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Spatial noise filtering through error correction for quantum
sensing
David Layden1 and Paola Cappellaro 1

Quantum systems can be used to measure various quantities in their environment with high precision. Often, however, their
sensitivity is limited by the decohering effects of this same environment. Dynamical decoupling schemes are widely used to filter
environmental noise from signals, but their performance is limited by the spectral properties of the signal and noise at hand.
Quantum error correction schemes have therefore emerged as a complementary technique without the same limitations. To date,
however, they have failed to correct the dominant noise type in many quantum sensors, which couples to each qubit in a sensor in
the same way as the signal. Here we show how quantum error correction can correct for such noise, which dynamical decoupling
can only partially address. Whereas dynamical decoupling exploits temporal noise correlations in signal and noise, our scheme
exploits spatial correlations. We give explicit examples in small quantum devices and demonstrate a method by which error-
correcting codes can be tailored to their noise.
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INTRODUCTION
Quantum sensors exploit the strong sensitivity of quantum
systems to external disturbances. They typically measure an
external quantity—a DC signal in the most common scenario—
whose value is manifested as a parameter in the sensor’s
Hamiltonian. This parameter can then be estimated by preparing
the sensor in a superposition of two energy eigenstates and
letting them acquire a relative phase that depends on the
unknown quantity, which is then read out.1

This strong sensitivity of quantum systems to their environment
is a double-edged sword, however, as it also brings about
decoherence. For quantum sensors, decoherence means that not
only the relative phase—but also the phase uncertainty—
between energy eigenstates grows with time. The competing
contributions of phase (signal) and phase uncertainty (noise) both
stemming from a sensor’s environment fundamentally limit the
precision with which it can measure external quantities. A central
way to improve the sensitivity of a quantum sensor is therefore to
operate it in a way that filters out environmental disturbances
which constitute noise, leaving those which constitute signal.
Dynamical decoupling (DD) sequences provide a family of such

filters, which are ubiquitous in quantum sensing experiments.1–3

They comprise a series of control pulses (or continuous controls)
applied to a sensor, which modify its response to perturbations of
different frequencies. This allows them to filter noise from signal in
a quantum sensor on the basis of frequency; typically, by forming
an effective narrow-band filter around an AC signal, thus letting
the signal imprint on the sensor while suppressing much of the
noise outside the main passband. Since DD sequences act as filters
in the frequency domain, their main limitations for quantum
sensing have to do with the spectra of signal and noise: First, DD-
based sensors can only measure a narrow frequency band of the
signal at a time. Moreover, they cannot directly measure DC
signals, as DD suppresses both noise and signal at low

frequencies. Second, they remain vulnerable to high-frequency
noise components, which limit the sensitivity they can achieve.4 A
complementary family of filters based instead on quantum error
correction has recently emerged, which do not suppress noise on
the basis of frequency, and therefore do not share these same
limitations.5–8

The canonical scheme for error-corrected quantum sensing
(ECQS), illustrated here with a Lindblad description, is: (i) to
prepare a superposition of logical energy eigenstates, (ii) to let the
sensor evolve for a time Δt under the Liouvillian L ¼ �iHþD,
where the Hamiltonian superoperator H ρð Þ ¼ H; ρ½ � is propor-
tional to the parameter one wants to estimate (that is, the signal9),
and (iii) to apply a recovery operation R which seeks to correct
the effects of the noise from

D ρð Þ ¼
X
i

LiρL
y
i �

1
2

Lyi Li ; ρ
n o

; (1)

where {Li} are the Lindblad error operators describing decoher-
ence, which can be interpreted as quantum jumps.10 (The
recovery is approximated as being instantaneous.) Steps (ii) and
(iii) are repeated until (iv) the final state is read out after a total
time t. In the limit where (ii)–(iii) are fast and repeated many times
(Δt→ 0 with t finite), the sensor evolves stroboscopically as

