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Scalable on-chip quantum state tomography
James G. Titchener1,2, Markus Gräfe2,3, René Heilmann2, Alexander S. Solntsev1,4, Alexander Szameit 2,5 and Andrey A. Sukhorukov 1

Quantum information systems are on a path to vastly exceed the complexity of any classical device. The number of entangled
qubits in quantum devices is rapidly increasing, and the information required to fully describe these systems scales exponentially
with qubit number. This scaling is the key benefit of quantum systems, however it also presents a severe challenge. To characterize
such systems typically requires an exponentially long sequence of different measurements, becoming highly resource demanding
for large numbers of qubits. Here we propose and demonstrate a novel and scalable method for characterizing quantum systems
based on expanding a multi-photon state to larger dimensionality. We establish that the complexity of this new measurement
technique only scales linearly with the number of qubits, while providing a tomographically complete set of data without a need for
reconfigurability. We experimentally demonstrate an integrated photonic chip capable of measuring two- and three-photon
quantum states with statistical reconstruction fidelity of 99.71%.
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INTRODUCTION
The standard way to characterize a quantum system1–6 is known
as quantum state tomography.5,7 It involves measuring expecta-
tion values of a complete set of observables and using these to
reconstruct the system’s density matrix.8–13 To characterize an N-
qubit state, 22N different observables are measured,8 thus the
measurement apparatus must be reconfigured exponentially
many times, which is impractical for large states. Furthermore
many of the expectation values measured will be vanishingly
small, and thus contribute little useful information. Finally, even if
all the measurements can be completed, the task of reconstruct-
ing the density matrix from measurement data becomes
computationally challenging for high qubit-number states.6

New approaches to quantum state tomography are being
developed in an effort to increase its practicality and efficiency.
Some approaches seek to avoid unnecessary measurements by
assuming that the system is in particular low-rank states, such as
sparse states14,15 or low dimensional matrix product states.16

Alternatively tomography can be “self-guided”, where real-time
feedback of measurement results guides the next choice of the
measurement basis,17–19 helping to avoid taking measurements
that have limited utility for analyzing the state. It has been shown
that tomography procedures involving some global quantum
measurements have increased error robustness relative to using
only local qubit measurements, and thus can be completed in less
time.20 The computational burden of inverting large data sets to
find the density matrix is reduced with simple real-time
optimization algorithms in self guided tomography, or can be
completely avoided with systems for direct projection of density
matrix parameters.21–23 However all these approaches rely on a
common measurement paradigm, whereby different character-
istics of a system are measured sequentially, thus they become

exponentially complex to implement as the number of parameters
in the density matrix scales exponentially with qubit number.
Here we present a quantum tomography method with

experimental device complexity that scales linearly with qubit
number. This is achieved by leveraging quantum systems’ greatest
strength, the simultaneous occupation of exponentially many
states. Instead of preforming a sequence of different measure-
ments on the state, we design a single static measurement system
that preforms one, many-outcome measurement (Fig. 1a). It has
been shown that multiplexing multiple on-off single photon
detectors can allow photon-number resolved detection of
quantum states of light.24 Here we demonstrate experimentally
that, with the appropriate optical transformation, multiplexed
detection can also allow full quantum state tomography, and we
present a comprehensive theoretical analysis of multi-photon case
building on our original proposal for two-photon tomography
with static measurement setups25 (after the initial submission of
this work, a similar approach to quantum state tomography was
investigated theoretically in ref. 26). When an N photon state is
spread coherently across an increased number of outputs, the
number of possible N-photon correlation measurement outcomes
follows a similar scaling to the number of parameters in the
density matrix. Thus the exponential scaling of quantum sates can
be balanced by a similar scaling in the amount of information
extracted from measurement of the state. This leads to the striking
benefit that the required physical complexity of multi-outcome
measurement only scales linearly with the number of qubits in the
state being measured (Fig. 1b), in contrast to the usual
exponential scaling.
In the context of photonic quantum states our approach also

removes the need to build complex reconfigurable measurement
systems,8 instead allowing full quantum tomography with just
static linear optical circuits, which can easily be implemented on
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photonic chips. This avoids the problem faced by conventional
approaches, where some measurements provide little useful
information about the underlying state. This is because in our
approach, the full complement of measurements are performed
simultaneously, and thus the most important correlation detec-
tions for reconstructing a particular state naturally have the
highest count rates. Our approach is based on interfering all the
photons through a special unitary transformation, thus can be
optimized to incorporate nonlocal measurement, allowing the
error robustness to be increased. Furthermore, we show that our
approach is compatible with computationally scalable reconstruc-
tion, avoiding resource intensive direct inversion.

