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Identification of 27 allele-specific
regulatory variants in Parkinson’s disease
using a massively parallel reporter assay
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Genome wide association studies (GWAS) have identified a number of genomic loci that are
associatedwithParkinson’sdisease (PD) risk.However, themajority of these variants lie in non-coding
regions, and thus the mechanisms by which they influence disease development, and/or potential
subtypes, remain largely elusive. To address this, we used amassively parallel reporter assay (MPRA)
to screen the regulatory function of 5254 variants that have a known or putative connection to PD.We
identified 138 loci with enhancer activity, of which 27 exhibited allele-specific regulatory activity in
HEK293 cells. The identified regulatory variant(s) typically did not match the original tag variant within
the PD associated locus, supporting the need for deeper exploration of these loci. The existence of
allele specific transcriptional impacts within HEK293 cells, confirms that at least a subset of the PD
associated regions mark functional gene regulatory elements. Future functional studies that confirm
the putative targets of the empirically verified regulatory variants will be crucial for gaining a greater
understanding of how gene regulatory network(s) modulate PD risk.

The majority of people diagnosed with Parkinson’s disease (PD) are
considered to have sporadic disease, caused bymultiple different factors,
each contributing a degree of risk. Genome-wide association studies
(GWAS) are used to identify genetic risk variants, specifically single
nucleotide polymorphisms (SNPs), that are strongly associated
(p ≤ 5 × 10−8) with a disease or phenotype of interest. There have been
three GWAS meta-analyses conducted in the last decade for PD1–3, the
most recent of which compared 37,688 PD cases, 18,618 proxy cases, and
1.4 million controls. This study identified 90 risk variants across 78
genomic loci3. However, assigning target genes and functionality to these
risk loci is problematic, given that 80 (89%) of the 90 PD-associated
SNPs are located within non-coding genomic regions (intronic or
intergenic). Linkage disequilibrium (LD) further complicates the
situation as the tag GWAS SNP (i.e., the SNP with the smallest p-value
within an identified disease-associated risk locus – not necessarily the
causal SNP) is often strongly correlated with nearby variants, making it
difficult to identify the causal SNP4. Despite these challenges, it is known
that disease associated SNPs are enriched within gene regulatory

elements5, indicating that one possible function of these SNPs may be to
regulate gene expression6

In addition to GWAS loci, which have predominantly been identified
through analyses involving individuals with the sporadic form of PD, there
are a number of mutations that have been reported to cause PD7. Such
mutations have been identified in genes such as PINK1 and LRRK2 and are
typically associatedwith the familial, early onset formofPD.Althoughoften
referred to as causal, there remains significant uncertainty associated with
many of these proposedmonogenic PD genes7,8. Notably, the penetrance of
the causative mutations within these genes is highly variable, and thus the
question of whether there are other mechanisms (i.e., gene regulatory
mechanisms; epigenetic modifications) influencing the impact of these
mutations arises9. For simplicity, we will refer to the genes as ‘PARK’ genes,
but recognise this term should be used with caution.

When considering the function(s) of both risk and causal variants,
many computational prediction tools exist10,11. However, these tools typi-
cally have limited predictive utility, especially when used in isolation12–14.
Alternatively, massively parallel reporter assays (MPRAs) are a
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high-throughput, in vitro tool that enable one to simultaneously test one
putative function for thousands of variants - the existence of allele specific
regulatory activity at each locus15,16. This assay takes advantage of the well-
established luciferase reporter gene assay17, bywhich a synthesised library of
barcode-tagged, putative regulatory sequences is cloned into a reporter
plasmid, and transfected into the cell-line being used. High-throughput
sequencing of the transcribed barcodes from the pooled cells can then be
used to determine levels of enhancer activity for each locus (Fig. 1).

Hereweused anMPRAto screen5254variantswithknownorputative
connections to PD, to assess which of the variants exist within regulatory
elements, and whether the PD risk variant allele modulates expression. We
identified 138putative enhancer elements inHEK293 cells, 27 ofwhichwere
confirmed as allele-specific. Notably, 23 of the 27 allele-specific enhancers
are predicted to disrupt transcription factor binding sites. For the vast
majority of studied PD GWAS loci, the identified allele-specific enhancer
element was not the original GWAS tag SNP. Furthermore, integrating
expression quantitative trait loci (eQTL) and Hi-C data (across peripheral
and CNS tissues) identified an average of 11 putative target genes per reg-
ulatory element identified by MPRA. Collectively, the results of this study
provide insights into the regulatory potential of variants that are associated
withPDrisk. By assigning enhancer functionality to PD-associated variants,
we provide a fine-mapped subset of variants that can be exploited further to
gain a greater understandingof how thegene regulatorynetworkpotentiates
risk in PD. In a complex, polygenic, disease such as PD, integrating data on

the PD gene regulatory network with other ‘omic data types will be critical
for generating personalised molecular profiles and developing robust
patient stratification tools.

Results
Construction of PD-associated variant MPRA library
We constructed an oligonucleotide library containing 10,484 elements
(5254 allele pairs) that have been putatively linked to PD (Supplementary
Table 1). The library included variants in strong LD (R2 > 0.8) with variants
associated with PD in the three most recent meta-GWAS1,3,18 (Supple-
mentary Table 1 [PD-GWAS LD; SNP in strong (R2 > 0.8) LD with a PD
GWAS tag SNP]). An LD cut off of R2 > 0.8 was used for nominating
variants linked to the tag GWAS SNPs. This method minimizes a priori
assumptions, although there are more refined fine-mapping methods.
Given the significant overlap between the threemeta-GWAS studies1,3,18, the
data presented is based on the most recent, and largest, GWAS meta-
analysis conducted by Nalls et al. (Supplementary Table 2)3. On average,
each PD-associated locus was represented by 35 SNPs (range: 1–315 SNPs;
Fig. 2a). Common SNPs within 21 known PARK genes7 [PARK intragenic;
SNP within a known PARK gene – list of PARK genes obtained from
Blauwendraat et al. 2020], and distal variants associated with the expression
of these PARK genes [PARK eQTL; SNP putatively associated with reg-
ulation of one of the PARK genes] were also included (Supplementary
Tables 3 and 4). This extends our previous investigations of the regulatory
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Fig. 1 |MPRA experimental workflow.Oligonucleotides (230 bp) were synthesised
as a library and barcodes added (low-cycle PCR amplification). The library was
subsequently cloned into pMPRA1 to create the inert library vector. The inert library
was sequenced (150 paired-end sequencing; Illumina HiSeq X; 400M read depth) to
establish barcode-oligo pairings. The inert library was linearised between the bar-
code and oligo and a minimal promoter and luciferase open-reading frame (ORF)

inserted by directional cloning to create the competent library. The competent
library was transfected into HEK293 cells using Lipofectamine-3000. At 24-h post-
transfection, DNA and RNA (for cDNA synthesis) were harvested using the Qiagen
Allprep DNA/RNA extraction kit. DNA and cDNA were prepared for sequencing
through PCR amplification and barcodes were then sequenced (Illumina HiSeq X).
Allele-specific enhancer activity was determined using the mpralm R package22.
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network associated with GBA19. We also included 73 SNPs that are func-
tional (i.e. ATAC-seq and H3K27ac ChIP-seq) in microglial cells20 (Sup-
plementary Table 5), to enable an estimation of regulatory overlap across
different cell types. A library of oligonucleotides (230 bp)was synthesised to

centre on each variant of interest. Adapter sequences, including unique
20 bp barcodes, were added to the oligonucleotide library using a two-stage,
low-cycle PCR. On average, each element within the library was mapped to
449 barcodes (range: 1–9333, Supplementary Fig. 1; Fig. 1 part 4). The

