does not depend on what is assigned to other properties. Just like in the
case of nonlocality, contextuality is equivalent to a lack of JPD for all
measurable properties.28 Finally, note that noncontextual scenarios do not
require space-like separated measurements, therefore Bell-type scenarios
constitute a subclass of contextual scenarios, in which the commeasurable
observables can be identified with spatially separated physical systems.31

This is the reason why we focus on a more general phenomenon of
contextuality.
Contextuality scenarios underline the role of the exclusivity structure of

events behind Bell-type inequalities, which is not explicit in the standard
correlation-based approach. In a series of papers22,25,32,33 Cabello et. al.
show that all contextuality tests can be derived from the exclusivity
structure of measurement events. Assume that the set of all events vi, the
precise meaning of which is defined separately in the physical scenario,
can be decomposed into subsets Ck ¼ vrf g called measurement contexts,
such that all the events in a single context correspond to outcomes of
some experiment. Therefore, the events in a single context can be jointly
measured. Because of various constraints, some of the events cannot be
simultaneously true, the property which is known as exclusivity in
probability theory. We point out that the notion of exclusivity is a
fundamental property of Kolmogorovian probability theory, since elemen-
tary events, which constitute a sample space in any statistical model, must
be mutually exclusive.
The exclusivity structure of the set of events for a contextuality test can

be represented in the exclusivity graph22 in which adjacent vertices
represent exclusive events. An example of such a graph is presented in Fig.
2c. For commeasurable observables Ai with outcomes ai, each vertex
represents an event, which is a conjunction of all single detection events
for a fixed experimental context. Namely vk= (a1, …, an|A1, …, An), where
(with a slight abuse of notation) the set {ai} represents actual measurement
outcomes, obtained for fixed properties {Ai} that constitute a measurement
context.
Two events va= (a1, …, an|A1, …, An) and vb= (b1, …, bn|B1, …, Bn) in

some contextuality scenario are exclusive if and only if:

A1 ¼ B1 & a1 ≠ b1ð ÞOR A2 ¼ B2 & a2 ≠ b2ð ÞOR¼OR An ¼ Bn & an ≠ bnð Þ:
(13)

Having defined the exclusivity structure for a given scenario, one may
attach different kinds of probabilistic structures to the set of events. We
stress that the phrase probabilistic structure does not refer to a
Kolmogorovian model, instead it can be understood within the context
of generalised probabilistic theories.34 The models can be ordered with
respect to the strength of allowed correlations and this strength can be
measured by the maximal value of P ¼Pi p við Þ allowed within the model.
Note, that although here we consider the inequalities

P
i cip við Þ � PC with

all coefficients ci= 1, it is important to observe that any inequality with
rational coefficients (including standard correlation inequalities) can be
transformed into one with all coefficients equal to one—for details see
ref. 35

We discuss three classes of models. The most restrictive one is the
classical model. It assumes that all events can be attributed to a single
sample space (not necessarily as atomic events, but compound events as
well), and that a joint probability distribution exists for all vi. Then the
maximal value of P, denoted by PC , known as noncontextual local hidden
variable (NCHV) or simply classical bound, is given by the vertex
independence number of the exclusivity graph—the maximal number of
non-adjacent vertices. To rephrase, the classical bound PC corresponds to
the maximal number of events that can be assigned truth value 1. This
mathematical model represents a physical situation where all observables
are commeasurable.
The second model, involving stronger correlations, is the quantum

probabilistic model.36 Here each event corresponds to a projector P(vi).
Each projector is assigned a probability p(vi)= Tr(ρPi(vi)), where ρ
represents a quantum state. For the context Ck consisting of mutually
exclusive events the corresponding projectors make a mutually orthogonal

set and therefore:X
vi2Ck

P við Þ � 1: (14)

This means that either (equality) the projectors within a context
represent a von Neumann measurement or (sharp inequality) a von
Neumann measurement extension is possible. The maximum value PQ of
P for a quantum model, known as the Tsirelson’s bound, is bounded by
the Lovász number of the exclusivity graph.22 This bound is often tight.32

The quantum model is contextual if and only if PC <
P

i p við Þ � PQ . This
means that an assignment of outcome probabilities can be done within
each context separately and that the model cannot be extended to a
single Kolmogorovian probabilistic model.
The third model, leading to the strongest correlations, is defined by a

sole demand that its probabilistic structure fulfils the exclusivity (E)
principle in its final version25 (whose other variant, known as local
orthogonality, was independently developed in30). The E principle states
that the sum of probabilities corresponding to a subset of pairwise
exclusive events is bounded by 1. This principle is a conjunction of two
facts: (1) Cabello’s principle called the Specker’s principle,33 which states
that the set of pairwise exclusive events is jointly exclusive, and (2) the
property of a Kolmogorovian model that the sum of probabilities of jointly
exclusive events is at most 1. Therefore, the probabilistic model obeying
the E principle can be defined as the set of numbers 0 ≤ p(vi) ≤ 1, fulfilling
the normalisation condition

P
vi2Ck p við Þ � 1 for each context.

