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Parkinson’s disease (PD) is associated with changes in neural activity in the sensorimotor alpha and
beta bands. Using magnetoencephalography (MEG), we investigated the role of spontaneous
neuronal activity within the somatosensory cortex in a large cohort of early- to mid-stage PD patients
(N = 78) onParkinsonianmedication and age- and sex-matched healthy controls (N = 60) using source
reconstructed resting-stateMEG.We quantified features of the time series data in terms of oscillatory
alpha power and central alpha frequency, beta power and central beta frequency, and 1/f broadband
characteristics usingpower spectral density. Furthermore,wecharacterised transient oscillatory burst
events in the mu-beta band time-domain signals. We examined the relationship between these signal
features and the patients’ disease state, symptom severity, age, sex, and cortical thickness. PD
patients and healthy controls differed on PSD broadband characteristics, with PD patients showing a
steeper 1/f exponential slope and higher 1/f offset. PD patients further showed a steeper age-related
decrease in the burst rate. Out of all the signal features of the sensorimotor activity, the burst rate was
associated with increased severity of bradykinesia, whereas the burst duration was associated with
axial symptoms. Our study shows that general non-oscillatory features (broadband 1/f exponent and
offset) of the sensorimotor signals are related to disease state and oscillatory burst rate scales with
symptom severity in PD.

Parkinson’s disease (PD) is a common neurodegenerative disease char-
acterised by a gradual accumulation of Lewy bodies and death of dopami-
nergic neurons1,2. The Lewy body pathology of PD begins long before the
manifestation ofmotor symptoms. Accumulation of Lewy bodies is initially
found in the olfactory bulb and brain stem and then spreads to the sub-
stantia nigra pars compacta, followed by several brain regions, including the
basal ganglia and the neocortex3. The progressive structural and neuro-
chemical changes inPDare accompanied bywidespread functional changes
in neuronal activity, which in turn lead to worsening clinical signs and
symptoms such as tremor, rigidity, and bradykinesia and co-occurring non-

motor symptoms like sleep disorders, depression, fatigue, and cognitive
deficits1.

The pathophysiological changes in PD are accompanied by changes in
the oscillatory activity of neurons4. InPD, spontaneous oscillatory beta band
(13–30Hz) activity in the subthalamic nucleus (STN) exhibits a systematic
disease-related increase in synchronicity that is related to the dopamine
level5–8, and correlates with the severity of bradykinesia and rigidity
symptoms9–11.Changes in the beta bandextendbeyond the STNthrough the
basal ganglia-thalamic cortical sensorimotor network. The cortical mani-
festation of the disease-related changes in the sensorimotor network can be
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measured non-invasively from the cortex using electro- or magnetoence-
phalography (EEG/MEG). Such non-invasive neural recordings can
potentially provide easily available prospective biomarkers of disease or
symptom-related neural changes in PD. Increased oscillatory beta-band
activity in the sensorimotor cortex has been linked to increased symptom
severity, such as rigidity and bradykinesia12. The role of dopamine on the
cortical beta band is, however, still unclear. There is no consensus on how
dopaminergic medication affects cortical beta-band power, with some
studies reporting no effects12–15 and others an increase in beta-band
power16–18. Deep brain stimulation of the STN in PD patients has been
shown to lead to a decrease in the power of spontaneous activity in the
cortical sensorimotor beta and alpha (8–12Hz) bands19,20 (but see also16,21).

Importantly, there is evidence that the beta-band changes are not in the
same direction across the different stages of PD. For example, there are
reports of increased cortical beta-band power in the early stages of PD22,
whereas the later stages are associated with decreased beta-band power23.
Further, the beta-band power is not the only feature of the sensorimotor
rhythms that is altered in PD. Several studies have found a shift in the beta-
band centre frequency (the frequency at which the power spectrum density
peaks in the beta-band) towards a lower frequency in PDpatients compared
to healthy controls24–26. The shift towards lower beta-band centre frequency
is more pronounced in PD patients with dementia27–30 and correlates with
reduced cognitive ability26,31. Notably, the centre frequency shift is detectable
already in the early stages of PD25 and does not seem to be affected by
dopaminergic medication32. The changes in beta-band power and centre
frequency in PD could indicate that different features of the oscillatory beta-
band activity reflect different underlying neural functions expressed in the
measured sensorimotor signals. Changes in beta-band power could be
functionally related to sensorimotor disturbances, and changes in centre
frequency could be related to cognitive function.

The characteristics of neuronal oscillatory activitymay hold additional
information on disease-related changes in PD33. Both beta-band power and
centre frequency reflect a quantification of power spectral density (PSD).
While these features can provide valuable information about disease-related
changes in PD, the PSD quantification of a neural time series provides a
static summary of the oscillatory activity across the entire time series. PSD
does not account for inherent dynamics in this activity or changes in the
time series on shorter time scales—as is prevalent in neural time series. The
beta-band exhibits a great degree of variation over time and contains
characteristic high-amplitude “bursts” that last about 50–200ms, both in
the cortical and sub-cortical beta-bands34–37. Functionally, the transient
bursts appear to play a pivotal role in sensorimotor processing through the
basal ganglia-thalamic-cortical network. For instance, the presence of a beta
burst in the sensorimotor cortex close to a tactile stimulation decreased the
likelihood of tactile detection38, and the rate of beta bursts is shown to
decrease in the time leading up to a movement both in STN39–41 and in the
sensorimotor cortex42,43.

In PD, quantification of beta-band burst activity from recordings in
the STN has shown that beta-burst rate and duration are reduced by
dopaminergic medication44,45 and deep brain stimulation37. Further-
more, PD patients exhibit a decrease in the rate of beta burst at the
cortical level compared to healthy controls14. This decrease in beta burst
rate is inversely related with increased severity of motor symptoms46;
particularly bradykinesia and postural-kinetic tremor symptoms, but
there is no evidence pointing to an effect of dopaminergic medication on
cortical bursting properties14. Notably, the burst rate showed a higher
sensitivity than PSD beta power for discriminating PD patients from
healthy controls, demonstrating that the choice of method for analysing
beta-band features influences the sensitivity of subsequent analyses. This
is further complicated by the fact that in addition to disease-related
changes, these features likely differ with age43,47,48, and the fact that most
studies on oscillatory changes in PD come from studies with small
sizes49. The central challenge is quantifying the measured neural signals
to extract the disease’s relevant features from the signals, be it the
spectral power, centre frequencies, or burst-like features.