Fig. 2 |MPRA identifies 123PD-related regulatory elements, 27 ofwhich act in an
allele-specific manner in HEK293 cell line. a Histogram showing number of LD
SNPs tested for each of the 78 loci associated with PD by Nalls et al.; b Histogram
showing the range of Z-scores of the putative regulatory elements. Dashed lines =
mean+/−3 SD; c Variant annotation for the target SNPs within the 123 regulatory
elements that were identified as enhancers (includes general and allele-specific
enhancers; annotations from HaploReg v4.1); d Activity measures of putative

regulatory elements, as calculated bympralm. Activity is presented as the log2 ratio
of aggregated RNA counts over aggregated DNA counts for all tested enhancers;
e Volcano plot showing allelic regulatory activity of 4910 putative regulatory ele-
ments included within the library. Red dots indicate significant (FDR < 0.05) allele-
specific enhancers, and grey dots indicate suggestive (FDR < 0.10) allele-specific
enhancers.
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putative enhancer elements were then directionally cloned upstream of a
minimal promoter (pMPRA1/pMPRAdonor2), thus driving the expression
of the luciferase reporter gene and enabling transcript quantitation of the
taggingbarcodes byRNAseq.Thismethod ismodified fromUebbing et al. 21

and Tewhey et al. 16.
We transfected the prepared MPRA library into HEK293 cells, per-

forming a total of three technical replicates. DNA and RNA (for cDNA
synthesis) were harvested, DNA and cDNA were prepared for sequencing
through PCR amplification and barcodes were then sequenced (Illumina
HiSeq X). Allele-specific enhancer activity was determined using the
mpralm R package22. We observed strong correlation between the three
replicates when comparing the composition and frequency of barcodes per
element (r = 0.69–0.96; Supplementary Fig. 2).We had high coverage of the
MPRA library, capturing 8849 of the 10,496 elements (81%) tested, 8548 of
which mapped to at least 5 unique barcodes (Supplementary Figs. 3 and 4).

Identification of PD-associated MPRA regulatory elements
We first sought to identify active elements within the MPRA library, irre-
spective of whether the enhancer activity was allele-specific (i.e., general

enhancers). Aggregated RNA (cDNA) barcode counts were compared
against the corresponding aggregated DNA barcode counts, and z-scores
were calculated. Elements were designated as ‘general enhancers’ if they had
a z-score of 3 or greater ( ± 3 SD from the mean). Using this approach, we
identified 138 general enhancers in HEK293 cells (Fig. 2b; Supplementary
Table 6).

Regulatory elements that have allele-specific enhancer activity were
identified using thempralmR package22. Using this approach, we identified
27 elements that exhibited allele-specific regulatory activity, at an FDR cut-
off of 0.05 (Fig. 2d, e; Table 1; SupplementaryTable 7). 21 of the 27 elements
were also identified as general enhancers, indicating that both alleles meet
the threshold to be classed as enhancers, but one allele has a significantly
greater regulatory effect (Supplementary Table 7 [column K]). It is likely
that more of the identified regulatory elements are allele-specific but, in
some instances, either the reference or alternate allelewasnot representedby
sufficient barcodes for inclusion in the downstream analysis (Supplemen-
taryTable 8). Focussing solely on the 78 loci identified in themost recent PD
GWASmeta-analysis3, we identified at least one regulatory variant (general
and/or allele-specific enhancer) for 41% (32 out of 78) of the PD associated

Table 1 |mpralm Allele-specific enhancers (FDR [adj. P.value] < 0.05)

Tag/representative SNP for
GWAS loci

GWAS /other map-
ped gene(s)

SNP nomination
categorya

rsIDb logFCc td p.valuee adj.p.valf Bg

DNAJC6 PARK intragenic rs6689005 0.7237 4.3200 0.000319078 0.031076676 0.2096

LRRK2 PARK intragenic rs2723264 2.4527 5.1134 4.97E−05 0.007183866 0.9203

PINK1 PARK intragenic rs7532202 −0.5914 −4.5400 0.000189986 0.020278954 0.7070

rs10463554/ rs26431 PAM PD-GWAS LD rs34788 −1.8215 −5.8955 8.37E−06 0.001765235 3.6351

rs10463554/ rs26431 PAM PD-GWAS LD rs62362545 0.7767 4.9850 6.70E−05 0.008660957 1.8011

rs11950533 TXNDC15, C5orf24 PD-GWAS LD rs113661575 1.3042 8.9366 1.69E−08 1.38E−05 9.7516

rs12497850 IP6K2 PD-GWAS LD rs6770112 −1.2506 −4.4274 0.000247688 0.025336401 0.5192

rs12600861 CHRNB1 PD-GWAS LD rs55749333 −1.1298 −6.1038 5.26E−06 0.001421964 4.0717

rs1867598 ELOVL7 PD-GWAS LD rs4700390 −1.8774 −6.0606 5.79E−06 0.001421964 4.0490

rs2904880 RABEP2, CD19 PD-GWAS LD rs11646653 −3.0047 −10.0393 2.39E−09 3.11E−06 11.5308

rs3104783 CASC16 PD-GWAS LD rs3104788 −0.5753 −5.8817 8.63E−06 0.001765235 3.4501

rs3104783 CASC16 PD-GWAS LD rs11860998 1.3594 5.0838 5.33E−05 0.007265473 1.9448

rs34025766 LCORL PD-GWAS LD rs112525610 0.8431 5.4918 2.08E−05 0.003653424 2.8718

rs34025766 LCORL PD-GWAS LD rs6449345 1.3133 4.6793 0.000136951 0.016010267 1.1253

rs4954162/ rs57891859 TMEM163 PD-GWAS LD rs3739034 −1.7047 −8.4702 4.04E−08 2.48E−05 8.7887

rs4954162/ rs57891859 TMEM163 PD-GWAS LD rs16830920 1.8216 6.7294 1.35E−06 0.000414713 5.4550