Leff ¼ �iRHþRDþ O Lk kΔtð Þ (2)

according to Chernoff’s theorem (ref. 11 p. 241, see also ref. 12). If
RD ¼ 0 but RH≠0 on logical states then ECQS can approach a
noiseless sensing limit by making Δt sufficiently short compared
to the noise strength.
For ECQS to provide such a noiseless Δt→ 0 limit RDjcode¼ 0

� �
,

the error operators for the sensor must satisfy the usual Knill-
Laflamme condition:13,14

PLyi LjP / P (3)
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for all i, j ≥ 0, where P ¼ Py projects onto the codespace and L0:= I.
For the signal to survive in this limit RHjcode≠0

� �
, however, H

must not be fully correctable:

PHP 6/ P: (4)

Naturally then, Hmust not be a linear combination of Lyi Lj terms.
Indeed, it was recently proven that there exists a code with
projector P satisfying these ECQS conditions, Eqs. (3) and (4), if and

only if H =2S where S ¼ span I; Li ; L
y
i ; L

y
i Lj

n o
is the so-called

Lindblad span.15,16

An archetypal example of ECQS to measure a DC signal ω was
proposed in refs. 7,8,17: it involves a three-qubit sensor with H ¼P3

i¼1
ω
2 Zi subject to independent bit-flip errors on each qubit (Li

= Xi). Initializing the sensor in þLj i ¼ 1ffiffi
2

p 0Lj i þ 1Lj ið Þ, where |0L〉

= |000〉 and |1L〉= |111〉, the errors can be detected and corrected
by the bit-flip code recovery R (ref. 18), while the signal ω imprints
through H as a relative phase in the encoded state. The signal is
unimpeded by the frequent applications of R as it couples to the
qubits through a different operator than the noise, giving H =2S,
and hence RD ¼ 0 but RH≠0 on logical states. Therefore, the
scheme enables near-noiseless sensing of ω for short Δt. To our
knowledge, all explicit ECQS schemes to date for multi-qudit
sensors operate similarly, correcting only for noise which couples
to the sensor via different operators than the signal.5–8,17,19–26 If
instead the jump operators were Li= Zi (that is, if the noise
coupled to each qubit in the same way as the signal), Eqs. (3) and
(4) could not be satisfied, as no code could filter noise from signal
since H 2 S.
This example illustrates a deficiency in ECQS schemes to date, of

both practical and fundamental importance. In many quantum
sensors, noise which couples through the same operators as the
signal is the dominant source of decoherence (often by several
orders of magnitude27–32), and thus imposes the main limit on
achievable sensitivity. Schemes which do not protect against such
a central noise source can offer only a limited advantage in
practice. More fundamentally, the outsized importance of such
noise derives from a tension at the core of quantum sensing: A
good sensor must couple strongly to the quantity it is to measure.
Such strong coupling, in turn, renders the device highly sensitive
to fluctuations in this quantity, thus bounding the duration of
coherent sensing. While DD can suppress certain frequency
components of this noise, explicit ECQS schemes to date cannot
address it at all, to our knowledge. Moreover, refs. 15,16 make no
pronouncements as to whether, or when, it is possible to correct
for noise that couples to a sensor through the same operator in its
Hamiltonian as the signal. This potential Achilles’ heel would seem
to largely determine the practical value of error correction in many
quantum sensors.
We propose a general error-correction scheme to filter out noise

which couples to each qubit in a quantum sensor identically to the
signal. Our scheme is not frequency-selective, and therefore does
not share the same limitations of dynamical decoupling. The key
insight is that Eqs. (3) and (4) can be viewed not only as a
condition on how signal and noise couple to the sensor, as with
existing codes, but also as a condition on the spatial profiles of
each in the sensor. Indeed, we show that quantum error
correction can filter noise from signal on the basis of their
respective spatial correlations, much like DD filters based on
temporal correlations (i.e., frequency profiles).