In the current study, we aimed to explore which oscillatory- and non-
oscillatory features of cortical sensorimotor activity differ between PD
patients and healthy controls. As a secondary aim, we investigated the
association of oscillatory- and non-oscillatory features with different motor
symptoms in PD. We extracted the sensorimotor neural resting-state
activity from source reconstructed resting-state MEG signals in the sen-
sorimotor cortex (Fig. 1) and quantified the time-series in terms of the PSD
in the canonical mu-band (8–30Hz)50,51. In addition to the band-specific
analysis, we compared the 1/f broadband characteristics of the PSD52,53,
which previously has been shown to be altered in PD14,54. Finally, we
compared features of the sensorimotor rhythm in terms of time-domain
analysis of spontaneous transient bursts14,38. We tested the hypotheses of
altered functional changes in PD by analysing how these features differed
between PD patients and healthy controls and further investigated the
interactions with age and sex. As ageing is associated with structural and
functional changes in the sensorimotor cortex55,56, we investigated if the
potential changes in sensorimotor activity in PD differed across age. Since
bothhealthy ageing andPDdisease progression are linked to thinning of the
cortex57,58, we further included the thickness of the sensorimotor cortex in
the analysis as a potentialmediating factor on the sensorimotor activity that
potentially also interacts with disease state.

The central question driving the exploratory analysis of the oscillatory-
and non-oscillatory features was whether there would be differences
between healthy controls and PD in features and if different features would

3 min rest MEG

Source reconstruction

Extract ROI 
time-series

Fourier transform
Fit 1/f curve and 

Gaussians

Band-pass filter
Hilbert transform
Threshold

Frequency (Hz)

Lo
g-

po
w

er

Time (s)

Time (s)

Fig. 1 | Overview of the data processing pipeline. Three minutes of resting-state
MEG data was obtained from each participant. The signals were projected through a
minimum-norm source reconstruction to extract the activity in the sensorimotor
cortex. We did a frequency decomposition of the source reconstructed signal to
calculate the PSD to which a 1/f and Gaussian curve were fitted to extract the PSD
features (Table 2). In addition, we quantified sensorimotor bursts in the signal time
series in the sensorimotor ROI by thresholding the envelope of the band-pass filtered
(8–30 Hz) signal to the mu-beta frequency range.
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be related to different functional changes. We hypothesised that individual
oscillatory featureswould reflect different underlyingneural functions in the
sensorimotor systemand thereby showdifferent relationships to the clinical
manifestations of specificmotor symptoms inPD.We tested this hypothesis
in two steps: first, in an exploratory analysis examining the inter-
relationship between the different measures and group, age, sex, and cor-
tical thickness. Second, by examining how the features explained the var-
iation in severity of motor symptoms series in the sensorimotor ROI by
thresholding the envelope of the band-pass filtered (8–30Hz) signal to the
mu-beta frequency range.

Results
The study enroled 80 PD patients and 71 healthy controls balanced across
gender and age, who all did three minutes of resting-state MEG. Table 1
presents a summaryof theparticipantsused in the analysis of oscillatory and
non-oscillatory features in the cortical sensorimotor signals after data
cleaning and pre-processing (seeMethods).

For the first analysis, we investigated how features in the resting-state
activity from the sensorimotor area quantified by features of the PSD and
burst characteristics (see Table 2) differed as a function of the predictors:
group (PD patients/healthy controls; Table 1), age, sex, cortical thickness, the
two-way interactions between the predictors, and age squared.

PSD features
The PSD suggests an apparent group difference between PD patients and
healthy controls in the alpha andbeta bands (Fig. 2).However, analysing the
oscillatory components of PSD by first adjusting for the broadband char-
acteristic of the PSD52 removed the apparent group difference in the mu-
and beta bands. Bayesian model comparison was used to test which

predictors explained the variation in the PSD (Bayes Factors (BF) > 3 taken
as the cut-off for substantial evidence for an effect of a givenpredictor59). The
model comparisons instead showed evidence for group differences on the
1/f offset (BF = 55.7) and 1/f exponent (BF = 3.92). The 1/f offset was 24.0%
[CI: 11.3:35.2%] higher for PD patients than healthy controls, and PD
patients had 9.5% [CI: –1.7.4:22.2%] larger 1/f exponential compared to
healthy controls, meaning that the PSD had a steeper decay for PD patients
than healthy controls.

Analysis of the oscillatory peaks in the PSD after controlling for the 1/f
characteristics did not yield evidence for an effect of group on either beta
power (BF = 0.630) or alpha power (BP = 0.166). The beta- and alpha bands
showed an interaction effect of Group and Sex on the beta centre frequency
(BF = 5.58) andmain effects of Group (BF = 3.06) and Sex (BF = 3.02). The
alpha centre frequency showed an interaction between Group and Cortical
Thickness (BF = 6.50). There was no evidence of an effect beyond the
threshold for substantial evidence on any other PSD features. The coeffi-
cients andmodel predictions of the fullmodels for all outcomemeasures are
presented in Fig. 3.

Given the explorative nature of the analyses, it is of interest tomention
that there was anecdotal evidence (BF > 1.5) of an interaction effect of
Group and cortical thickness (BF = 1.92) and a main effect of Sex (BF =
1.87) on 1/f exponent, interaction effects of Group and cortical thickness
(BP = 1.92) and Sex and Cortical Thickness (BF = 1.87) and amain effect of
Cortical Thickness (BF = 1.76) on beta centre frequency, andmain effects of
Cortical Thickness (BF = 2.00) and interaction between Sex and Group on
alpha centre frequency (BF = 2.57).