rs9261484 TRIM40 PD-GWAS LD rs3815082 1.0003 6.8322 1.09E−06 0.000380922 5.6154

rs9261484 TRIM40 PD-GWAS LD rs1076229 0.5242 5.1996 4.08E−05 0.006252808 2.1011

GIGYF2 PARK eQTL rs812383 3.2699 10.0055 2.53E−09 3.11E−06 11.1122

TMEM230 PARK eQTL rs8121449 1.7729 7.6989 1.82E−07 8.93E−05 7.4150

C2orf82 PARK eQTL rs6719061 −1.1065 −7.1117 6.04E−07 0.000247042 6.2727

VPS13C PARK eQTL rs78222414 0.8950 5.5766 1.72E−05 0.00324324 3.0401

ATP13A2 PARK eQTL rs2746478 −1.5447 −5.2525 3.61E−05 0.005903798 2.2690

POLG PARK eQTL rs7161856 −0.8109 −4.7258 0.000122782 0.015071546 1.1188

DNAJC6 PARK eQTL rs208376 −0.5213 −4.5660 0.000178715 0.019943008 0.7345

TMEM230 PARK eQTL rs6084993 −0.6038 −4.3069 0.000329122 0.031076676 0.2192

VPS13C PARK eQTL rs11071650 1.0959 4.2631 0.000364996 0.033187599 0.2536
aSNPnominationcategory indicateshow the regulatory elementwas initially linked toPD: ‘PARK intragenic’ = SNPwithin a knownPARKgene; ‘PD-GWASLD’ = SNP in strong (R2 > 0.8) LDwith aPDGWAS
tag SNP (tag SNP highlighted in first column); ‘PARK eQTL’ = SNP putatively associated with regulation of one of the PARK genes (specific gene indicated in second column).
bSNP in which the 230 bp putatively regulatory element was centred on.
clog fold-change (changes in activity) between the reference and alternate allele.
dt-statistic for RNA count difference between reference and alternate allele.
ep-value for calculated t-statistic.
fFDR correct p-value, only elements with FDR p-value < 0.05 are reported.
gB-statistic, the log-odds of differential expression.
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loci (Supplementary Tables 2, 6 and 7). This includes 10 loci (of 78) where
we identified at least one allele-specific enhancer. Intriguingly, for some loci
we identified multiple regulatory elements, consistent with findings from
Abell et al. that demonstrate genetic association signals can arise from
several tightly linked causal variants23,24. For example, for the chr3p21.31
GWAS locus (taggedby rs12497850),we tested 117 variants and identified 6
of these to be regulatory elements, one of which was allele-specific
(rs6770112; FDR corrected p = 0.025).

Functional annotation of MPRA identified regulatory elements
TheMPRA regulatory elementswe identifiedwere largelywithin intronic
and intergenic regions (Fig. 2c). Regions of functional importance can be
identified using depletion ranks (DR) as a measure of sequence con-
servation for 500 bp genomic windows. Regions are ranked with a score

from 0 to 1 (0 being most depleted, i.e., most constrained)25. Halldorsson
et al. previously demonstrated that non-coding regions (and regions
containing GWAS variants) represented the majority of regions under
sequence constraint, and thus have low DR scores25. The mean DR score
for all variants included in the MPRA library was 0.49. The enhancer
variants we identified had, on average, higher DR scores (general [0.55]
and allele-specific [0.52]) when compared to all other variants included
in the MPRA library (Fig. 3a). Although this finding was somewhat
unexpected, this may in part be due to the fact that the majority of the
enhancer variants are intergenic and would be considered distal
enhancer-like sequences. Finally, lower z-scores (i.e., weaker enhancers,
calculated from Fig. 2b, Supplementary Table 9) weakly correlated with
lower DR scores (indicative of variant depletion), consistent with selec-
tion against nucleotide variation at these enhancers (Fig. 3b).

Fig. 3 | Characterisation of MPRA-identified regulatory elements. aDR score for
variants included in the MPRA library. DR scores are plotted according to whether
the variant marks an allele-specific enhancer, general enhancer, or non-enhancer/
background variants within the MPRA library. MPRA-identified regulatory ele-
ments have higher depletion rank scores when compared to non-enhancer elements
within the library. bThere was a direct correlation between Z-score andDR score for

identified enhancer variants. c Presence of the reference allele at rs11646653 is
associated with significant enhancer activity (p = 3.11E−06). d Presence of the
alternate allele at rs11646653 disrupts the Arnt transcription factor binding site,
consistent with weakened enhancer activity. e rs11646653 is identified as a strong
allele-specific enhancer within the PD-GWAS chr16 loci, originally tagged by the
rs2904880 GWAS SNP. Figure adapted from LDLINK browser81.
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FABIAN26 was used to identify if the variants are predicted to disrupt
transcription factor binding sites (TFBS).We limited our analysis to use only
transcription factorflexiblemodels (TFFMs) forTFBSdisruptionprediction,
as they have been shown to outperform position weight matrices
(PWMs)26,27. FABIANprovidesone scoreperTFBSpervariant, from1 to−1,
with 0 indicative of no disruption. We chose an arbitrary cut-off of ± 0.8 to
select ‘high confidence’ predictions. Using this threshold, we found that 23
out of 27 MPRA allele-specific enhancers (FDR < 0.05) are predicted to
disrupt at least one TFBS (Table 2; Supplementary Table 10). Several of the
allele-specific enhancers are predicted to disrupt (negative score) or create
(positive score) multiple TFBS (i.e., rs6689005, rs2723264 etc.), indicating
that these SNPsmayhave significant functional implications in terms of gene
regulation, consistent with the notion that these were identified to be sig-
nificant enhancers. Finally, given the relatively small number of identified
allele-specific enhancers, we did not identify enrichment for any specific TFs
whose binding motifs are disrupted by MPRA regulatory variants.

We utilised HaploReg28 to identify overlaps between all identified
enhancer elements and epigenetic marks, and to further characterise the
identified enhancers (Table 3; SupplementaryTable 11). All of the identified
enhancer SNPs lie in intronic or intergenic regions, except for one SNP
(rs11555596), which lies in the 3’UTR of the VPS13C gene. Some of the
identified intronic enhancers may rather be acting as putative, cell-type
specific, alternative promoters29. When combining allele-specific and gen-
eral enhancers and comparing to all other elements within the MPRA

library, there was no significant difference observed in their overlap with
promoter or enhancer histone marks. We did, however, observe significant
enrichment for overlap with DNase I hypersensitivity regions (p = 0.046)
and protein binding sites (p < 0.01; ENCODE ChIP-seq data) in the
enhancer group. Consistent with previous knowledge, these findings indi-
cate that enhancer elements are more likely to be found in regions of open
chromatin, and a subset of the enhancer SNPs may be driving regulatory
effects by disrupting the binding of specific proteins. Despite this, the lack of
enrichment for promoter or enhancer marks highlights the notion that
epigenetic annotations alone cannot be used to predict enhancer elements
from non-regulatory elements30.

We next sought to investigate the likely regulatory activity of identified
allele-specific enhancers within brain tissues and cell-types. Epigenetic
annotations (i.e., open chromatin; histone modifications) are known to be
indicative of enhancer or promoter activity. By analysing these annotations
across a number of different datasets (FOUNDIN-PD ATACseq and
methylation data (iPSC-derived dopaminergic neurons)31; epigenetic
characterisation by Nott et al. 32; Fullard et al. 33; and Corces et al. 34) we
aimed to determine whether the MPRA identified allele-specific enhancers
(inHEK293 cells) are also active within brain cell-types or regions. 16 of the
27 (59%) identified allele-specific enhancers showed overlap with at least
one epigenetic annotation from the aforementioned datasets (Supplemen-
tary Fig. 5). In addition, several showed significant overlap with multiple
epigenetic annotations including: rs812383; rs4820323; rs2723264;