RESULTS
We first consider the task of measuring a DC signal ω0, inaccessible
through DD, in the presence of background noise δω. We assume
a generic sensor comprising N qubits, each coupled locally to the

external field ω ~x; tð Þ ¼ ω0 þ δω ~x; tð Þ as

H tð Þ ¼ 1
2

XN
i¼1

ω ~xi; tð ÞZi (5)

in a suitable reference frame, where~xj is the position of qubit j and
δω describes zero-mean stationary fluctuations. We take δω to be
Gaussian white noise with strength ~1/T2, for both mathematical
convenience and to highlight the ability of error correction to filter
high-frequency background noise beyond the reach of DD. We
allow, however, for general spatial correlations between the
fluctuations at positions ~xi and ~xj :

δω ~xi; tð Þδω ~xj ; 0
� �� � ¼ 2δ tð Þ

T2
cij: (6)

Thus, any qubit prepared in the state |+〉 will precess about its

z-axis at a rate ω0 and lose phase coherence as σ
jð Þ

þ
D E��� ��� ¼

exp �t=T2ð Þ (ref. 33). The coefficients cij∈ [−1, 1] describe the noise
correlations between positions~xi and~xj : The extreme values of cij
= ±1, for instance, describe identical (+1) or opposite (−1)
fluctuations in ω at either position, whereas cij= 0 means no
correlation. Naturally cii= 1. Note that while this noise is external
to the sensing degrees of freedom, it may still arise from within
the experimental device, e.g., from the surrounding nuclear bath
in the case of spin qubits.
It is convenient to express the sensor’s dynamics as a master

equation _ρ ¼ L ρð Þ, where

L ρð Þ ¼ �i H0; ρ½ � þ 1
2T2

XN
i;j¼1

cij ZiρZj � 1
2

ZiZj; ρ
� 	
 �

(7)

and H0 ¼ ω0
2

PN
i¼1 Zi (refs.

34,35). Equation (7) can be cast in the
form of (1), thus removing dissipative cross terms, by diagonaliz-
ing the correlation matrix C= (cij)i,j≥1 to yield operators
Li ¼

ffiffiffiffi
λi

p
~vi �~Z. Here, C~vi ¼ λi~vi and ~Z ¼ Z1; ¼ ; ZNð Þ. These Li ’s

can be interpreted as the sensor’s quantum jumps, while the Zi ’s
in Eq. (7) cannot.10 Crucially, the ECQS conditions, (3) and (4), deal
with the quantum jump operators Li ’s, not the bare Zi ’s. This
distinction is critical because it opens the possibility of engineer-
ing a sensor such that C has a vanishing eigenvalue λk= 0, thus
suppressing Lk. Generically, the Lindblad span S will then fail to
contain H0 due to this “missing” jump operator, opening the door
for ECQS.
The requirement that H0 =2S for conditions (3) and (4) can be

restated for signal and noise which couple identically to the
sensor (in the sense of Eq. (5)) as

~h =2 col Cð Þ; (8)

where ~h ¼ 1; ¼ ; 1ð Þ 2 RN so that H0 ¼ ω0
2
~h �~Z, and col(C) is the

column space of C. A full proof is given in the 'Methods' section;
we note here simply that Eq. (8) enforces two things: (i) that det(C)
= 0 and thus Lk= 0 for some k, and (ii) that H0 is not composed
only of non-vanishing Li ’s. It ensures that the signal and noise can
be fully distinguished by the recovery operation on the basis of
their respective spatial profiles (a requirement we will later relax).
Consider for example N= 3 sensing qubits positioned so that

the fluctuations satisfy cij=−γ/2 for each pair i ≠ j, where γ∈ [0, 1]
describes the noise correlation strength. (Specifically, γ= 0
produces vanishing correlations whereas γ= 1 gives the strongest
correlations possible.) Notice that for γ= 1, C~h ¼~0, and so
~h =2 colðCÞ. The jump operators in the ECQS conditions are not
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Z1, Z2 and Z3, but rather

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ γ

p
2

Z1 � Z3ð Þ; L2 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2þ γ

12

r
Z1 � 2Z2 þ Z3ð Þ;

L3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� γ

3

r
Z1 þ Z2 þ Z3ð Þ;