Note that both, classical model and the quantum model, obey the E
principle. This does not mean that a model obeying the E principle is
classical or quantum. There are models obeying the E principle that are
more contextual than quantum theory. This is because the maximal
possible value PE of P for the model obeying the E principle can be
greater than PQ . One can derive it using the properties of an exclusivity
graph. The detailed derivation is given in the appendix of25 and states that
the maximal possible value is given by the fractional packing number of
the graph, defined as:

max
X
i

ωi ; s:t: 8i0 � ωi � 1 and
X
i2S

ωi � 1

 !
; (15)

The maximum is taken over all cliques S of the graph. A clique is a
subset of mutually adjacent vertices (pairwise exclusive events). Therefore
the cliques of an exclusivity graph correspond to all the contexts Ck . The
Lovász number is bounded by the fractional packing number. However in
many cases the fractional packing number is larger than the Lovász
number.
To conclude, the bounds for the three models obey the following

relation

PC � PQ � PE: (16)

For example, in the case of the exclusivity graph presented in Fig. 2c one
has PC ¼ 3, PQ ¼ 2þ ffiffiffi

2
p

and PE ¼ 4. In general, if the sum of
probabilities of events in the exclusivity graph is bounded by PC then
we say that the model is noncontextual. Otherwise it is contextual. It is
worth mentioning that in the context of Bell inequalities the bound PE

coincides with the non-signaling bound for the corresponding inequality.

Contextuality and indistinguishability
Now we discuss events that occur in scenarios in which instead of a single
particle one uses N indistinguishable particles. If the number of particles N
in the system increases so does the number of possible detection events.
This affects the structure of the exclusivity graph and that of bounds PC ,
PQ and PE. Instead of changing the graph, one can keep the exclusivity
graph in the same form and change the range of values that are assigned
to each event, which warrants a slight redefinition of the entire scenario
defined precisely in section II.E. Here we focus on the classical model
because we want to find a criterion for which the system of N
indistinguishable particles is noncontextual. We will show that within the
classical model the bound PC depends on N, i.e., PC ¼ PCðNÞ. Finally, we
show that in the classical limit Pcl ¼ PE, therefore classical light, for which
the ratio of output intensities to the initial intensity is the same as the
probabilities generated by a single photon, is always noncontextual.
For N= 1 one assigns truth values 1/0 to each event and tries to

maximise the number of events that are assigned 1 under the exclusivity
constraint. The value 1 corresponds to events that will be observed in an
experiment, provided a proper measurement is performed, whereas 0
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corresponds to events that will not be observed. However, 1 can be
interpreted as assignment of a particle to an event and 0 as an assignment
of the absence of a particle. One can generalise this approach to the case
N > 1. This time each event vi is assigned a value ni= 0, 1, …, N. The values
ni can be interpreted as occupation numbers. This approach was
suggested in the ref. 29 The exclusivity of vi and vj translates to ni+ nj ≤
N. In general, the sum of occupation numbers in each contextP

vi2Ck ni � N. Therefore, the exclusivity of events implies that the number
of particles per context cannot be larger than the total number of particles.
If the context consists of all measurement outcome events then the
number of particles in it must be equal to N. This corresponds to the
particle-number conservation. In full analogy to the original model, which
assigns probabilities to the events, the strength of correlations for
assigning particles to the events is represented by the expression
PðNÞ ¼ 1

N

P
i ni , where the sum is taken over all events in the exclusivity

graph. The classical model in the original scenario translates to an
occupation-based model with fixed global assignment of occupation
numbers. In the redefined scenario we assume that the ratios of
occupation numbers tend to intensities of a macroscopic beam. Moreover
we assume, that the fluctuations of the particle number described by the
standard deviation σn follow the assumption σn/〈n〉→ 0, which guarantees
that the intensities are deterministic quantities.
We are looking for the maximal value PCðNÞ of the expression PðNÞ

optimised over all allowed NC global assignments. For N= 1 the NC
occupation-based model has the same constraints as the deterministic
model with assigned probabilities, thus PCð1Þ ¼ PC . However, for N > 1
the constraints are different and PCðNÞ≠PC . In particular, we are
interested in the classical limit Nh i � 1. The system, corresponding to a
classical beam, is modelled by a collection of particles whose total number
is undetermined, but its average number is large. We are looking for Pcl
which is the maximum of 1