Table 2 | 23 of 27 allele-specific enhancers (FDR < 0.05) disrupt or create at least one transcription factor binding site

rsID Chr. Position (GRCh38) Transcription factor(s) Allele-specific enhan-
cer FDR

rs2746478 chr1:17015765 GLIS3,ZIC5 <0.05

rs6689005 chr1:65375651 SREBF1,EHF,ELF1,ELF4,ERF,ERG,ETS1,ETS2,ETV1,ETV2,FLI1,GABPA,IKZF1,STAT2 <0.05

rs16830920 chr2:134707896 HSF2 <0.05

rs3739034 chr2:134725811 EOMES,GATA1,GATA2,GATA4,GATA6 <0.05

rs6719061 chr2:232831175 PRDM14,TRPS1 <0.05

rs812383 chr2:232872422 NKX3-2,TBX19 <0.05

rs78222414 chr2:73977449 ZBTB26,ZBTB6 <0.05

rs6770112 chr3:49136573 ZNF135 <0.05

rs6449345 chr4:17932771 FOXH1 <0.05

rs112525610 chr4:17953199 EOMES,ZIC2 <0.05

rs62362545 chr5:103011748 HOXC10,POU2F1 <0.05

rs113661575 chr5:134594467 ZNF135 <0.05

rs4700390 chr5:60786718 E2F1,E2F4 <0.05

rs3815082 chr6:30146178 STAT5A,STAT5B,ZNF189 <0.05

rs2723264 chr12:40258718 BHLHA15,ISL1,NEUROD1,NEUROG2,MAFB <0.05

rs11071650 chr15:62052408 ZBTB6,ATF1,ESR2,FOS,FOSL1,FOSL2,JUN,NFE2,NFE2L2,RORC <0.05

rs7161856 chr15:89310952 SIX2 <0.05

rs11646653 chr16:28910828 ARNT,BHLHE40,BHLHE41,ZNF75D <0.05

rs11860998 chr16:52594506 PRDM14 <0.05

rs55749333 chr17:7468613 RXRA <0.05

rs8121449 chr20:5057712 ZNF416 <0.05

rs6084993 chr20:5084447 SIX2,TEAD1,TEAD2,TEAD3,TEAD4,NR1D1,PPARG,ZNF135 <0.05

rs208376 chr20:54006278 POU2F1,POU2F2,POU2F3,POU3F1 <0.05

rs12755229 chr1:65348550 NFATC1,NFATC2,STAT3,ZBTB26 <0.1

rs10929159 chr2:236024319 ESR1,ESR2 <0.1

rs34378 chr5:103064805 ZFP57 <0.1

rs10471496 chr5:60772520 ZNF692 <0.1

Full data, including directionality, can be found in Supplementary Table 10. The allele-specific enhancer FDR scores are taken from Supplementary Table 7, and are originally derived from the mpralm
analysis.
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rs113661575; rs1076229. Furthermore, through using GTEx35, we found
that 19 of the 27 allele specific enhancer SNPs are acting as eQTLs in at least
one of the thirteen brain tissues captured within the catalogue. Given our
assay was completed in a HEK293 cell line, one would not expect all
identified allele-specific enhancers to overlapwith functional annotations in
brain-related cell-lines. Nonetheless, the observed overlap highlights that
many of the identified enhancers likely also act as enhancers within relevant
brain regions, although further functional validation would be required to
confirm such activity.

GWAS tag SNP ≠ identified enhancer variant(s) within PD
GWAS loci
We identified enhancer variants for 32 of the interrogated GWAS loci
(which included 148 GWAS tag SNPs1,3; Supplementary Tables 2, 6 and 7).
However, only threeof the enhancer variantswere also classified as aGWAS
tag SNP (rs2740594, rs7938782, rs8005172). rs7938782 was identified as a
general enhancer (non-allele-specific) and was the only PD GWAS asso-
ciated SNP labelled as a tag SNP in Nalls et al. PDmeta-GWAS3. The other
two enhancer tag SNPs (i.e., rs2740594 and rs8005172) were identified as
being associated with PD (as the tag SNPs) in an older PD meta-GWAS
conducted by Chang et al. 1.

We sought to explore the profiles of MPRA identified regulatory var-
iants that are in strong LD with the original GWAS tag SNPs. One such
example falls within the CD19 coding region which was marked by the tag
SNP rs2904880 (Fig. 3c–e). In this instance, rs11646653 (LD: R2 = 0.867
with rs2904880) was identified as a strong allele-specific enhancer in the
HEK293 cells (adj. p = 3.11E−06; Fig. 3c). This is consistent with ENCODE
data which identifies rs11646653 as falling within a cis-regulatory element
(combined from all cell types)36. Notably, the alternative allele T at site
rs11646653 disrupts Arnt transcription factor binding (Fig. 3d; Table 2;
Supplementary Table 10), hence weakening the enhancer activity. The DR
score for rs11646653 was low (0.166), indicating a relatively high degree of
constraint, and thus functional potential. Finally, integration of chromatin
structure and eQTL data (across both peripheral and CNS cell lines/tissues)
identified a number of potential target genes for rs11646653, including
NFATC2IP and SH2B1 (Supplementary Table 12, see methods). Further
functional characterisation is required to pinpoint the exact effects of this
locus in a PD-relevant cellular model.

Previously identifiedmicroglial enhancer elements are not active
in HEK293 cells
We included 73 loci (146 elements accounting for reference and alternate
alleles) within the MPRA library that were previously identified as ‘Par-
kinson’s disease SNPs of interest’, due to their regulatory potential in
microglia (Supplementary Table 5)20. Booms et al. took the 6749 SNPs of

interest from the most recent PD meta-GWAS3 and overlapped the SNPs
with regulatory epigenetic marks to identify functional PD SNPs in
microglia20. Here, we determined whether this regulatory potential was
microglia-specific or was also captured in a more generic, HEK293 cell line.
None of the 73 loci were allele-specific enhancers inHEK293 cells, although
4 of the 73 loci were located within general enhancer regions (non-allele
specific) based on Z-score (Supplementary Table 6). These 4 loci overlap
with H3K4me3 and marks across multiple cell-types (ENCODE data;
Supplementary Table 11), indicating that these regions are likely to be
ubiquitous promoters or enhancers, as opposed to cell-type specific.
Therefore, we conclude that the remaining 69 SNPs of interest20 are more
likely to be cell-type specific enhancers in microglia. However, functional
reporter assays within a microglial cell line should be conducted to
confirm this.

Precise editing of identified allele-specific enhancer variants
confirms gene expression regulatory role(s) in the endogenous
environment
For three of the identified allele-specific enhancer variants (rs11646653,
rs78222414; rs3815082)we usedCRISPR-cas9 technology to create isogenic
pairs of cell-lines (induced pluripotent stem cell [iSPC] – KOLF2.1J cell
line37) that differ at the base of interest. We confirmed the absence of off-
target effects using in silico prediction tools38 and Sanger sequencing in cases
where the guide RNA had 3 or less mismatches. We then completed
RNAseq to identify differentially expressed genes associated with the single
base change in the undifferentiated iPSC state. All three of the explored
variants led to a large number of differentially expressed genes when
comparing WT replicates to the edited clones. Many of the differentially
expressed genes are consistent across all three sets of edits, suggesting that
the expression of these genes may be altered due to the nucleofection pro-
cess.Wehave therefore focusedon the differentially expressed genes that are
unique to each target (Supplementary Table 13; Supplementary Fig. 6). On
average, each introduced SNP was associated with 260 differentially
expressed genes (log2FC > 1.0) across three replicates. Of note, this analysis
showed that the alternate genotype compared towild-type at rs78222414 led
to differential expression of VPS13C, as predicted from previous analyses
(described below in the ‘Putative distal regulators of PARK genes’ section;
Supplementary Table 12). Through completing this work, we demonstrated
that all three variants are indeed acting as enhancers in the native chromatin
context and affect the expression of a number of genes.