(9)

found by diagonalizing C. Observe that the global noise mode, L3,
becomes subdominant for larger values of γ, until it vanishes
completely when γ= 1, at which point H0 =2S as expected. Notice
also that P ¼ j0Lih0Lj þ j1Lih1Lj with logical states

0Lj i ¼ 1ffiffiffi
3

p 100j i þ 010j i þ 001j ið Þ 1Lj i ¼ 1ffiffiffi
3

p 011j i þ 101j i þ 110j ið Þ

(10)

satisfies the conditions (3) and (4) when γ→ 1, despite the signal
and noise both coupling to each sensing qubit identically.
Contrast this with the usual phase-flip code, which corrects for
Z1, Z2, Z3 and all linear combinations thereof, including H0 (ref.

10).
Eq. (10) instead defines a weakened version of the phase-flip code,
which corrects for linear combinations of L1 and L2, but not for
~v3 �~Z / Z1 þ Z2 þ Z3. Accordingly, as γ→ 1 it can fully correct the
noise RDjcode¼ 0

� �
while allowing the signal to still imprint on

the logical states RHjcode≠0
� �

. In particular, the dynamics at
logical level for Δt→ 0 are generated by the effective Hamiltonian
Heff ¼ ω0

2 ZL and the effective Lindblad error operator

Leff ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� γ

6T2

r
ZL; (11)

where ZL is the logical σz (ref.
16). Notice that Leff→ 0 for γ→ 1, so

the logical dynamics is less noisy for stronger correlations. A
detailed calculation of the effective Liouvillian for this example—
as well as for an example with positive noise correlations—is
provided in the Supplementary Information.
Another possible code for this C uses

00L
�� � ¼ 000j i 10L

�� � ¼ 111j i: (12)

When γ→ 1 it also satisfies the ECQS conditions, although its
recovery procedure is trivial because span 00L

�� �
; 10L
�� �� 	

is a
decoherence-free subspace (DFS) within which H0 acts non-
trivially.36 ECQS with this code is therefore a Greenberger-Horne-
Zeilinger (GHZ) sensing scheme.37 The performance of a quantum
sensor can be quantified by the sensitivity it achieves; that is, the
smallest signal it can detect per unit time.1 Sensitivity therefore
also provides a way to benchmark ECQS schemes: a more effective
scheme allows one to resolve a smaller signal per unit time, thus
giving lower (i.e., better) sensitivity. The sensitivity offered by the
codes in Eqs. (10) and (12) is plotted in Fig. 1 as a function of γ.
Both approach noiseless sensing when γ→ 1.
In general, a DFS is a code for which |0L〉 and |1L〉 are

degenerate eigenvectors of all Li. This means that EP= μEP for all
E 2 S, immediately satisfying condition (3). For states within the
DFS to be sensitive to ω0 we also need |0L〉 and |1L〉 to be non-
degenerate energy eigenstates, so that HP 6/ P, satisfying condi-
tion (4). Such a DFS satisfies the ECQS conditions—accordingly,
our discussion of general ECQS encompasses DFS-enhanced
sensing as a special case.
DFS-enhanced sensing is only possible for a small family of

correlation matrices C which we discuss below. A code designed
for some general C, in contrast, will usually necessitate an active
recovery R. Given a projector P onto the code satisfying the ECQS
conditions, an appropriate choice of R is the usual so-called
transpose channel.16,38 We summarize a standard way of
implementing it in the 'Methods' section. For a logical state ρ=
PρP this recovery gives RD ρð Þ ¼ 0 and RH ρð Þ ¼ Heff ; ρ½ �≠0 as
desired, where Heff= PH0P (ref. 16). In other words, the sensor

approaches noiseless evolution by Heff in the limit of frequent
error detection/correction (i.e., Δt→ 0).
Conditions (3) and (4) seem to impose a stringent requirement