To explore how the choice of not correcting the PSD by removing the
1/f characteristic before quantifying oscillatory power in the alpha- and beta
frequency bands affected the analysis of the PSD,we repeated the analysis of

Table 1 | Group-level summary of the participants included in the analysis. Mean (standard deviation)

Measure Parkinson’s patients Healthy controls Statistics

N 78 60

Sex (female/male) 29/49 27/33 χ2 = 0.57, p = 0.45

Age 65.6 (9.5) 63.93 (8.4) Welch’s t(138.0) = 1.08, p = 0.28

Disease duration 4.4 (3.7) years – –

LEDD 548 (273) mg – –

MDS-UPDRS-III 18.9 (10.8) – –

MoCA 26.1 (2.8) 26.2 (2.1) Welch’s t(136) = 0.10, p = 0.92

Table 2 | Summary explanations of the main outcome variables in the analysis

Variable category Variable Explanation

PSD Beta power The maximum peak in the 13–30 Hz band. Estimated as the height of the Gaussian function fitted to the PSD after
regressing out the 1/f spectrum.

Beta centre frequency (Hz) The dominant frequency bin in the 13–30 Hz band. Estimated as the centre of the Gaussian function fitted to the
13–30 Hz range of the PSD after regressing out the 1/f spectrum.

Alpha power The maximum peak in the 8–12 Hz band. Estimated as the height of the Gaussian function fitted to the PSD after
regressing out the 1/f spectrum.

Alpha centre fre-
quency (Hz)

The dominant frequency bin in the 8–12 Hz band. Estimated as the centre of the Gaussian function fitted to the 8–12 Hz
range of the PSD after regressing out the 1/f spectrum.

1/f offset The intercept of the log-linear regression line estimated from the full PSD in the 0.5–40 Hz range.

1/f exponent The decay exponent (1/fx) of the PSD, corresponding to the slope of the log-linear regression line, estimated from the full
PSD in the 0.5–40 Hz range.

Burst Rate The number of burst events in the time series divided by the length of the time series

Duration (ms) The time point from where the signal envelope rise above the threshold until the next time point it drops below the
threshold.

Interval (ms) The time point from where the signal envelope drops below the threshold until the next time point it rises above the
threshold.

Amplitude The maximum envelope amplitude within a burst event.
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Oscillatory Peaks Power spectral density
1/f Spectrum

Fig. 2 | Summary of power spectral density (PSD) by group. Left: Grand average
PSD (mean + standard error) for the PD group (blue) and healthy control group
(red).Middle: the coefficient for the log-linear regression of the broadband PSD split

by group. Right: the relative power and centre frequency of the oscillatory peaks in
the alpha- (8–12 Hz) and beta bands (13–30 Hz) split by group after subtracting the
fitted 1/f curve.

Fig. 3 | Regression analysis of PSD features. Standardised regression coefficients
with 95%CI for the full regression models of 1/f exponent, 1/f offset, alpha power,
alpha centre frequency, beta power, and beta centre frequency as a function of group,

age, sex, cortical thickness, and the two-way interactions between these factors,
together withmodel predictions across age span split between group and sex for each
of the PSD features.
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power and centre frequency for the alpha- and beta band by quantifying
alpha- and beta power and centre frequency as the peak within the
respective bands. This analysis yielded no evidence for band power differ-
ences (all BF < 1). For the uncorrected PSD, the beta centre frequency
showed interaction effects between Group and Sex (BF = 3.46) and Group
and Cortical Thickness (BF = 4.34) and main effects of Sex (BF = 6.86) and
Group (BF = 10.95). In line with the analysis after removing the 1/f char-
acteristic from the PSD, the PD patients had a lower beta centre frequency,
with males being lower than females and male patients being even lower
than female patients. The alpha centre frequency showed an interaction
effect betweenGroup andCortical Thickness (BF = 6.52), showing a slightly
stronger negative association between alpha centre frequency and cortical
thickness.

Burst features
The view of sensorimotor oscillatory activity has recently changed from
analysing such activity as a steadily oscillating signal to a viewwhere activity
is considered to be composed of transient oscillatory bursts. We compared
features of the sensorimotor rhythm in terms of time-domain analysis of

such transient bursts. Group-level summaries of the burst features are
presented in Fig. 4.

Model comparison to test which predictors explained the variation in
the burst features gave evidence for an interaction effect between group and
age on the burst rate (BF = 3.34) and a main effect of sex on the burst rate
(BF = 3.80). The age-related effects from themodel amount to a fall in burst
rate of –0.6% per year [CI: –1.3:0.1%] for PD patients, whereas for healthy
controls, the model predicted a stable burst rate across age with a change of
0.5% [CI: –0.2:1.1%] per year.

The burst amplitude showed an interaction effect of Group and Sex
(BF = 3.22) and a main effect of Group (BF = 32.3). The analyses did not
reveal any effects of Group, Age, Sex, or Cortical Thickness on the burst
duration or interval. All model coefficients for the burst features are dis-
played in Fig. 5.

Clinical symptoms and oscillatory features
In the second analysis, we tested for associations betweenmotor symptoms
and the features of the sensorimotor signal in the PD group. All sensor-
imotor signal features listed in Table 2 were used as predictors in a multiple

Fig. 4 | Group-level summary of burst features. Split between the PD (blue) and
healthy controls (red). a Histograms of burst rate count. b Probability density of
burst amplitudes pooledwithin group. cProbability density of burst duration pooled

within group. dProbability density of burst interval pooledwithin group.Horizontal
dashed lines indicate the group-level means.

Fig. 5 | Regression analysis of burst features. Standardised regression coefficients
with 95%CI for the full regression models of burst rate, duration, interval amplitude
as a function of group, age, sex, cortical thickness, and the two-way interactions

between these factors, together withmodel predictions across age span split between
group and sex for each of the burst features.
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regression analysis that further included age, sex, disease duration, levodopa
equivalent daily dose (LEDD), and cortical thickness. The standardised
regression coefficients of each predictor variable on the motor symptoms
measured with MDS-UPDRS-III60 are presented in Fig. 6.