Assigning target genes to MPRA regulatory elements
Combining data on chromatin architecture with gene expression data has
proven to be an effective approach for the translation of variant to target
gene39–41 (i.e., the gene(s) being regulatedby the variant).Wehavepreviously

Table 3 | Overlap between MPRA elements and epigenetic marks

Promoter
elementa

%
of total

Enhancer
elementb

%
of total

DNase I hypersensitivityc %
of total

Protein
bindingd

%
of total

Allele-specific enhancers 1 3.70 16 59.26 9 33.33 2 7.41

General enhancers 22 24.18 46 50.55 37 40.66 23 25.28

Background MPRA elements (i.e.,
non-enhancer elements)

856 16.80 2765 54.28 1529 30.02 616 12.09

Proportion test p value allele vs
general vs backgrounde

0.033 0.678 0.085 <0.01

Proportion test p value all enhan-
cers vs. backgroundf

0.518 0.779 0.046 <0.01

aNumber of elements overlapping with ChromHMM82 states corresponding to promoter elements.
bNumber of elements overlapping with ChromHMM states corresponding to enhancer elements.
cNumber of elements overlapping with DNase I hypersensitivity data peaks (narrowPeak algorithm).
dNumber of elements overlapping with protein binding sites, data obtained from ENCODE Project ChIP-Seq.
eProportion test comparing between the three separate sub-groups (i.e., allele-specific vs. general enhancer vs. background).
fProportion test comparingbetweenall enhancers (i.e., allele-specific+ general enhancer) vs. background.Background = all elements in theMPRA library not identified to be regulatory. Datawere obtained
from HaploReg V4.
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integrated spatial (Hi-C) data with gene expression (expression quantitative
trait loci; eQTL) data, to identify putative target genes of PD GWAS tag
SNPs40. We used CoDeS3D39 to link the MPRA regulatory elements
(includes general enhancers and allele-specific enhancers) to putative target
genes across all tissues (Supplementary Table 12). We identified an average
of 11 target genes (mean; range 1 – 49 target genes) for 133 of the 138
regulatory elements (Fig. 4a). Only 5 SNPs (rs80126945, rs11928552,
rs16830920, rs572955542, rs11175655) had no identifiable target genes
using this approach. In comparison to previous analyses exploring GWAS
loci40,42, MPRA identified regulatory SNPs were significantly enriched for
eQTLs (proportion test, p < 0.01), consistent with the recognition that tag
SNPs in GWAS are frequently not the functional elements. The two SNPs
(rs1076229 and rs9261504) with the most target genes were both SNPs in
linkage with the same PD-GWAS tag SNP (rs9261484) and are located
within the HLA locus (Chromosome 6p21.3). Other target genes of note
include: ARHGAP27, GPNMB, KANSL1, KAT8, PRSS38 and STX4, all of
whichwere deemed to be causal for PDbyMendelian Randomisation (MR)
analysis43,44. Our analysis identified regulatory variants that are putatively
associatedwith the expression of these genes that are causal for PD, and thus
there is strong rationale for future functional studies to understand these
regulatory interactions further.

Finally, we tested whether the putative target genes of the MPRA
identified regulatory SNPs were more likely to be intolerant to loss-of-
function variation than the background set of all genes (i.e., all genes listed in
gnomAD). This links in with the notion that the expression of highly
constrained genes is more likely to be altered through subtle regulatory
changes, when compared to genes that are not highly constrained45,46. The
LOEUF score (range: 0–2) is used to determine the level of constraint, with 0
indicating depletion of loss-of-function variation (i.e., highly constrained;
essential gene), and 2 indicating minimal constraint46. In comparison to
background genes, the target genes were significantly more intolerant to
loss-of-function variation (t-test; p < 0.01). This intolerance was pre-
dominantly driven by genes regulated through trans-interchromosomal
interactions (Fig. 4b), consistent with previous observations made by our
group40,42,47.

Putative distal regulators of PARK genes
The ‘PARK’ genes included within this analysis (Supplementary Table 3)
were initially outlined by Blauwendraat et al. as a list of monogenic PD
genes. Although several of these genes are often denoted as PARK genes, for

many there remains significant uncertainty around their reported causal
associations with PD. As stated earlier, the PARK annotation was used for
simplicity in this study. PARK genes have amean LOEUF (loss-of-function
observed/expected upper bound fraction) score of 0.612
(range = 0.074–1.641; Fig. 5a; Supplementary Table 3)46, indicating that
these genes tend to be mutationally constrained. This is consistent with
reports that mutations within these genes are deemed ‘causal’ for PD7.
However, despite being labelled as causal, many of the mutations display
incomplete penetrance, indicating that not everyone with the mutation will
develop PD48.We hypothesised that there are other variants thatmodify the
causative disease mutations by altering the expression of these disease-
associated genes. We identified potential regulatory variants using
CoDeS3D (as previously described19), and tested the enhancer activity of
these variants within the MPRA. Of note, none of these variants have
previously been associated with PD by GWAS. We identified putative
enhancer variants (range 1–6) for 12 of the 21 PARK genes within HEK293
cells (Fig. 5b). For the remaining 9 PARK genes, we identified no variants
with enhancer activity.

GIGYF2 (Chr2q37.1) is depleted for loss-of-function variation
(LOEUF = 0.077) and specific mutations within this gene are reported as
causative of PD49,50. In our analysis, we identified two allele-specific
enhancers that are associatedwith the expressionofGIGYF2, one ofwhich is
intronic to GIGYF2 (rs6719061), and the other (rs812383) lies upstream
within intron 1 of SNORC (Fig. 5c). rs812383 lies within a DNase hyper-
sensitivity region and overlaps a number of histone marks indicative of
enhancer activity (Supplementary Table 11). The rs812383-GIGYF2 eQTL
regulatory interaction in the brain cortex is reported in both theGTEx35 and
MetaBrain51 databases. Given the regulatory potential of these variants, it is
possible that they mark alternative promoters, as opposed to being intronic
or intergenic enhancers. However, discriminating these possibilities
requires further investigation.

A group of four variants in high LD (R2 = 1) within intron 5 of TEX2
(chr17) are associated with the expression of PRKN (PARK2; Supplemen-
tary Fig. 7) on chromosome 6.Unfortunately, for three of the four identified
enhancer variants (rs9889475, rs9915286, rs9915598), either the ref- or alt-
allele element was not represented by a satisfactory number of barcodes
within ourMPRA library. Therefore, we cannot infer whether the enhancer
activity is allele-specific at these sites. Both the ref- and alt- allele elements
were represented for the fourth variant (rs2166291), but no significant allelic
difference was observed, only general enhancer activity.
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Fig. 4 | Overlap of MPRA identified regulatory SNPs with eQTLs and
target genes. a Number of putative target genes per MPRA identified enhancer
element (SNP), identified through use of CoDeS3D algorithm; bGenes that are loss
of function intolerant, as measured by a continuous LOEUF score, are enriched in
trans-regulatory interactions.Median LOEUF scores for each category are presented

on each violin plot. The LOEUF score is a continuous value that indicates the
tolerance of a given gene to inactivation. Low LOEUF scores indicate stronger
selection against loss-of-function variation. Dotted line indicates the mean LOEUF
score (0.63) for 678 genes that are deemed essential for human cell viability.
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Discussion
Assigning function to disease-associated variants is a major challenge cur-
rently faced in the field of translational genomics, with the vast majority of
GWAS-identified variants located within non-coding regions of the
genome52. Although challenging, it is critical to understand where the dis-
ease risk is originating from and how these disease-associated variants
potentiate risk, in order to advance our understanding of disease mechan-
ism(s) and identify potential therapeutic targets. MPRAs were developed as
a tool to assess the regulatory function of such variants and distinguish
(causal) regulatory variants from those in strong linkage, potentially resol-
ving a limitation that is inherent in genetic association studies. Here, we
employed an MPRA to systematically evaluate the regulatory potential of
5254 PD-associated variants, identifying 138 general enhancers, including
27 allele-specific enhancers within HEK293 cells. 23 of the 27 allele-specific
enhancers disrupt at least one TFBS, with many disrupting multiple TFBS.
In addition to disruption of TF binding, there are likely other mechanisms
through which the elements may be regulating gene expression, including:
overlap with signature epigenetic markers (i.e., histone modification) or
alterations in chromatin accessibility52.