on the C's amenable to ECQS under signal and noise which are
“parallel”, in that they couple to the sensor through the same
operators (along the z direction, i.e., the qubits’ energy gaps, here).
This need not be the case, however, since error correction can
enhance quantum sensing even if it does not give a strictly
noiseless limit. Notice in Fig. 1, for instance, that ECQS enhances
sensitivity for all γ > 0, even though conditions (3) and (4) are only
satisfied exactly when γ= 1. (Another example is analyzed in the
Supplementary Information, as is the robustness of our scheme.)
More generally, if instead of satisfying (3) exactly,
PLyi LjP ¼ mijP þ O εð Þ, then RD ρð Þ ¼ O εð Þ for a logical ρ instead
of vanishing exactly.16 If the time between successive recoveries is
nonzero (Δt > 0) as in most experiments, then decoherence will
appear in the logical dynamics at order O(Δt/T2) in Leff . (We write
O(t/T2) rather than O Lk kΔtð Þ to simplify notation, assuming ω0 to
be a small compared to 1/T2. If ω0 is not small, O(Δt/T2) should be
taken to mean O Lk kΔtð Þ). Provided ε � Δt=T2, then, small
violations of condition (3) will not appreciably change the degree
to which quantum error correction suppresses noise in a sensor.
This is true for generic ECQS schemes. When correcting noise
which couples like the signal, in particular, allowing ε ≠ 0 enables
codes which—by design—do not correct for errors Lk with ||Lk|| ≈
0, corresponding to an eigenvalue λk of C which is small but not
exactly zero. Therefore in the present setting, relaxing condition
(3) reduces the need for fine-tuned noise correlations.
For quantum error correction to filter noise from signal when

Δt/T2 is finite, R must suppress the former more than the latter.
Choosing |0L〉 and |1L〉 to be eigenstates of Heff with E0 > E1, the
effective Hamiltonian takes the form Heff ¼ αP þ ωL

2 ZL, where ZL ¼
0Lj i 0Lh j � 1Lj i 1Lh j and P acts as I on the code. Just as ε and Δt/T2
describe the extent to which noise is suppressed through frequent
error correction, the ratio Aω ¼ ωL

ω0
describes the signal gain; that is,

the fraction of the physical signal that survives at the logical level.
Together with previous arguments about (3), we arrive at
sufficient conditions in terms of this signal gain for error correction
to enhance quantum sensing: PLyi LjP ¼ mijP þ O εð Þ, and Aω � ε.
There is an analogy with dynamical decoupling to be drawn here:

Fig. 1 The achievable sensitivity with different schemes for a 3-
qubit sensor under noise correlations cij=−γ/2, for all i ≠ j. Note that
sensitivity is a measure of the smallest resolvable signal per unit
time, so a smaller sensitivity indicates better performance. The
active recovery and GHZ schemes use codewords (10) and (12)
respectively, whereas the parallel scheme operates the qubits
individually, without entanglement. The active and GHZ schemes
give identical performance (in the regime of Δt→ 0 for the former),
and both outperform parallel sensing by a factor that grows with
the correlation strength γ. The details of this calculation are
provided in the Supplementary Information.
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both quantum error correction and DD can significantly enhance
sensing by partially filtering noise from the signal—they need not
remove the noise entirely to be useful.
This analogy goes further: Just as DD sequences must be

tailored to sense in a particular frequency band of interest, error-
correcting codes must be tailored to C and ~h for a sensor to
measure only in a particular spatial “mode”, in order to correct for
noise which couples locally in the same way as the signal. That is,
a particular δω and arrangement of sensing qubits (likely
determined at the time of fabrication) will require a unique P.
This is because the scheme depends on a code not correcting for
~vk �~Z with λk � 0, thus allowing the component of H0 along~vk �~Z
to affect the logical states. Therefore, we expect that in
experiment, codes will need to be tailored for individual devices,
much like control sequences must be. We present here a robust
method of doing so.
When ~h =2 colðCÞ, refs. 15,16 provide recipes for codes which

exactly satisfy the ECQS conditions, although these may require
the sensor to contain up to N noiseless ancilla qubits which do not
couple to ω, in addition to the N sensing qubits. Here we take a
different approach which naturally tolerates small violations of the
ECQS conditions, such as those discussed above. That is, it allows
one to find codes which enhance sensitivity, irrespective of
whether they provide a noiseless limit in theory. In contrast with
several previous works,15,16 our approach does not require the
overhead of additional ancillas as part of the code. Specifically, for
a given C, we map the task of finding a P for (3) and (4) to an
optimization problem, whose solutions are codes satisfying
PLyi LjP ¼ mijP þ OðεÞ for some M ¼ My, and giving a minimum
signal gain of Aω,min that is freely adjustable:

