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Parkinson’s disease (PD) is the second most common neurodegenerative disease. Accurate PD
diagnosis is crucial for effective treatment and prognosis but can be challenging, especially at early
disease stages. This study aimed to develop and evaluate an explainable deep learning model for PD
classification from multimodal neuroimaging data. The model was trained using one of the largest
collections of T1-weighted and diffusion-tensormagnetic resonance imaging (MRI) datasets. A total of
1264 datasets from eight different studies were collected, including 611 PD patients and 653 healthy
controls (HC). These datasets were pre-processed and non-linearly registered to the MNI PD25 atlas.
Six imaging maps describing the macro- andmicro-structural integrity of brain tissues complemented
with ageand sex parameterswere used to train a convolutional neural network (CNN) to classify PD/HC
subjects. Explainability of the model’s decision-making was achieved using SmoothGrad saliency
maps, highlighting important brain regions. The CNN was trained using a 75%/10%/15% train/
validation/test split stratifiedbydiagnosis, sex, age, andstudy, achievingaROC-AUCof0.89, accuracy
of 80.8%, specificity of 82.4%, and sensitivity of 79.1% on the test set. Saliency maps revealed that
diffusion tensor imagingdata, especially fractional anisotropy,wasmore important for theclassification
than T1-weighted data, highlighting subcortical regions such as the brainstem, thalamus, amygdala,
hippocampus, and cortical areas. The proposed model, trained on a large multimodal MRI database,
can classify PD patients and HC subjects with high accuracy and clinically reasonable explanations,
suggesting that micro-structural brain changes play an essential role in the disease course.

Parkinson’s disease (PD) is a severe and heterogeneous progressive disease
recognized as the second-most common neurodegenerative disorder. It
affects 2–3% of the population aged 65 years or older1 with an estimate of
seven to ten million people worldwide diagnosed with the disease2. PD is

pathophysiologically characterized by the loss of dopaminergic neurons in
the substantia nigra and the accumulation of alpha-synuclein aggregates
within cells3. As the disease progresses, this accumulation can spread to
wider regions of the cortex4. Despite the improving understanding of the
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disease, the exact causes of PD are still not well understood. Currently, PD is
mainly diagnosed following clinical guidelines that involve assessing the
presence of bradykinesia (slowness of movement) as well as at least one of
the other primary motor symptoms such as tremor, rigidity, and postural
instability5. Additional motor and non-motor symptoms also contribute to
the overall clinical picture6. However, diagnostic accuracy based on clinical
guidelines can vary from 73.8 to 83.9%, depending on the neurologist’s
experience7,8. Therefore, ongoing research is aiming to identify accurate and
reproducible biomarkers for PD diagnosis. Neuroimaging techniques, such
as magnetic resonance imaging (MRI) and positron emission tomography,
have been studied extensively for this purpose due to their ability to capture
the structure and function of the brain with high sensitivity and resolution.
For example, T1-weighted MRI has shown potential capturing macro-
structural changes in the brain9–14. In the context of micro-structural
changes, diffusion-tensor MRI (DTI) allows for in-vivo characterization of
diffusivity in brain tissues through its sensitivity to the Brownianmotion of
water molecules.Water tends to diffuse mainly along the axons so that DTI
canbe employed to visualizewhitematter tracts throughout the brain15. This
property makes it particularly advantageous for studying white matter
integrity in different neurological diseases16, butmay also be used to uncover
potential micro-structural changes of gray matter structures in neurode-
generative diseases like PD17. ThemainDTIparameters aremeandiffusivity
(MD), which measures the degree of tissue water diffusivity, fractional
anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD), which
are related to the axonal and myelin structure18–20. Nevertheless, visual
identification of such macro- and micro-structural changes associated with
PD, especially in the early disease phase, can be challenging and time-
consuming, even for the most experienced neuroradiologist7.

Supervised machine learning approaches seek to automatically detect
relevant patterns within a high-dimensional feature space. They do this by
learning from the training data provided and creating an association with
the ground truth labels provided as a reference. These patterns can then be
utilized to classify new, previously unseen cases21. Machine learningmodels
have been created for many clinical tasks by leveraging high-dimensional
data for individual-level classification22. Following this principle, machine
learning models have also been developed for PD classification making use
of macro-structural neuroimaging data with accuracy levels above
70%13,14,23–31. Similarly, micro-structural information extracted from DTI
has also been explored for this purpose (77.44–97.7%accuracy)13,30–37. So far,
only two previous studies investigated the benefit of using both, micro- and
macro-structural MRI, for PD detection with machine learning13,30,
achieving accuraciesof 92.3 and95.1%.Most of theprevious studies for both
uni- and multimodal MRI only used small sample sizes and followed a
traditional machine learning approach, which typically includes image
preparation through hand-crafted preprocessing techniques, feature
extraction, and training and testing a classicalmachine learningmodel like a
support vector machine and elastic-net regression, which are typically
evaluated using a cross-validation strategy. A significant drawback of these
techniques is that the features must be explicitly designed before training,
which could result in missing crucial features. Convolutional neural net-
works (CNN), a special type of deep learning network, overcome this
problem by automatically learning a representation of the input data with
multiple levels of abstraction throughan iterative trainingprocess.However,
CNNs typically need large amounts of data to optimize these models
without overfitting, whichmay be one of the reasons that there are no CNN
models for PD classification making use of multimodal data to date.

In summary, previous uni- and multimodal studies described have
been only tested and evaluated using a rather small number of PD patients
and healthy participants ranging from 40 to 374 subjects, using data that is
imbalanced and collected within a single study. Additionally, most previous
machine learning models failed to provide explanations for their model’s
predictions, which is crucial for building trust in computer-aided diagnosis
systems and also to aid biomarker discovery.