The bulk of the elements included in our MPRA library were variants
in strong LD within PD GWAS loci. For the majority of these loci, the
GWAS tag SNPwas not identified to be locatedwithin a regulatory element.
This is consistent with previous studies exploring the regulatory potential of
tag SNPs vs. those in LD11, and highlights the need for functional assays (e.g.
MPRA) prior to downstream analyses. Furthermore, for several loci we
identifiedmultiple regulatory variants within a locus, consistent with recent
findings from Abell et al. 23,24. The presence of multiple regulatory variants
within a single risk-locus opens the possibility that the risk is due to the
combined effects of changes within two or more control elements. For
example, the PD GWAS meta-analysis that identified the locus tagged by

rs578918593 also identified rs4954162 as a potential tag-SNP, but it did not
pass the final quality control. Both rs57891859 and rs4954162, and 52 SNPs
in LD with either one or both of these SNPs, were included in our MPRA.
We found that neitherof these tag SNPs acted as enhancers inHEK293 cells.
However, two SNPs (rs3739034 and rs16830920) in linkage act as allele-
specific enhancers. rs16830920 is rare (MAF < 0.01) and thus we could not
check for eQTL targets for this SNP. However, we identified a number of
putative target genes for rs3739034, includingCCNT2 andTMEM163. This
not only adds to previous association studies that have highlighted these
genes as likely targets of this locus3,53,54, but also highlights a potential
enhancer SNP within the locus that may drive the observed association. Of
note, the reference allele at rs3739034 is acting as the enhancer, with the
presence of the alternate allele weakening enhancer activity. This is con-
sistent with thefinding that the alternate allele disrupts binding of a number
of GATA transcription factors, thus providing a potential mechanism
through which weakening of the enhancer activity likely occurs. Future
functional studies (i.e., CRISPR substitution)will be important todetermine
the synergistic effects of rs3739034 and rs16830920, and to advance our
understanding of loci with multiple regulatory elements.

Beyond elucidating the regulatory activity of disease-associated var-
iants, characterising the gene targets of these variants is key for under-
standing the overarching gene regulatory network, and for identifying
potential therapeutic targets. We identified both proximal and distal puta-
tive gene targets for the regulatory variants (Fig. 4) using an approach that
integrates Hi-C spatial data with gene expression eQTL data. A high pro-
portion (133 of 138) of the MPRA enhancer variants were identified as
spatial-eQTLs, indicating that the vast majority of these regulatory variants
are impacting the expression of at least one gene.

Our approach also identified a small number of candidate regulatory
variants that are putatively linked to the expression of causal PARK genes.
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Although known coding mutations occurring within this set of genes are
deemed to be causal for PD, they typically display incomplete penetrance,
suggesting there may be other modifying mechanisms. In addition, there is
significant debate surrounding whether GIGYF2 is actually a causal PARK
gene, largely due to the fact that themonogenic linksfirst identified in 200849

have never been firmly corroborated50,55. Nonetheless, as aforementioned,
we identified two allele-specific enhancers associated with altered GIGYF2
gene expression, one of which is located distally (~11 kb upstream) to
GIGYF2. We propose that these distal regulatory variants may either 1)
modulate the expression of the target PARK gene to either amplify or
dampen the effect of the causal mutation, or 2) interact with known
mutations within these PARK genes. In summary, our analyses suggest that
these identified regulatory variants are putatively associated with the
expression of these genes, many of which act through trans-interactions.
Moving forward, it will be important to consider whether the identified
SNPs are associated with the penetrance of monogenic PD in mutation
carriers. One method to explore this is through GWAS, to identify genetic
variants that may modify the penetrance of causal PD mutations56,57.
Althoughourmethod identifieddifferent variants toGWAS’s conducted for
GBA and LRRK256,57, it is probable that penetrance of these ‘causal’ muta-
tions is dependent on an individual’s total background polygenic risk58, in
combinationwith environmental factors.Compiling the results gained from
these different studies (using novel methods) may be beneficial for
informing future clinical trials to identify individuals most likely to respond
to targeted, genetics-informed, treatments. Finally, in addition to
population-level studies, functional studiesmayalsobeuseful to confirm the
associations identified in our study and to explore any epistatic interactions
that may be occurring with reported causal mutations.

It is important to acknowledge the limitations associated with the
MPRA based analysis we undertook. Firstly, this MPRA was conducted in
HEK293 cells, due to the need for high transfection efficiency to enable
adequate library coverage. This likely limits the generalisability of the assay
for PD. Nonetheless, HEK293 cells are commonly used in PD research due
to their robustness and amenability to transfection59, and, in addition,
Yonatan Cooper and colleagues recently showed strong overlap of active
regulatory regions betweenHEK293Tcells andbrain tissues60.Onemay also
argue that using amore generic, or representative, cell typemaybebeneficial
for the identification of more ubiquitous regulatory elements. Nonetheless,
future studies would be warranted to compare the PD-associated regulatory
landscape acrossdifferent cell types anddevelopmental stages. Secondly, our
data processing and alignment methods were stringent, meaning a con-
siderable amount of data was omitted and it is likely there are more allele-
specific enhancers that were not identified because of this. Finally, there are
several more generic limitations associated with the MPRA method itself.
These include: sequence length of regulatory element within library; epi-
somal vector environment as opposed to genome-integrated21; and weak
regulatory effects that do not meet the required level for detection.

The sequence length of the regulatory elements represents not only a
limitation of the MPRA method but also of the current SNP based
approaches and utility of short-read sequencingmethods.GWAShave been
highly informative for identifying disease-associated risk loci and SNPs, but
typically donot capture structural variants (SVs) or repeat expansions in the
genome. Despite SNPs being the best characterised form of variation, it is
likely that larger genomic events contribute to at least some of the identified
GWAS signals and may indeed have greater impact on gene expression61.
However, short-read sequencing and techniques such as MPRA cannot
typically capture these forms of variation, and thus it has beenhard to depict
the contribution of such variants to disease risk61. The fast-growing appli-
cation of long-read sequencing, and inference using short-read sequencing,
is beginning to provide insight into the impacts of other forms of
variation62,63.Moving forward, itwill be important to consider the functional
implications of identified SVs associated with PD, and also potential
interaction and/or epistatic effects occurring between SVs and SNPs64.

The integration of our findings with further functional assays, such as
CRISPR interference assays60,65, will strengthen our mechanistic

understanding of the identified allele-specific enhancer variants within their
native genomic context. In terms of PD, a disease where relatively little is
understood about the genomic risk loci, these findings will be crucial for
gaining a greater understanding of how the regulatory network potentiates
risk inPD.Ultimately, gaining amechanistic understandingwill enable us to
utilise the validated disease-associated variants in therapeutic target selec-
tion and for patient stratification, especially when considering genetically
informed drug trials.