Minimize Ftot ¼
X
E 2S

FE subject to FG>A
2
ω;min and xjyh i ¼ δxy ; (13)

where G :¼ 1
2
~h �~Z ¼ H0=ω0 and

FE xj i; yj ið Þ ¼ xjEjxh i � yjEjyh ij j2þ4 xjEjyh ij j2: (14)

Notice that Ftot is non-negative with zeros where P ¼ jxihxj þ
jyihyj satisfies condition (3). In fact, solutions to Ftot= 0 with Aω,
min= 0 exactly satisfy the ECQS conditions and vice versa. Relaxing
these conditions slightly, one can find codes approximately
satisfying (3) and (4) by using Ftot ≤ ε2 as a convergence criterion
and Aω;min � ε. Note that the resulting codes can be quite
general; for instance, they need not be stabilizer codes. Further
details are provided in the 'Methods' section.
For a two-qubit sensor, C has a zero eigenvalue only when c12

= ±1. The c12= 1 case has ~h 2 colðCÞ and is therefore not
amenable to ECQS. The c12=−1 case, on the other hand, has
~h =2 colðCÞ. Therefore, N= 2 sensing qubits under strongly anti-
correlated noise (c12≈−1) can benefit from ECQS—in fact, they
can be used for DFS-enhanced sensing. (Both c12 ≈+1 and −1,
however, could be useful for gradiometry, i.e., to measure a mean
difference between the energy gap of each qubit.) For a three-
qubit sensor a much broader family of C's can satisfy the ECQS
conditions. Using the mapping described above, the C's for which
Eq. (13) yielded codes approximately satisfying conditions (3) and
(4) with no ancillas are shown in Fig. 2. Notice that DFS-enhanced
sensing with N= 3 qubits is only possible for a small family C's.
Therefore, while such schemes may be powerful,39–42 it could be
exceedingly difficult to engineer the spatial noise correlations they
require in many devices. Codes with active recoveries, in contrast,
are much more broadly applicable. A scheme to measure C in
experiments is given in the 'Methods' section.
We have assumed for simplicity so far that the coupling

strength of each qubit to the external field ω, parameterized by hi
= 1, is the same for all qubits i. This assumption is of course not
necessary; the results presented here hold (with trivial adjust-
ments) for arbitrary values h0i≠0 which may vary across qubits.
Moreover, whether or not ECQS conditions can be satisfied

depends only on the spatial profile of δω and on the locations of
the qubits, not on the coupling strengths~h0. We reserve the proof
for the 'Methods' section.

DISCUSSION
We have shown how ECQS can filter noise from a signal when
both couple to a sensor locally through the same operators. This
stands in contrast with earlier explicit ECQS schemes, which have
been limited to correcting noise separate from the quantity to be
measured, in that it couples differently to the sensor. In many
quantum sensors such noise is sub-dominant, while the type of
noise considered here is the limiting source of decoherence, and
can only be partially filtered through DD. Our scheme relies on the
observation that Eqs. (3) and (4) can be viewed as a condition on
the spatial correlations of the signal and noise. This view raises a
close parallel between ECQS and DD: for signal and noise which
couple identically to a sensor (in the sense of Eq. (5)), ECQS and
DD can enhance sensitivity by acting as filters in the spatial and
frequency domains, respectively. However, since these two
schemes separate noise from signal on totally separate grounds,
they are complementary, in that the limitations of one are not
shared by the other. Finally, we proposed a numerical method of
tailoring ECQS codes to the noise observed in specific devices. It
yields not just codes that correct noise perfectly in the Δt→ 0
limit, but also codes which can more generally improve sensitivity.
We applied this method to sensors comprising two and three
qubits—with no extra ancillas in the code—and showed how our
error correction scheme could provide an advantage even in
relatively small devices.
Both ECQS and DD filter noise which couples locally like the

signal by exploiting correlations in it: spatial correlations in the
case of ECQS, and temporal correlations for DD. Accordingly, the
effectiveness of both schemes depends on the degree to which