Model comparison of multiple regression models showed evidence
that burst rate (BF = 48.48) and burst interval (BF = 4.23) were negatively
associated with upper limb bradykinesia on the contralateral side. The
negative direction means that reduced burst rate was associated with
increased severity of bradykinesia. Furthermore, there was substantial evi-
dence that burst duration was positively associated with the total MDS-
UPDRS III score (BF = 10.61) and with axial symptoms (BF = 3.56). That
means that longer burstswere associatedwith higher symptomburden. The
analysis yielded no evidence for effects of other sensorimotor signal features
on symptom ratings for rest tremor, rigidity, rest tremor, postural/kinetic
tremor, or lower limb bradykinesia.

The analysis yielded substantial evidence for a difference betweenmale
and female patients on total MDS-UPDRS III scores (BF = 3.79), axial
symptoms (BF = 13.32) and rest tremor (BF = 132.63), and for an effect of
LEDD on rest tremor (BF = 198.68). There was anecdotal evidence for an
effect of age on axial symptoms (BF = 2.99), sex (BF = 1.52), and disease
duration (BF = 2.03) on rigidity, aswell as anecdotal evidence for an effect of
alpha centre frequency on ipsilateral upper limb bradykinesia (BF = 2.68).

Discussion
This study aimed to explorehowdifferent features of cortical somatosensory
oscillatory activity at rest differed between PD patients and healthy controls
across age and sex—and how these features relate to motor symptoms in
PD.The analysis of spontaneous sensorimotor bursts showed evidenceof an
increased age-related reduction in PD patients compared to healthy con-
trols. Notably, our current results show that the reduced burst rate in PD is
not a static group-level difference but interacts with age, such that a steeper
age-related reduction in burst rate is seen in PD compared to healthy
controls.

In the analysis of the time series PSD, the PD group showed a higher
broadband 1/f offset compared to healthy controls and a steeper 1/f decay
(i.e., larger exponent) of thePSD than thehealthy controls. ThePSDanalysis
did not yield evidence for differences between patients and healthy controls
in oscillatory power.

We further explored whether different oscillatory features reflect dis-
tinct underlying functional neural properties and manifest as different
motor symptoms in PD. The results showed that a reduced burst rate and
the interval between bursts were accompanied by increased bradykinesia
severity in the contralateral side of the body in PD, confirming previous
findings from our group14. On the other hand, the analysis showed that the
burst duration was associated with axial symptoms in PD and the overall

degree ofmotor dysfunction. This relationshipwas exclusive for burst, aswe
observed no statistically evident relationships between PSD features and
clinical motor symptoms.

The cortical sensorimotor activity of the PDpatients differed from that
of healthy controls. However, we did not find evidence that the sensor-
imotor activity differed when comparing the PSD in the canonical sensor-
imotormuandbeta bands, independent ofwhether the bandswere analysed
as the rawPSD containing the 1/f characteristic of neural time series or if the
1/f characteristic was first removed before quantifying the oscillator peaks.
The notable difference between groups in the PSDwas the difference in the
1/f broadband characteristics. The evidence of a group difference in the
spectral broadband 1/f characteristics of the signal adds to the growing
evidence that a focus onneural activity as narrow-band steady oscillations—
e.g. narrowly focusing only on the beta-band power—could potentiallymiss
essential aspects of the neural signals for understanding mechanistic
changes in PD54,61.

Theoretically, unaccounted-for systematic differences in either PSD
offset or decay exponent could lead to a false conclusion that there is a
difference in the oscillatory response52,53. In the current study, we repeated
the analysis of the oscillatory features (i.e., alpha- and beta power and centre
frequency) to give a picture of how correcting the PSD for the 1/f char-
acteristic affected the conclusions. Surprisingly, the analyses with and
without the 1/f characteristic removed yielded converging findings: neither
analysis provided evidence of powerdifferences in the alpha- andbeta bands
but gave evidence that the beta centre frequency differed between groups
and sex, and the alpha centre frequency entailed an interaction between
group and cortical thickness. The main conclusion here is that even if the
narrow-band analyses yielded similar results, the broadband 1/f char-
acteristic of the PSD provides further relevant information that distin-
guishes PD patients from healthy controls in addition to the narrow-band
oscillations.Widening the quantitative analysis of PSD rather than focusing
exclusively on narrow-band power is of potential clinical value.

While there is converging evidence that changes in the 1/f character-
istic are important for understanding neural functions, it is still not
understood what the functional relevance is. A possible explanation is that
the steepness of the spectrum, i.e., the 1/f exponent, is an expression of the
relative excitation-inhibition balance in the source of the electro-
physiological signal. Simulating the electric fields from the combination of
the relatively slow inhibitory synaptic (GABAergic) transients and the
relatively faster excitatory (glutamatergic) currents shows that varying the
relative excitation-inhibition balance leads to changes in the 1/f exponent62.
Thedifference in1/f characteristic betweenPDpatients andhealthy controls
might reflect either increased inhibitoryGABAergic signals or, conversely, a
reduction in glutamatergic currents in the sensorimotor cortex. This would
align with a metanalysis of fMRI studies showing a general reduction of

Fig. 6 | Regression analysis of motor symptoms. Standardised regression coefficients with 95%CI for the regression analyses of sensorimotor signal features on clinical
motor symptom ratings in PD.
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activity in the motor cortex in PD63. However, it is also possible that the 1/f
characteristic is not only driven by local changes but could be an expression
of slow dynamics of the ascending inputs to the cortex, thus leading to
higher power in lower frequencies. At the current stage, there is a need to
further bridge how 1/f features in the signals are linked to disease
mechanisms.

Despite several studies providing evidence that the 1/f characteristic of
the PSD is altered in PD, none of these studies have found that the clinical
manifestation of motor symptoms was related to the 1/f characteristic14,54,61.
Here, in amuch larger sample, we still do not see evidence that the 1/f offset
and exponent are directly associated with motor symptoms (as assessed by
the UPDRS-III). This points to the 1/f features being independent of the
dopaminergic system and reflecting either local excitation-inhibition bal-
ance or ascending slow drive from the thalamus. On the other hand, the
motor symptoms in PD depend on the dopaminergic networks and clearly
improvewith dopaminergicmedication. This could also explainwhy the 1/f
exponents have previously been found not to differ depending on dopa-
minergic medication in PD14,54,61, and the increase in 1/f exponent in PD
compared to healthy controls is seen through most of the cortex, excluding
the frontal cortices rather than just the areas that receive input from the
dopaminergic areas54. Though the present study focused on the activity of
the sensorimotor cortex and the motor symptoms, inspection of the cor-
relation between all signal features and clinical test scores in the current
study showed a significant negative correlation between 1/f exponent and
cognitive assessment with MoCA (supplementary material), which could
hint at a relation between increased 1/f slope and cognitive decline. Indeed, a
recent study found that changes in the aperiodic 1/f in the frontal cortex are
predictive of cognitive decline in PD64 and another showed a larger 1/f
exponent in patients with Lewy body dementia compared to PD patients
without dementia and healthy controls65. The change in 1/f characteristic of
the cortical activity appears relevant to understanding cognitive
symptoms in PD.