Methods
MPRA overview
The MPRA framework is very adaptable and has been used to study a
multitude of different genetic elements, including enhancers21,66,67 &
silencers68, splicing69, and protein translation70. The basic principle of the
assay is that candidate regulatory elements are paired with unique barcodes
and cloned into a reporter plasmid. Expression is measured by normalising
reverse-transcribed RNA (cDNA) barcode counts against DNA barcode
counts71. For this study, with the purpose of identifying allele-specific
enhancer elements, the methodologies presented by Uebbing et al. 21. and
Tewhey et al. 16. were used and adapted (Fig. 1).

Variant selection & library design
To construct the oligonucleotide library, 5254 variants (SNPs) were
selected (Supplementary Table 1). The oligonucleotide library included
positive controls of ‘ubiquitous enhancers’ from the FANTOM dataset72

and random scrambled sequences as negative controls. The included
SNPs are linked to PD either through GWAS1,3,18 (and linkage
[R2 > 0.800]), or through association with the known PARK genes (e.g19;
see ‘Identification ofPARK gene eQTLs section below’). An additional set
of 73 SNPs were included, due to their assignment by Booms et al. as
functional SNPs inmicroglial cells, as determined by bothATAC-seq and
H3K27ac ChIP-seq20. For every SNP, sequences were included contain-
ing both the reference and alternate alleles, with the variant of interest
centred within the surrounding 200 bp of genomic sequence. For every
200 bp fragment, an additional 15 bp adapter sequence ([5’ adapter:
ACTGGCCGCTTGACG]; [3’ adapter: CACTGCGGCTCCTGC]) was
included on the 5’ and 3’ end, respectively. The final oligonucleotide
library was synthesised by Agilent Technologies.

Library backbone preparation
Inert library. The oligo library was amplified using a two-stage low-cycle
PCR (MPRA_untailed primer pair followed byMPRA_SfiI_tailed primer
pair), which enabled the incorporation of 20 bp long barcode tags (N20

whereN = A, T, C, Gwith equal chance of incorporation) into the library,
as well as the addition of required restriction sites. The amplified oligo
library and pMPRA1 vector were then digested with SfiI and ligated to
form the inert library backbone. Following transformation and pur-
ification, the inert library was prepared for sequencing through PCR
amplification of a 300 bp fragment (Inert_tagseq primer pair). The inert
library was sequenced paired-end on an Illumina HiSeq X (~400M
reads) to acquire barcode and oligo pairings. dA-tailing, adaptor ligation,
and indexing PCR amplification were completed by the sequencing
centre (Custom Science).

Competent library. The inert library was then cloned into the
pMPRAdonor2 vector using directional cloning (KpnI and XbaI
restriction enzymes), to form the final competent library backbone. The
competent library was then transformed and purified, andQC steps were
undertaken to confirm the correct sequence.

Primer sequences. MPRA_untailed_FWD_primer: 5’ –
ACTGGCCGCTTGACG – 3’

MPRA_untailed_RVS_primer: 5’ – GCAGGAGCCGCAGTG – 3’
MPRA_SfiI_tailed_FWD_primer: 5’ – GCCAGAACATTTCTCTGG

CCTAACTGGCCGCTTGACG – 3’
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MPRA_SfiI_tailed_RVS_primer: 5’ – CCGACTAGCTTGGCCGC
CGAGGCCCGACGCTCTTCCGATCT [N20 where N =A, T, C, G with
equal chance of incorporation] TCTAGAGGTACCGCAGGAGCCGCA
GTG – 3’

Inert_tagseq_FWD_primer: 5’ [N4 where N =A, T, C, G with equal
chance of incorporation]GGCCT AACTGGCCGCTTGAC – 3’

Inert_tagseq_RVS_primer: 5’ –CCGCCGAGGCCCGACGCTCT– 3’
Barcode_seq_FWD_primer: 5’ – CAAGAAGGGCGGCAAGAT – 3’
Barcode_seq_RVS_primer: 5’ – CCGACGCTCTTCCGATCT – 3’

Cell culture & transfection
HEK293cellswere cultured (CO2 = 5%; 37oC) inDMEM(LifeTechnologies
#11965092) supplemented with 10% FBS. Cells were passaged every
2–3 days at ~80–90% confluency. Cell viability was measured using the
Countess® II FLAutomatedCell Counter andmaintained at ~95% live cells.
The competent library was transfected into HEK293 cells (in triplicate)
using Lipofectamine-3000, in 2× T175 flasks, with cells at ~50–60% con-
fluency. The transfection efficiency was determined by a separate mCherry
transfection and visualisation.

RNA (cDNA) & DNA processing
At 24 h post-transfection, cells were trypsinized and pelleted and DNA and
RNA were harvested using the Qiagen All-prep DNA/RNA extraction kit
(Qiagen; #80204), according to the manufacturer’s instructions. Following
purification, theRNAwas treatedwithDNase I (Qiagen; #79254) to remove
any contaminating DNA. RNA integrity was assessed by visualisation fol-
lowing separation on a 1.2% agarose TBE gel. cDNA was then synthesised
from the purified RNA using SuperScript III RT enzyme (Invitrogen;
#18080400) and a custom- barcode specific primer (BSP). DNA and cDNA
were then amplified for sequencing using NEBNext high-fidelity 2x master
mix (NEB; #M0541S; Barcode_seq primer pair). DNA and cDNA were
sequenced paired-end on an Illumina HiSeq X (Custom Science).

RNA & DNA sequencing data processing, alignment &
analysis (MPRA)
We developed a customised pipeline (Supplementary Fig. 4) to process the
raw oligonucleotide sequencing data and to find barcodes within oligonu-
cleotide, DNA and RNA sequencing libraries. Briefly, the pipeline trims
adapter sequence (GGCCTAACTGGCCGCTTGACG) from the 5’ end of
the oligonucleotide sequencing reads. The adapter trimmed readswere then
aligned using bwa to a reference library consisted of the designed elements
(Supplementary Table 1), without allowing indels and mismatches. In each
perfectly aligned read, the 20 bp barcodes were identified using guide
sequences “CGCCGAGGCCCGACGCTCTTCCGATCT” and “TCTA-
GAGGTACCGCAGGAGCCGCAGTG” flanking either side of the bar-
code. Alternatively, the 20 bp barcodes in the RNA and DNA sequencing
libraries were detected by directly searching through the sequencing reads.
In the RNA sequencing data, the barcodes were identified using the fol-
lowing guide sequences: i) TCTAGAATTATTACACGG attached at the
end of the barcode in the forward reads and ii) “GTAATAATTCTAGA”
and “AGATCGGAAGAGCGTC” flanking either side of the barcode in the
reverse reads. Similarly, in the DNA sequencing data, the 20 bp barcodes
were detected using the using the guide sequence i)
“CCGACGCTCTTCCGATCT” and “TCTAGAATTATTACACGG” or
“TCGCCGTGTAATAATTCTAGA” and “AGATCGGAAGAGCG”; and
ii) “CCGACGCTCTTCCGATCT” and “TCTAGAATTATTACACGG” or
“TCGCCGTGTAATAATTCTAGA” and “AGATCGGAAGAGCG”
flanking either side of the barcode in the forward and reverse reads,
respectively. Following the identification of barcodes, we counted the
number of barcodes per variant and found that on average each variant
mapped to ~400 barcodes (Supplementary Fig. 1). The mapped DNA and
RNA barcodes were then aggregated for each variant. During the aggrega-
tion process we required that the barcodes were present across all 3 repli-
cates. Following this process, we omitted any element that was represented
by less than 5 barcodes.