Nh i
P

i nih i. We write Ii≡ 〈ni〉. We call Ii the
intensity assigned to the event vi. There is a fundamental difference
between intensities and occupation numbers. In general 〈ni〉 ≠ ni, however
due to our assumptions the classical limit is deterministic and therefore 〈Ii〉
= Ii. Moreover, unlike occupation numbers, intensities can be treated as
continuous variables Ii∈ [0, I], where I is the total intensity. In this case we
are looking for Pcl which is a maximum ofX

i

Ii
I
; (17)

where I= 〈N〉 is the total intensity. The ratios 0 ≤ Ii/I ≤ 1 are continuous
numbers and the only constraint on them is that within each context:P

vi2Ck
Ii
I � 1.

By taking pi= Ii/I the above model is equivalent to the third model of the
original scenario, which only needs to obey the E principle. Therefore the
noncontextuality bound in the classical limit is Pcl ¼ PE. To sum up, any
classical beam which can be described by deterministic intensity ratios
defined as the limits of particle’s occupation number ratios, fulfils the
following relation:X

i

Ii
I
� PE ¼ Pcl; (18)

which proves that it is always noncontextual.

Non-applicability of the methods used to derive the quantum
bound PQ with the E principle
In25 a general method of derivation of the maximal quantum bound for a
given Bell-type scenario was introduced. This method is based on the idea,
that the E principle can be applied not only to a single copy of a Bell-type
test represented by some exclusivity graph G, but also to k independent
runs of such identical Bell tests carried on different physical systems. Such
a compound experiment is described by an exclusivity graph that is
represented by the so called disjunctive product Gk of k copies of the
graph G.37 It is assumed that the E principle should be applicable also to
any clique (representing measurement context) in the graph Gk. It might
seem that such a procedure should not lead to any new conclusions, since
the carried k experiments are completely independent. However it turns
out that application of the E principle to a clique in Gk restricts the possible
assignments in much stronger way than in the case when it is applied to a
single copy of G. This is because each vertex V of Gk represents a joint
event, which consists of a conjunction of k independent events
corresponding to some k vertices {vi} of G. Therefore the assigned

probability factorises into p(V)= p(v1)⋅…⋅p(vk). It can be easily shown that
application of E principle to some clique in Gk consisting of some number
of vertices V places stronger restriction on the possible values of p(vi).
The easiest possible case is given by the contextuality test of Klychko-

Can-Binicioglu-Schumovsky (KCBS),38 in which the original exclusivity
graph G is a 5-cycle, and therefore the E principle allows for assignment of
the probability at most 1

2 to each vertex leading to the bound PE ¼ 5
2. On

the other hand the graph G2 representing the exclusivity structure for two
independent KCBS experiments has a 5-vertex clique K, and the E principle
applied to K allows for assignment of a probability at most 1

5 to each vertex
of K. Note that a probability assigned to each vertex Vi of K is a product of
probabilities corresponding to different subsets of vertices of G: p(Vi)= p
(vi)p(ui). Now, K can be chosen such that the vertices in K, which are of the
form {vi × uj}, contain all the vertices from the elementary graphs G. Hence
assignments p(vi) and p(uj) are also assignments to the entire graph G of a
single KCBS test. Since

P5
i¼1 p við Þp uið Þ � 1, and the set {p(vi)} is any

permutation of the set {p(uj)}, we obtain the restriction
P

i p við Þ � ffiffiffi
5

p
,

which exactly reproduces the quantum bound PQ .
It can be easily seen that the above derivation cannot be applied to the

case of classical waves, described by the NC occupation-based model
defined in the previous section. This is because in the limiting case of the
modified model the vertices of the graph are assigned relative intensities
of light instead of probabilities of events (17). Now taking two such
independent experiments the intensity of two independent waves is not a
product of their intensities but instead it is their sum (assuming they
propagate in a linear medium). On the other hand, the joint probability of
two independent events is a product of their probabilities. This implies that
the entire derivation of the bound cannot be performed in the case of
correlations for classical waves, since it is based on the assumption that the
relative quantities which describe single events translate to their products
in the product graph for two independent experiments. This property
holds for probabilities, but not for macroscopic intensities, which shows,
that the exclusivity model for two independent experiments based on
disjunctive product of exclusivity graphs has no well-defined macroscopic
limit. Nevertheless classical waves still obey the bound PQ . As we showed,
this cannot be directly derived from the exclusivity structure of the
experiment. It holds because classical waves follow the same evolution
rules as quantum probability amplitudes.
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