Analysis of neural time series by frequency decomposition is a pow-
erful tool to extract and summarise signal features, but the method has
limitations in what one can infer. In the time domain, increased oscillatory
power can reflect both increased burst duration and change in burst
amplitude and an expression of true sustained oscillations in the signal36,66.
The neural time-series can express both a degree of sustained oscillations
while also exhibiting variation in the degree of transient bursts—e.g., a signal
of steady oscillation with transient high-amplitude bursts. The presence of
sustained oscillations in the sensorimotor rhythm might reflect a higher
level of functional inhibition of sensorimotor information; as is seen in
recordings from STN5 and, to some extent, also at the cortical level38,67.
However, sustainedoscillations are not in contrast to the bursting properties
of the sensorimotor rhythm. The various features of the bursts are likely
expressions of distinct underlying pathophysiological processes. We found
evidence that burst rate and amplitude varied depending on group andwere
inversely related to bradykinesia. We further found that the longer burst
durations—after regressing out the contribution of other features—were
associated with increased axial symptoms.

Bursting properties of the cortical sensorimotor neural activity are
proposed to occur due to long-range input through the ascending thalamic-
cortical connection to the cortex, leading to an increase in the local neural
excitation and resulting in a burst of synchronous activity36. The observed
disease-related changes in spontaneous cortical bursts, in the formof amore
rapid decrease in burst rate over age for PD patients, could reflect inhibition
of these projections along the thalamic-cortical pathways caused by dis-
turbances in the dopamine-dependent structures projecting to the cortex.
The association of beta burst duration withmidline functions is in line with
previous studies reporting that longer bursts in the subthalamic nucleus are
associated with the postural-instability and gait disorder (PIGD) motor
phenotype of PD68,69, Freezing of Gait and other gait features70. However, we
did not find significant group differences in burst duration in the current
study—in linewith previously reportedfindings on cortical bursts in PD14—
supporting the view that the central mechanisms of the cortical bursts are

not primarily affected in PD—instead, it is the rate of bursts that is reduced
at the cortical level.

The sub-cortical beta-band activity is influenced by the activity of
dopamine-responding neurons5,6,45. The effect of dopamine and dopami-
nergic medication on the cortical beta-band is likely mediated by the dopa-
minergic neurons projecting to the cortex that terminate in the pre-frontal
cortex but also, to a lesser extent, in the primary sensorimotor cortex71. The
differences in the cortical sensorimotor burst rate in PDmight be an indirect
effect of the loss of dopamine and changes in the beta band in the sub-cortical
structures projecting to the sensorimotor cortex. The notion that the cortical
sensorimotor activity is only indirectly related todopaminedepletion inPDis
further supported by findings from animal studies showing that
6-hydroxydopamine injections lead to exaggerated beta-band oscillations
only after several days had passed, suggesting that oscillatory changes
occurred as an indirect compensatory effect after dopamine depletion rather
than a direct consequence of the depletion itself7. The indirect influence of
dopamineon thecortical beta-bandmight also explain theoftenweakor even
absent effect of dopaminergic medication on cortical beta-band activity12–15.

The current study cannot directly address the role of dopamine on
cortical oscillations since all patients in the studywere tested onmedication.
However, a recent study found that cortical burst characteristics measured
with MEG were influenced by DBS therapy in PD and normalised the
bursting characteristics during DBS to resemble the burst characteristics of
healthy controls46. This further supports that cortical bursting activity is
mediated by subthalamic projections.

We explored how age-related differences in cortical sensorimotor
neural activity might interact with disease-related changes in PD. Age-
related effects on spontaneous sensorimotor activity are commonly dealt
with by matching the age distributions of the patient group and the healthy
control group—usually within a narrow age span. The analysis showed age-
related differences in burst rate, with PD patients showing a more con-
siderable reduction of bursts as a function of age than healthy controls. We
foundnoevidenceof change inburst rateover age inhealthy controls,which
is in line with previous studies on elderly healthy controls47—though
another study has found an age-related decrease in burst rate from young
adulthood to old age in healthy participants43. The main finding in the
present study is that the burst rate decreases for PD patients across the age
span we investigated. The reduction in burst rate with age in PD seems in
accordance with the fact that higher age at PD onset is associated with a
faster disease progression and more rapid decline in motor function72,
though a longitudinal design is needed to confirm the relation between
disease progression, reduction in burst rate, and age.

Aprevious study reported that old agewas associatedwith longer burst
duration when comparing healthy young and elderly participants48. How-
ever, we did not find evidence of any age-related effects on burst duration
when looking across age rather than comparing young- and elderly adults.
However, our study did not include a group of young participants, so the
change in burst duration likely occurs from young adults to adulthood
rather than in late adulthood. Similarly, another study looking at burst
features across age with age as a continuous variable did not find an asso-
ciation between age and burst duration—only burst rate43.