RESULTS
We explain our method for the case of N-photons in an arbitrary
pure or mixed state featuring spatial quantum entanglement

between two input ports, although a larger number of ports can
be considered as well.25 The N-photon quantum state is described
by a density matrix, ρ̂in. We apply a single (fixed) linear
transformation, Û, to map the quantum state from two inputs to
a larger number of output waveguides, M, as illustrated in Fig. 1a.
Then, we obtain information about the quantum state by
measuring coincidences, Γ, in the arrival time of photons to
different combinations of the single-photon detectors. If the
detectors can distinguish photons (i.e., by arrival time for time-bin
encoded states), but cannot resolve photon numbers, then there
are M!/(M − N)! different N-photon correlations which can be
measured, while the density matrix is described by 22N real
parameters. Then, its reconstruction is possible if the number of
different correlations is larger than the number of unknown
density matrix elements. We establish that the minimum number
of output ports required scales linearly with the number of
photons and approaches M = N for large photon numbers, see red

Fig. 1 Linearly scalable quantum state tomography concept. a Conceptual diagram of a photonic chip for scalable tomography of N-photon
states based on a single linear transformation with two input modes and M outputs. To enable reconstruction, the number of different N-
photon correlations that can be measured at the output needs to be the same or larger than the number of independent parameters defining
the input density matrix b Scaling relationship between the number of photons in the quantum state to be measured and the number of
required output waveguides. The scaling for distinguishable and indistinguishable photon detection schemes is linear at large photon
numbers, as indicated by red and blue lines, respectively (see Sec. I in Supplementary Material for details of derivation)

Fig. 2 Experimental realization with a photonic chip. a The structure of the silica photonic chip showing simulation of coupling a single
photon in state 0j i þ i 1j i into the input ports. b Experimentally determined mappings from the input Bloch sphere to the six output
waveguide field intensities. c The experimental setup. Photon-pairs at 815 nm are generated via spontaneous parametric down-conversion
(SPDC) by pumping a bismuth triborate (BiBO) crystal with a 407.5-nm diode laser. The two photons are then coupled into two fibers, and
optionally passed through a fiber-splitter to transform the anti-bunched state into a bunched state. The photons are then coupled to the
photonic chip and detected with an array of six single photon-detecting avalanche photo-diodes (APD’s)
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line in Fig. 1b. In case of indistinguishable detection, when
different photons produce the same kind of signal from the
detectors, the reconstruction is possible for M = N + 3 output ports,
see blue line in Fig. 1b. We prove that linear scaling vs. photon
numbers also holds for larger number of input ports, see detailed
mathematical derivation in Sec. I of the Supplementary Material.
We experimentally demonstrate our approach by performing

tomography of spatially entangled mixed or pure states of two
indistinguishable photons, using a specially designed on-chip
laser-written waveguide circuit.27 The action of the circuit on the
input single photon state ψj i = 0j i þ i 1j i is shown in Fig. 2a. The
circuit allows full reconstruction of the input density matrix just by
measuring the output two-photon coincidences with non-photon-
number resolving single-photon detectors.
The circuit was optimized to make the tomographic reconstruc-

tion highly robust to measurement errors. Each output waveguide
carries information from a different vector on the input Bloch
sphere. The Bloch vectors were determined experimentally using a
classical characterization method,28 and are shown graphically in
Fig. 2b. The equal spacing of vectors around the Bloch sphere
gives the device maximum robustness to errors in the tomo-
graphy procedure,29 by essentially realizing non-local measure-
ments. This can be confirmed by calculating the condition number
of the transfer function of the chip, lower values of which
correspond to higher robustness of the state reconstruction to
measurement errors. The experimentally realized device has a
condition number of ≃5, which is better than the condition
number of ≃9 for typical tomography.20

To test the performance of the device we prepared a range of
different two-photon entangled quantum states, coupled them
into the chip, and measured the output correlations as
schematically shown in Fig. 2c. We first analyze an anti-bunched
state, which in an ideal form is described by the pure
wavefunction ψj i ¼ 01j i þ 10j ið Þ= ffiffiffi

2
p

and the corresponding
density matrix ρ̂ ¼ ψj i ψh j. We present in Fig. 3a the experimentally
measured probabilities of detecting the photon-pair in a given
pair of output waveguides, and the reconstructed real and
imaginary parts of the density matrix, as indicated by labels. We
confirm that this is indeed an anti-bunched state, with the fidelity

of 94.0%. This value is actually limited by the quality of the photon
source (which Hong-Ou-Mandel visibility is limited at 93%),
whereas we estimate the statistical reconstruction fidelity at the
level of 99.71% (see Methods, Algorithmic reconstruction).
Furthermore, this measurement permits us to get information
about the spectral overlap of the pair of photons, since the
observed correlations exhibit a generalized form of Hong-Ou-
Mandel interference,30–32 see Sec. III of the Supplementary
Material for details.
We also prepared N00N states, with wavefunctions given by