Fig. 2 Values of c12, c23, and c13 for which there exists a three-qubit
code satisfying the ECQS conditions to a tolerance of ε= 10−5 and
Aω,min= 10−1, and not requiring noiseless ancillas. The points (c12,
c23, c13) approximately satisfying conditions (3) and (4) form a
tetrahedron-like surface. The portions of the surface in blue denote
C's for which ECQS is possible with an active (i.e., non-trivial)
recovery. The red regions (enlarged for visibility) denote C's for
which DFS-enhanced sensing is possible, and the white regions
denote C's for which the optimization in Eq. (13) failed to converge
to within the specified tolerance, either because the achievable
signal gain is too small, or because of poor local minima in Ftot. The
continuous red band comprises C's for which noise on a pair of
qubits is perfectly anti-correlated (cij=−1). Notice that ECQS is
generically possible for both positive and negative noise correla-
tions; it fails here only when cij ≈ 1 for some pair of qubits (i ≠ j), since
this gives a missing/subdominant jump operator orthogonal to H0
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noise in a sensor can made to have suitable correlations. (Note
that different spatial noise correlations may lend themselves best
to different sensing tasks. For instance, uniform positive correla-
tions yield a dominant noise mode proportional to H0. This makes
them them ill-suited for measuring small field values through
ECQS, but well-suited for gradiometry.) Engineering appropriate
spatial noise correlations is likely to be highly implementation-
dependent, as it is with temporal correlations.43 This is because
the main sources of noise can be entirely different in different
types of quantum sensors. While an analysis of achievable noise
correlations in various types of sensors is beyond the scope of the
present work, we note here simply that strong spatial correlations
have been reported already in several experiments, e.g.,
refs. 39,40,44–47

The scheme presented here exploits spatial correlations to
extract signal from a noisy background, which generically causes
dephasing. (Of course, the signal and noise in question need not
couple to the sensor via σz; in general, the qubits could be
damped along any axis.) A similar approach may be possible with
generalized amplitude-damping (T1-type) errors, which are second
only to phase errors as the dominant decoherence mode in many
quantum sensors. That is, a sensor with qubits made to thermalize
collectively, rather than individually, could be amenable to
quantum error correction. The approach presented here could
be combined with such a scheme—or with previous ECQS
schemes—raising the intriguing prospect of a quantum sensor
that is error-corrected against noise in all three spatial directions.
While correlated errors can often be detrimental to error-corrected
quantum computation (see, e.g., ref. 48), they may prove a valuable
resource for ECQS.

METHODS
Proof: Equivalence of Eq. (8) and ECQS conditions
We show here that Eq. (8) is equivalent to H0 =2S for the background noise
described in Eq. (7), where S is the Lindblad span. Let f~vig � RN be an
orthonormal eigenbasis of C such that C~vi ¼ λi~vi , and define ~Li :¼~vi �~Z ¼
~Lyi and Li :¼

ffiffiffiffi
λi

p
~Li ¼ Lyi . Notice that ~Li ; I

� � ¼ ~Li ;~Lj~L‘
� � ¼ 0 under

A; Bh i ¼ tr AyB
� �

, so S can be decomposed into orthogonal subspaces as
S ¼ S1 	 S2 where S1 :¼ spanfLigi
1 and S2 :¼ span I; LiLj

� 	
i;j
1. Having

diagonalized C, we can express H0 in terms of ~Li ’s (rather than Zi ’s) as
H0 ¼

PN
i¼1 αi

~Li for unique coefficients αi ¼ 2�Ntr ~LiH0
� � ¼ ω0

2 ~vi �~h, imply-
ing that H0?S2. Therefore, H0 =2S if and only if (iff) H0 =2S1. This happens iff
there is a k such that λk ¼ Lk ¼ 0 and αk≠0, or equivalently, iff~vk �~h≠0 for
some~vk 2 ker Cð Þ. Finally, since C ¼ CT we have colðCÞ 	 kerðCÞ ¼ RN , and
so H0 =2S iff ~h =2 colðCÞ.