General enhancers. To identify general enhancer elements, we deter-
mined theDNA:RNAratio for each element and calculatedZ-scores. Any
element that that had a Z-score of 3 ( ± 3 SD from the mean) was deemed
to be an active enhancer.

Allele-specific enhancers. We used the mpralm Bioconductor
package22 to identify allele-specific enhancer elements.mpralm is a linear
model framework that enables the detection of differential activity
between different alleles. The following parameters were used to run the
pipeline: “mpralm <- mpralm(object =mpraset, design = design, aggre-
gate = “none”, block = block_vector, normalize = TRUE, model_type = “
corr_groups”, plot = TRUE)”. We defined elements as active enhancers
that had an adj.p-value < 0.05 (RNA count difference between ref and alt
allele), and suggestive enhancers that had an adj.p-value between
0.05 and 0.1.

Variant annotation
Depletion rank. Halldorsson et al. developed a depletion rank (DR) and
assigned a rank for each 500 bp window of the genome, as a metric to
characterise sequence conservation based on variation.We leveraged this
to determine the depletion rank of the variants included within the
MPRA library. DR assignment was computed for an overlapping set of
500 bp windows in the genome with a 50 bp step size, thus meaning each
variant will be linked to ~10 different DR scores. After overlapping SNPs
with their respective DR scores, we took the mean of these scores.

Transcription factor binding site disruption. To predict if MPRA
variants alter transcription factor binding sites (TFBS), we used the
FABIAN prediction tool26. FABIAN is a web-based application that uses
TFFMs and PWMs to predict the degree towhichDNAvariants are likely
to disrupt (or create) the binding sites of TFs. For our analysis we selected
only the TFFM models for prediction given they tend to be a better
representation of TFBS when compared with PWMs. FABIAN provides
one score per TFBS per variant, from 1 to −1, with 0 indicative of no
disruption. A higher score indicates an increased binding affinity, and a
lower score indicates a weakened binding affinity. FABIAN does not as
such indicate any confidence thresholds and thus, we chose an arbitrary
cut-off of ± 0.8 to subselect those that we deemed to be ‘high-confidence’
predictions.

LOEUF score. LOEUF (loss-of-function observed/expected upper
bound fraction)46 scores were obtained from gnomAD v2.1.146 (https://
gnomad.broadinstitute.org/) to determine the level of constraint on
PARK genes.

HaploReg epigenomic annotations. To predict if MPRA variants
overlap with epigenomic and regulatory annotations, we ran the list of
general enhancer and allele-specific enhancer variants through HaploReg
v4.2 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php).

Cell-type specific functional annotations. To understand the likely
regulatory impact of the MPRA identified allele-specific variants within
the brain, we used a number of different publicly available datasets to
overlap the variants with epigenetic annotations within brain cell-types
and tissues. We used the following datasets: FOUNDIN-PD: ATACseq
peaks (i.e., open chromatin) and methylation marks observed during
iPSC differentiation of dopaminergic neurons (day 0, 25, and 65)31; Nott
et al.: ATACseq/H3K27ac/H3K4me3 epigenetic annotations in four
brain cell types (neurons; microglia; astrocytes; oligodendrocytes)32;
Fullard et al.: ATACseq peaks within the Brain Open Chromatin Atlas
(BOCA)33; Corces et al.: bulk ATACseq peaks across seven brain
regions34; and GTEx catalogue: eQTL annotations across 13 brain
tissues35. Overlapping regions were identified by comparing the coordi-
nates of the reported epigenetic annotation with the MPRA element
coordinates (i.e., SNP coordinate +/−100 bp) using the ‘bedtools’
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package. eQTLs within brain tissues were identified through the GTEx
catalogue web interface.

Precision gene editing of MPRA identified enhancer variants
Cell culture and CRISPR cas9 edits. The KOLF2.1J induced plur-
ipotent stem cell (iPSC) line37 was used to develop isogenic clones that
differed only at the variant of interest. KOLF2.1J cells were cultured
(CO2 = 5%; 37 °C) in Stemflex media (Thermofisher #A3349401). Cells
were passaged every 4–5 days at ~70–80% confluency using ReLeSR. Cell
viability was measured using the Countess® II FL Automated Cell
Counter and maintained at >90% live cells. To introduce the single base
variants (rs11646653, rs78222414; rs3815082), we utilised the protocol
previously described for precision gene editing using cas9 in the
KOLF2.1J iPSC line73,74.

RNA extraction and sequencing. Following successful introduction
of the desired edit and expansion of multiple clones, cells were lysed
directly (in 24 well plates), and RNA was extracted using the RNeasy
+ mini kit (Qiagen #74104), according to the manufacturer’s
instructions. RNA integrity (i.e., RIN) was checked using the bioa-
nalyzer, and all samples passed quality control. RNA was sequenced
using the following parameters: stranded mRNA library prep & QC;
150 paired-end sequencing (Novaseq) to a depth of 30 M reads per
sample.

RNA sequencing differential gene expression analysis. RNA-seq
reads were quality checked using multiQC (v1.13)75 and mapped against
the human reference genome GRCh38 using STAR (v 2.7.9a)76 aligner
software. Following read alignment, we used featurecounts77 module
from the Subread (v2.0.3) suite to count the number of reads mapping
over individual genes. A matrix of gene counts per annotated gene was
generated in Gencode project (v43) (https://www.gencodegenes.org/).
The gene count matrix generated by the featurecounts programwas then
used as an input for an R package DESeQ2 (v1.42)78 and performed
differential gene expression analysis using default settings. We defined
differential expressed genes as those with absolute Log2 Fold change
difference >1 and adjusted p-value < 0.01.

Identification of PARK gene eQTLs
For each of the 21 PARK genes (Supplementary Table 3), we tested variants
within their coding region for regulatory potential on modifying distant
genes. We selected all common SNPs within the GENCODE gene coding
region (including intronic regions; dbSNP build151, appear in at least 1% of
the global population).

We also tested whether variants across the genome had a significant
effect on the transcription any of the 21 PARK genes. We performed a
genome-wide search of all 42,953,834 SNPs in dbSNP151 (as available in
GTEx v879) for an association with transcription of at least one of the 21 PD
genes (Supplementary Table 3). All SNPs suggestive of genome-wide sig-
nificance (p < 1 × 10−6) were also subsequently tested with the CoDeS3D
algorithm39 to discover genes co-regulated by these SNPs.

For all variants tested in both analyses (gene locus and genome-wide),
putative spatial regulatory connections were identified via the CoDeS3D
algorithm39 (https://github.com/Genome3d/codes3d-v1). CoDeS3D inte-
grates data on spatial interactions between genomic loci (Hi-C data) with
expressiondata (genotype-tissue expressiondatabase version8;GTExv8) to
identify genes whose transcript levels are associated with a physical con-
nection to the SNP (i.e. spatial eQTL; Supplementary Table 4)39,80. The
CoDeS3D method, and tissues and cell-types included, has been described
in depth in previously39,40.

Target gene assignment
TheCoDeS3D39 algorithmwsas also used to identify genes whose transcript
levels are putatively regulated by the MPRA-identified enhancer elements.
Spatial-eQTLs were identified across all cell- and tissue- types.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
MPRA summary data can be found in the supplementary tables at https://
doi.org/10.17608/k6.auckland.24882012.v2. Raw output data is available
upon request.

Code availability
The MPRA and RNAseq data analysis pipelines are available at: https://
github.com/sfar956/Parkinsons-disease-MPRA.git.
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