We included cortical thickness measures within the same ROI from
which we extracted the functional time-series, as we hypothesised that age-
related effects upon the functionalmeasuresmight bemediated through the
age-related structural changes in the cortex. However, despite the negative
correlationbetweenage andcortical thickness (see supplementarymaterial),
we did not find substantial evidence that cortical thickness affected burst
features. In all our analyses, we only found evidence that cortical thickness
was associatedwith the oscillatory centre frequency in the alpha band in and
interaction with group. An explanation might be that such slowing is more
pronounced in PD patients with dementia27–30 and correlates with cognitive
ability26. ThePDpatients in the current study didnot differ in their cognitive
ability from the healthy controls. Furthermore, we focused on the activity in
the sensorimotor cortex, whereas the slowing of alpha and beta PSD is
usually found in frontal areas and globally throughout the brain25,28,31.
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We included sex to explore if disease-related changes in sensorimotor
oscillatory activity differed between males and females, as there are well-
documented sex differences in themanifestation of PD1,73. Male sex is a risk
factor for developing PD, with an average incidence ratio of approximately
2:1male-female ratio across all stages of thedisease74.Thediseaseonset is, on
average, two years earlier in males than females and differs in the initial
manifestation of symptoms, with women more likely to develop tremor-
related symptoms and men more likely to develop rigidity75. In line with
that, the regression analysis of motor symptoms showed evidence for a
difference in overall motor symptoms, midline function and rest tremor
between male and female patients.

The analysis of the sensorimotor signal features showed evidence of
differencesbetweenmales and females in the burst rate.The sexdifference in
burst rate did not depend on whether it was healthy control or PD patients.
The burst amplitude, on the other hand, showed an interaction between
group and sex. In line with our finding, a previous study investigated sex
differences inPDin recordings fromSTNand found that femaleshadhigher
alpha- and beta power thanmales—however, only in theOFF state, whereas
females only had higher power in the high gamma band when ON
medication76. A possible factor behind the sex differences in PD is the
contribution of sex hormones on the nigrostriatal pathway linked to the
deterioration of the dopaminergic system, where testosterone levels appear
to enhance dopamine loss, while oestrogen has been identified as a neuro-
protective agent for PD. Oestrogen has been demonstrated to influence
incidence levels of PD, while menopause-related variations in oestrogen
levels are linked to variations inPDsymptomseverity77.At the current stage,
it is unclear if oestrogen sex hormones influence oscillatory bursts in the
STN and the sensorimotor cortex. These findings illustrate the need for
further studies into sex-specific changes in neural function and how they
manifest and relate to PD.

The present study quantified the neural time series from the sensor-
imotor cortex based on pre-defined summarymeasures of its PSD and burst
properties. A limitation of our study for understanding the extent of changes
in oscillatory sensorimotor activity is the focus on different features within a
narrowROI, which ignores other types ofmeasurements that are potentially
relevant to understanding the development of PD andmotor symptoms: for
example, the long-range connectivity between the sensorimotor cortex and
other cortical areas and the connections between the sensorimotor cortex
and the basal ganglia and thalamus. Treating the activity in the sensorimotor
cortex as a single time series also means that we remove the sensitivity to
spatial features of the signals, e.g., focal versus spatially blurred activity in one
group or the other. If the oscillatory activity extends over a larger cortical
surface area, that signal will also manifest as power differences in the mea-
sured signal66. There are potentially other features to be uncovered, and
future studies may explore how the PSD- and burst features further interact
with other aspects of brain activity in the global function of the brain to fully
understand the interaction between functional and structural changes inPD.

We investigated a relatively large cohort of PD patients and healthy
controls (for a neuroimaging study) to make meaningful inferences about
how age and sex interact with the group-level difference between PD
patients andhealthy controls; however, a limitation is that our study is cross-
sectional. Therefore, the age-related effects we report here are limited by
what is possible from cross-sectional inference. The variation from indivi-
dual to individual in the various measurements may obscure fine-grained
effects. Ideally, we will follow this cohort longitudinally to estimate the
development trajectories of the sensorimotor oscillatory activity in PD and
in healthy ageing.

For understanding the functional changes in the sensorimotor cortex
in PD, the most limiting factor for our study is that we only acquiredMEG
from PD patients while in the ONmedicated state. This means that the PD
measurements do not reflect the worst manifestation of the disease when
dopamine is depleted. This would have represented a state withmore severe
motor symptoms and thus a truer state of the disease to uncover the disease
mechanisms. This could have led to larger group differences and potential
group effects we did not find evidence for, as themedication normalises the

activity in the PD patients to be more like the healthy controls. The nor-
malising effect of dopaminergic medication on neural oscillations is, for
example, well documented in deep brain recordings5,9,11,45. However, the
effect of dopaminergic medication is not as apparent on neural signals
measured at the cortical level. The motivation for only recording MEG for
PDpatients in theON state was that the features wewanted to investigate—
i.e., burst and 1/f features—were not previously shown to differ depending
on medication in PD14,54,61. We acknowledge that with the sample size we
achieved in the present study, wemight have been able to detect effects that
were otherwise not statistically detectable in the previous smaller study, not
tomention that it would have been possible to provide an answer to how the
medication would have affected the signal features. However, in designing
the study, we prioritised achieving a large sample of participants over doing
repeated measurements on and off medication. Future studies should
investigate whether the effects we report here are indeed affected by Par-
kinsonian medication.

Sensorimotor activity measured non-invasively with MEG/EEG con-
tains rich information about the functional state of the sensorimotor system
andhow it changes inPD.The central challenge is quantifying themeasured
neural signals to extract the disease’s relevant features from the signals, be it
the spectral power, centre frequencies, or burst-like features. Finding fea-
tures of neural signals that can explain disease mechanisms or symptoms,
even if extracted alongwith a reducednumber of dimensions,will be helpful
if they provide adequate information about the disease- or symptom-state.
Further characterisation of the association between features in the non-
invasive brain signals and motor symptoms can potentially be a valuable
tool to aid in diagnosis and treatment evaluation. Understanding how
features in the neural time series are related to motor symptoms in PD will
also help develop non-invasive neural stimulation that can potentially
relieve motor symptoms37,78.

Methods
Participants
Eighty PD patients (age 44–85; 32 female) and 71 healthy controls (age
46–78; 46 female) participated in the study. The study was approved by the
regional ethics committee (Etikprövningsnämden Stockholm, DNR 2019-
00542) and followed the Declaration of Helsinki. All participants gave
written informed consent before participation.