ψj i ¼ 00j i þ eiϕ 11j i� �
=

ffiffiffi
2

p
, where ϕ is a phase shift. The phase

shift is determined by the photon propagation before the chip,
and because the shift is double the value that would accumulate
classically33 it is highly sensitive to the environment. Experimen-
tally, we explored this quantum-enhanced sensitivity by propagat-
ing a two-photon N00N state through 1-m long optical fibers
before the chip. The accumulated phase was very sensitive to fiber
stress, varying by up to 2π on the scale of a few minutes. With our
approach we observed experimentally the temporal variation of
the phase in the density matrix using an integration time of 20 s
with a photon pair detection rate of 30Hz. We show typical two-
photon correlations at different times in Fig. 2b,c and the
corresponding reconstructed N00N states, with phases deter-
mined to be ϕ ’ 0 in Fig. 3b and ϕ ’ π=2 in Fig. 3c. The fidelity of
both states exceeds 94%. Thus, we can observe with high
precision the density matrix of a quantum state that is varying
over time (a video of the time evolution of the density matrix is
included in the Supplementary Material).
The reconstruction of the density matrices from the measured

correlations was carried out using a computationally scalable
algorithm. This is important, since although the number of
detectors and waveguides in the circuit scales linearly with the
number of qubits to be measured, the number of photon
detections required for reconstruction still necessarily scales
exponentially (as in standard quantum state tomography) and
processing of measurement data would be extremely resource
demanding for large photon numbers. We employ an optimiza-
tion technique known as the simultaneous perturbation stochastic
approximation (SPSA),34 similar to the algorithm formulated for

Fig. 3 Two photon tomography results. a Results for an anti-bunched state, b a N00N state, and c a N00N state with π/2 phase shift. The
second column shows the measured two-photon correlations, while the third and fourth columns show the real and imaginary parts of the
recovered density matrices
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self-guided quantum state tomography.17 It minimizes a distance
measure between the true state and the algorithm’s current guess.
We use the least squares distance between the measured
correlations and the correlations that would be produced by the
current guess of the density matrix, Γmeas: � Γguess

�� ��2. The
reconstruction fidelity of the algorithm is 99.67% after 1500
iterations (see Methods).
We demonstrate recovery of the mixed state ρ̂mix ¼

ρ̂anti�bunched þ ρ̂N00Nð Þ=2 using the algorithm. The inset of Fig. 4a
shows the experimentally measured correlations corresponding to
ρ̂mix, obtained by numerically combining separately recorded raw
coincidence data from an anti-bunched state and a N00N state.
The main plot in Fig. 4a shows 1000 realizations of the algorithm
as red lines, and density matrices at iteration numbers 1, 30 and
300 are shown in Fig. 4b for the realization highlighted in blue in
Fig. 4a. Importantly, our method offers the same computational
advantage as self-guided tomography, but without a need for
complex reconfigurable measurements which so far restricted this
approach to only pure states.18

The chip presented in Fig. 2a is also capable of tomography of
degenerate three-photon states. We demonstrate this using the
experimentally determined transfer function, Û, and simulate the
propagation of a three-photon Greenberger–Horne–Zeilinger
(GHZ) state (Fig. 5a) through the chip. The simulated output
three-photon correlations are shown in Fig. 5b, where Gaussian
noise with standard deviation 5% of the peak correlation value has

been added to each element. Reconstruction of the input density
matrix gives highly accurate results despite this noise. The real
part of the recovered density matrix is shown in Fig. 5d, which
closely matches the three-photon GHZ state in Fig. 5c. This
provides a significantly simpler and more stable platform for
three-photon tomography compared to previous realizations.35

DISCUSSION
We have demonstrated that a fixed linear optical transformation
can be devised to allow complete quantum tomography of N-
photon states. Importantly, the complexity of the transformation
only scales linearly with the number of photons in the state, in
contrast to the exponential scaling in the number of measure-
ments required in usual tomography.36 Due to its simplicity and
lack of tunable elements, this approach to quantum measurement
is uniquely suited to integration with on-chip super-conducting
single-photon detectors37 for a fully on-chip tomography scheme.
The combination of linear scaling in the required number of single
photon detectors, as well as compatibility with integrated
detection, suggests that the characterization of high photon
number states is achievable. This provides a promising way to
facilitate the characterization and development of increasingly
complex quantum communication and computation systems.