Recovery channel
We describe here a standard way of implementing the so-called transpose
recovery channel, following refs. 16,38 Given a known P such that
PLyi LjP ¼ mijP, we have P Li �m0i Ið Þy Lj �m0j I

� �
P ¼ ~mijP for some Hermitian

~M ¼ ~mij
� �

i;j
1. Let W be a unitary matrix such that

Wy ~MW ¼ diag d1; d2; ¼ð Þ, and Ei :¼
P

j wji Lj �mj0I
� �

. For di≠0 one can

find a unique unitary Ui such that EiP ¼ ffiffiffiffi
di

p
UiP via polar decomposition.

The channel R can then be implemented by performing a projective
measurement in fP0; P1; P2; ¼ g, where Pi :¼ UiPU

y
i and P0 :¼ P, then

applying Uy
i for outcome i, where U0 :¼ I. (N.b., if rankð~MÞ ¼ 1 this

procedure is trivial, so the code forms a DFS.)

Numerical code search
The objective function Ftot may have several distinct zeros satisfying the
constraints with Aω,min= 0; for instance, the logical states in Eqs. (10) and
(12). (In other words, there can be more than one P exactly satisfying Eqs.
(3) and (4).) On the other hand, it will have no such zeros when~h 2 colðCÞ.
More generally, for given ε, Aω,min ≥ 0 there may exist multiple regions

where Ftot ≤ ε2 subject to the constraints, or there may exist none for C not
amenable to ECQS with N sensing qubits.
A similar approach to finding codes was recently used in ref., 49 although

to our knowledge it has not previously been used for ECQS. The factor of 4
in Eq. (14) was included specifically for the purpose of finding codes for
sensing: While this factor is irrelevant for enforcing that E 2 S be corrected,
a simple calculation shows that FG for a code gives exactly its signal gain
squared. Therefore, requiring that FG>A2ω;min and Ftot ≤ ε2 for some
Aω;min � ε is a transparent way of demanding that quantum error
correction suppress noise much more strongly than the signal.

Measuring C
In an experiment, finding an appropriate code for ECQS first requires
knowledge of the noise correlations encoded in C. For qubits i and j, the
coefficient cij can be inferred by preparing the GHZ state
1ffiffi
2

p 0ij i 0j
�� �þ 1ij i 1j

�� �� �
and measuring its pure dephasing rate Γij, which is

related to cij through Γij ¼ 2
T2

1þ cij
� �

, after subtracting the dephasing due
to any relaxation that might also be present in practice. Note that while we
arrived at Eq. (7) by considering a signal with a noisy background, the
physical source of dephasing is largely immaterial; all that matters is its
spatial correlation profile C.

Proof: Independence from coupling strengths
We show here that whether Eq. (8), and therefore also the ECQS conditions,
is satisfied does not depend on the coupling strength of each qubit to the
external field. Defining D ¼ diagð~h0Þ, the Lindblad equation for general
coupling strengths ~h0 has H0

0 ¼ ω0
2
~h0 �~Z and C0 ¼ DCD. Observe that ~h0 ¼

D~h and ker C0ð Þ ¼ D�1~x j~x 2 ker Cð Þf g, so h0 =2 col C0ð Þ if and only if
~h =2 colðCÞ.

Code availability
The optimization in Eq. (13) was performed using the SciPy Python library
(v0.17). We employed a basin-hopping global optimization algorithm,
which ran a sequential least squares programming (SLSQP) local
optimization at each step. The full computer code used to generate these
results is available from the corresponding author upon request.

Data availability
The numerical datasets generated during and/or analysed during the
current study are available from the corresponding author on reasonable
request.
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