The PD patients were recruited from the Parkinson’s Outpatient
Clinic, Department of Neurology, Karolinska University Hospital, Stock-
holm, Sweden. The healthy controls were recruited by advertising or
amongst spouses of PD patients. 22 participants (18 patients, 4 healthy
controls)were included fromaprevious study14whowere qualifiedbasedon
the recruitment criteria of the present study and had done the same MEG
and MRI procedures as in the present study. All data were reanalysed
following the procedure described below.

The inclusion criteria for the PD group were a diagnosis of PD
according to the United Kingdom Parkinson’s Disease Society Brain Bank
Diagnostic Criteria with Hoehn and Yahr stage 1–379. Inclusion criteria for
the control groupwere not having a diagnosis of PD, no form ofmovement
disorder, and no history of neurological disorders, epilepsy, or psychiatric
disorders.

Exclusion criteria for bothgroupswere adiagnosis ofmajordepression,
dementia, historyorpresenceof schizophrenia, bipolardisorder, epilepsy, or
history of alcoholism or drug addiction according to the Diagnostic and
Statistical Manual of Mental Disorders80.

Oneparticipant declined todo theMRI scanning, oneparticipant hada
scanner malfunction duringMRI acquisition, and 11 participants had their
MRI scans cancelleddue to theCOVID-19pandemic andwerenot included
in the analysis. In total, two PD patients and 11 healthy controls were
excluded from the analysis. Table 1 is a summary of the participants
included in the analysis.

The PD patients participated in the study while on their regular pre-
scribed dose of medication. Levodopa equivalent daily dose was calculated
according to Tomlinson et al. 81. Motor symptoms in the PD group were
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assessedusing themotor section of theMovement-Disorder SocietyUnified
Parkinson’s Disease Rating Scale (MDS-UPDRS-III)60. Global cognition
was assessed with the Montreal Cognitive Assessment battery (MoCA)82.

MEG recordings
MEG data were recorded with a Neuromag TRIUX 306-channel MEG
system,with 102magnetometers and102pairs of planar gradiometers.Data
were sampled at 1000Hz with an online 0.1 Hz high-pass filter and 330Hz
low-pass filter. The MEG scanner was located inside a three-layer magne-
tically shielded room (Ak3B, Vacuumschmelze GmbH)with internal active
shielding active to suppress electromagnetic artefacts. The subjects’ head
position and head movements inside the MEG scanner were measured
during recordings with head-position indicator coils (HPI) attached to
subjects’ heads. The HPI location and additional points sampled uniformly
across the subjects’ head shape were digitalised with a Polhemus Fastrak
motion tracker before the measurements. Horizontal and vertical electro-
oculogram (EOG) and electrocardiogram (ECG) were recorded simulta-
neously with the MEG.

We recorded threeminutes of resting-stateMEGwhile the participants
satwith their eyes closed. The participantswere instructed to close their eyes
and relax. The recordings began after assuring the participant sat still with
their eyes closed.

The participant’s head movements during the recording were mea-
sured by continuously sampling the HPI location. The average head
movements were not significantly different between groups (t(115.8) =
0.55, p = 0.58).

MRI acquisition
3D T1-weighted magnetisation-prepared rapid gradient-echo (MPRAGE)
sequence structural images (voxel size: 1x1x1 mm) were obtained on a GE
Discovery 3.0 TMR scanner formorphological analysis and creating source
spaces forMEG source reconstruction. Multi-echo “FLASH“83 images were
obtained to create volumetric headmodels for MEG source reconstruction
(see below).

MRI processing
The MRI images were processed with Freesurfer84 (v. 5.3) to get surface
reconstructions of the cortical mantle. The surfaces were obtained with the
automatic routine for extracting cortical surfaces in Freesurfer from the
individual T1-weighted MRI.

We defined the cortical sensorimotor area by segmenting the cortical
surface using the anatomical labels provided by Freesurfer automatic
labelling85. The analysis focused on a region of interest (ROI) consisting of
the left pre- and post-central gyri and central sulcus. The pre/postcentral
gyri were combined because a biomagnetic source on either sulci wall will
leave a trance on the other side due to the close distance and the field spread
of MEG signals. The ROI was defined for each subject based on the indi-
vidual cortical reconstructions. The average cortical thickness in the ROI
was estimated with Freesurfer86.

MEG pre-processing
TheMEG data was processed by applying temporal signal space separation
(tSSS) to suppress artefacts from outside the scanner helmet and correct
headmovement during the recording87. The tSSS had a buffer length of 10 s
and a cut-off correlation coefficient of 0.95.Movement correction was done
by shifting the head position to a position based on the median of the
continuous head position during the three-minute recording.

The MEG data processing and source reconstruction was done with
MNE-Python88 in Python 3.8. First, we marked data segments containing
muscle artefacts and SQUID jumps with the automatic artefact detection in
MNE-Python. The data was filtered with a 48Hz low-pass zero-phase FIR
filter with a 12Hz transition bandwidth and 50Hz notch filter to remove
line noise. The continuous data were cut into 1.0 s epochs, and epochs with
muscle artefacts or extreme values (5000 fT formagnetometers and4000 fT/
cm for gradiometers) were rejected. Between 0 and 65% (median: 6.0%) of

data was rejected, resulting in 63.0–180 s (median: 174.0 s) of useful MEG
data per participant. The remaining data length was not significantly dif-
ferent between groups (Wilcoxon rank sum test, p = 0.98). We then per-
formed an independent component analysis (ICA) using the fastica
algorithm89 to identify artefacts from blinks and heartbeats. Components
showing correlation with the EOG and ECG were removed from the raw
data. Between 0–5 (median 3) components were removed per participant.
The number of removed ICA components was not significantly different
between groups (Wilcoxon rank sum test, p = 0.71).

We then applied source reconstruction using noise-weighted mini-
mum-norm estimates90. The noise covariance matrix was estimated from
two minutes of empty room MEG data recorded before each session. The
source space consisted of 5124 evenly spaced points sampled across the
white matter surfaces. The inner skull boundary was estimated from
the multi-echo MRI to create a single shell volume conductor model. The
time series from the sensorimotor ROI (see Fig. 1) was extracted from the
estimated source time series by singular value decomposition of all source
points within the ROI. The resulting time series were used to calculate the
PSD and oscillatory bursts.