Fig. 4 Scalable reconstruction algorithm for mixed states. a (Inset) Measured two-photon correlations for the mixed state
ρ̂mix ¼ ρ̂anti�bunched þ ρ̂N00Nð Þ=2. a Performance of the self guided tomography algorithm searching for the input density matrix that best
matches the measured correlations. Red curves show 1000 different realizations of the algorithm. b The real (top row) and imaginary (bottom
row) parts of the density matrix at iteration numbers 1, 30 and 300 during the realization highlighted with blue in Fig. 4a
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METHODS
Direct waveguide writing
We write our waveguides into transparent fused silica wafers (Corning
7980 ArF Grade), using ultrashort laser pulses (τ < 150 fs, λ = 800 nm) that
are focused 250 μm below the sample surface using a 20× microscope
objective (NA ≈ 0.35). The actual writing speed, achieved with a high-
precision positioning system (Aerotech) is 100 mm/min at a pulse energy
of 200 nJ and a repetition rate of 100 kHz (Coherent Mira/Reg A). Such
waveguides exhibit low propagation losses (<0.3 dB/cm) and almost
vanishing birefringence (ΔnH,V ≈ 10−6). With a supported mode field
diameter of 12 μm× 15 μm, the coupling losses of 3 dB are obtained with
standard single mode fibers.

Photon-pair generation and measurement
We generate photon-pairs at λ = 815 nm using a standard type-I
spontaneous parametric down-conversion source with a visibility of 93%.
A BiBO crystal is pumped by a 100-mW, 407.5-nm laser diode producing
horizontally polarized photon-pairs, which are collected by polarization
maintaining fibers. Commercial V-groove fiber arrays were used to couple
the photons into the chip as well as collecting them at the output facet
from the individual waveguides. We used high-NA multi-mode fibers in
order to feed the photons to the respective avalanche photo-diodes,
ensuring low coupling losses at the output side of the chip. From the data
of the photo-diodes, the photon probability distribution at the output, as
well as the inter-channel correlations, were computed using a correlation
device (Becker–Hickl) and standard computer programs (LabView for the
data acquisition and MatLab for the data processing). The photonic chip
was fabricated such that the waveguide spacing at the input and output
facets matched the standard fiber array spacing of 127 μm. The typical
two-photon coincidence rates after propagating through the chip were
approximately 30 Hz, and an integration time of around 20 s was used for
coincidence measurements.

Algorithmic reconstruction
The algorithm for reconstructing the density matrix from a measured set of
correlations uses the simultaneous perturbation SPSA.34 We follow an
optimization process very similar to,17 except we adapt it to work with
mixed quantum states. This is achieved by defining the density matrix as
ρ̂ðtÞ ¼ T̂ yðtÞT̂ðtÞ=Tr T̂yðtÞT̂ðtÞ� �

, as in Eq. (4.5) of ref. 8. Here T(t) is an upper
triangular matrix with the elements in the triangle specified by the vector t
= [t1, t2‥‥tn], and the number of elements in t is set to be equal to the
number of free parameters in the density matrix. Then the algorithm
proceeds optimizing t, rather than ψ as in previous approaches for pure
quantum states. We determine the reconstruction accuracy using the
“experimentally measured” device transfer function. The recovery of 500
random density matrices is simulated, each for 1500 iterations of the
algorithm. The reconstruction fidelity, the average fidelity between the
true density matrix and the algorithm’s final guess, is found to be 99.67%.
For reconstruction using experimentally measured data there will

naturally be errors in the amplitude of the measured correlation elements,
in particular due to shot noise. This will cause the measured correlations to
deviate so that they don’t perfectly match the correlations that would be
produced by a physical density matrix. Since the system is mathematically
over-determined, i.e., we measure more correlations than unknown
elements in the density matrix, not all combinations of correlations would
correspond to a physical density matrix. Considering random noise, we can
then estimate the error of the reconstructed state by how much the
measured correlations deviate from the correlations of the closest physical
density matrix, Γrec, found by the reconstruction algorithm. We perform
such analysis for the split state as shown in Fig. 3a, and find that the
average statistical fidelity between the reconstructed correlations Γrec and
the measured correlations Γmeas is 99.71%. To ensure that the calculated
statistical fidelity accurately represents the noise in the system, the
measured correlations were recorded with a moving average of 13 s over a
total time of 60 s and the average statistical fidelity was calculated for each
13 s window, then the mean value was taken. The statistical fidelity was

Fig. 5 Tomography of a three-photon state. a Diagram of the three-photon GHZ state. b Simulated correlations of the GHZ state after
propagation through the measured transfer function of the device in Fig. 2a. Gaussian error with standard deviation of 5% the maximum
correlation element’s value is added to each element. c The real part of the GHZ state’s density matrix. d Real part of the density matrix that
was recovered using the simulated correlations from (b)
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calculated according to F ¼ P
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ
ðiÞ
measΓ

ðiÞ
rec

q� 	
(as in13), where i is the index

of different correlation matrix elements, and brackets denote statistical
averaging. Note that the correlation matrices are normalized to sum to
1 since they are probabilities. For this normalization the diagonal
correlation elements (corresponding to detection of two photons at the
same detector) are set to zero since we do not use photon number
resolved detection, and thus do not measure these elements.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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