Power spectral analysis
We analysed the spectral properties of the sensorimotor activity by calcu-
lating the PSD from 0.5 to 40Hz across the entire cleaned ROI time series
using Welch’s method by segmenting the continuous data into 3.072 s
segments with 50% overlap and averaging the PSD across the segments.

Since the narrow-band beta power in the PSD is dependent on the
broader features of the broadband spectrum, we further analysed the 1/f
broadband characteristic of the sensorimotor activity as this could play a
role in the functional properties of the beta-band and has been shown to
differ between healthy control and PD patients14. We used the fitting oscil-
lations & one over f (FOOOF) toolbox52 to analyse the 1/f broadband
characteristic of the PSD (offset and exponent) and the oscillatory peaks in
the canonically defined beta band (13–30Hz) and alpha band (8–12Hz). A
log-linear regression is fitted to the PSD and subtracted before fitting
Gaussian functions to the peaks in the PSD. The midpoint of the Gaussian
function fitted to a given frequency band corresponds to the peak frequency
in that frequency band, and the height represents the signal power. A new
log-linear function is fitted to the PSD after subtracting the Gaussian
function to estimate the 1/f characteristic. The parameters of the fitting
procedure were set to a maximum of 8 peaks, peak threshold of 2, and a
minimum peak height of 0.05, with a bandwidth between 0.75 and 12Hz.
The goodness-of-fit for the model fit was at a median R-squared of 0.968
across all subjects (range 0.89-0.99) and did not differ between groups
(Welch-t(133.41) = –1.11, p = 0.269). All participants showed a discernible
beta peak in the PSD. Nine PD patients and nine healthy controls did not
show a peak in the PSD alpha band (no difference between groups,
χ2(1) = 0.12; p = 0.73). The participants who did not show an alpha peak
were not included in the analysis of the alpha band.

We repeated the analysis of alpha- and beta power and centre fre-
quency taken directly from the PSD without doing the FOOOF procedure.
Power and centre frequency were found by finding the peak in the uncor-
rected PSD for the alpha- and beta-frequency range, respectively.

Burst analysis
To calculate the burst properties of the sensorimotor activity in the time
domain, we band-pass filtered the time-series with an 8–30Hz band-pass
filter using FieldTrip91 in MATLAB (R2016b; MathWorks Inc.) and cal-
culated theHilbert envelopeof the signal. Theburst thresholdwasdefinedas
two times themedian of the signal. The burst onset was defined as the time-
point where the signal first reached half the max amplitude of the burst and
ended at the time-point where the signal again dropped below half the max
amplitude of the burst. The burst amplitude was defined as the maximum
value of the burst. The burst duration was defined as the time from burst
onset to burst end. The burst intervalwas defined as the time from the endof
a burst to the time-point where the next burst began.
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Statistics
Analysis of sensorimotor rhythm features. The main analyses tested the effect
of group (PDpatients/healthy controls),age, sex, andROIcortical thicknesson
the features listed inTable 2. For thePSD features, wemodelled the outcomes
as a linear function of group (PDpatients/healthy controls), age, age squared,
sex, and cortical thickness with linear regression in R (v. 4.1.3)92. The
regression models were fitted to the data for each participant with all factors
and up to their two-way interactions between the four predictors. Gaussian
regression models were estimated for each feature, except for the burst rate
(burst per minute), which was modelled with Poisson regression for count
data using the same predictor variables. Before fitting the regressionmodels,
burst duration, burst interval, and burst amplitude were log-transformed.

Hypothesis testingwasdoneby computing theBayes factor (BF) for the
model with a given predictor (H1) versus the model without the predictor
(H0). Given that the study is an explorative analysis, Bayesian is the
appropriate statistical approach as the BF tells how much more likely the
observed data is under the alternative model (H1) versus the null model
(H0) and avoids themultiple comparison problemof frequentist hypothesis
testing. The model comparison approach furthermore circumvents issues
with interpreting p values of individual regression coefficients due to
internal correlation betweenpredictor variables. Following the conventional
interpretation of BFs, we used BF > 3 as a cut-off between anecdotal evi-
dence and substantial effects59. The model comparison was done by
sequentially adding predictors and comparing the variance explained
between themodel with the predictor (H1) and the previousmodel without
the predictor (H0). The BFs for all comparisons, model coefficients and
P-values formodel coefficients are presented in the supplementarymaterial.

Clinical scores and sensorimotor oscillatory features. The MDS-
UPDRS-III scores were divided into subscales based on symptoms: mid-
line function, rest tremor, rigidity, upper-body bradykinesia, postural and
kinetic tremor, and lower limbbradykinesia; according toGoetz et al. 93. Each
of the symptom composite scores were analysed by multiple regression;
modelled as a function of the burst rate, median burst duration, median
bursts interval, median burst amplitude, PSD 1/f offset, PSD 1/f exponent,
PSD beta power, PSD beta centre frequency, PSD alpha power, and PSD
alpha centre frequency for eachPDpatient. Themodels further included the
age, sex, disease duration, LEDD, and cortical thickness to regress out the
contributionhereof andestimate the relative effect size of eachsignal feature.
All symptom ratings and continuous predictor variables, except age, were
z-transformed to get the standardised effect size. Significance testing was
done by removing one predictor from the model and calculating the BF
between the fullmodel (H1) and themodelwithout the predictor (H0)using
theBICapproximation forBFs.TheBFs for all comparisons arepresented in
the supplementary Tables.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The full dataset cannot bemade publicly available, as the ethical permits for
the study do not allow for open data sharing. We have released parts of the
MEG data used in this analysis in anonymised form94. MRI data cannot be
shared, but individually modified template MRIs to recreate the MEG
source reconstruction95 are part of the released dataset. The data is available
through the EBRAINS data-sharing platform96. Access to the data requires
that the acceptance of the EBRAINSDataUsageAgreement for humandata
requires all users to create an account and identify themselves using an
institutional email address. For a detailed description of the data, we refer to
the accompanyingdata descriptor94. The scripts used to process the data and
run the analysis presented in the paper are available at: https://github.com/
natmegsweden/PD_beta_bursts2.
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