To overcome these limitations, we collected the largest balanced
multimodalMRI dataset containing both T1-weighted andDTI scans from

PD patients and matched healthy controls from multiple studies, resulting
in a total of nearly 1300 subjects included. Briefly described, for morpho-
logical analysis of the brain tissue, the T1-weighted MRI data were affinely
and non-linearly registered to an atlas. The non-linear transformation was
consequently used to compute the corresponding log-Jacobianmaps, which
encode volumetric differences between the atlas and a subject’s brain at a
voxel level. Parametricmaps ofMD, FA,AD, andRDwere computed based
on the DTI datasets and also non-linearly registered to an atlas. The
resulting six imaging maps, namely the affinely registered T1-weighted
images (Aff), the log-Jacobianmaps (Jac), and the six DTI parametric maps
(MD,FA,AD, andRD) togetherwith age and sex asparameterswereused to
train and evaluate a 3DCNNmodel (CNNCOMBINED) for PD classification.
For comparison purposes, six additional CNN models were trained using
the single imaging maps only (CNNAFF, CNNJAC, CNNMD, CNNFA,
CNNAD, CNNRD), one additional CNN model using all DTI parametric
maps but none of the T1-derived imaging maps (CNNDTI), as well as one
classical random forest machine learning model using image-derived phe-
notypes from the T1-weighted and DTI data (RFCOMBINED). All machine
learning models were trained using the same 75%/10%/15% train/valida-
tion/test split stratified by diagnosis, sex, age, and study. Saliencymaps were
used to explain the predictions by highlighting the regions that were most
influential for the classification of an individual patient.

Results
Evaluation of models
The prediction metrics in terms of area under the receiver operating char-
acteristic curve (ROC-AUC), specificity, and sensitivity for all trained
models are provided in Table 1. The model using the combination of all
input imagingmaps (CNNCOMBINED) achieved the overall best results (0.89
ROC-AUC, 80.8% accuracy, 82.4% specificity, and 79.1% sensitivity) with
respect to the ROC-AUC metric. Therefore, this model was chosen to
generate the saliency maps for further post-hoc analysis using the cortical
and subcortical Harvard-Oxford atlas brain regions38–41 (HO). Overall, the
CNNCOMBINEDmodel performed significantly better than themodels using
only the information from the T1-weighted MRI data (CNNJAC and

CNNAFF, p < 0.05).However, it did not perform significantly better than the
individual DTI (CNNFA, MD, RD, and AD) and random forest (RFCOMBINED)
models.

Explainability analysis
Figure 1 shows the saliency maps derived from CNNCOMBINED classifica-
tions for the correctly diagnosed PD patients in the test set. The highlighted
regions across the multiple input maps represent the regions used by the
model to produce a classification, whereas a higher saliency value represents
higher relevance for the model.

Figure 2 shows a heatmap of the average intensity and volume covered
by the saliencymaps for eachatlas region across themultiple input imagesof
the sub-cortical and cortical Harvard-Oxford brain atlases. Overall, FA was
found to be the most salient image feature, followed by log-Jacobian mor-
phological image feature. The brain regions identified asmost important by
the CNNCOMBINEDmodel included subcortical regions like the brainstem,
bilateral thalamus, right amygdala, right hippocampus, and cortical regions
including the occipital cortex, supramarginal gyrus, postcentral and pre-
central gyrus, temporal cortex, parahippocampal gyrus, angular gyrus,
parietal operculumcortex, superior parietal lobe, and subcallosal cortex. For
the random forest machine learning model, the most important features
selected by the RELIEFF feature selection method are generally in line with
the results of the saliencymaps computed from theCNNCOMBINED and are
shown in Supplementary Table 1.

Figure 3 shows the differences in mean intensity values when com-
paring early PD patients (Parkinson’s Progression Markers Initiative
[PPMI] patients in the test set) and non-early PD patients (rest of the test
set). Here, it is possible to identify a pattern with early PD patient’s saliency
maps having slightly higher activations in the DTImaps when compared to
the PD patients in later disease stages. The opposite can be observed for the
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later disease stage patients’ activations, which are slightly higher for mor-
phological features derived from the T1-weighted scans when compared to
the activations of early patients.

Discussion
The main contribution of this study is the development of an accurate and
explainable deep learning model for the image-guided diagnosis support of
Parkinson’s disease based on high-resolution, multimodal MRI data. This
model was trained and tested using one of the biggestmulti-study databases
comprising macro-structural (T1-weighted MRI) and micro-structural
(DTI) information from PD patients and HC subjects. Saliency map
explanations were then computed to identify the most important regions
from each input map for the decision task.

In the present study, the proposed multimodal deep learning model
(CNNCOMBINED) performed better than all uni-modal CNNmodels and the
classical machine learning model, although not reaching significance in all
cases. Deep learning outperforming traditionalmachine learning approaches
is expected and in line with the current literature13,23,24,26–30,33–35,37. The
improvedperformancemaybepartly explainedby the ability ofCNNmodels
to automatically extract the important features from the complete set of 3D
input maps, and thus learning from every voxel in the image. In contrast,
manual feature engineering may cause important information to get missed
in the process. Although it is possible that more sophisticated feature engi-
neering techniques could have benefitted the performance of the classical
machine learning model, it is unlikely that adding more and other brain
regions would have boosted the comparisonmethod beyond the accuracy of
the deep learning method. The significantly better results of the
CNNCOMBINED model compared to the models trained using information
from theT1-weighted data only are likely directly due to the inclusion ofDTI
maps,whichwere found tobemore important for the taskofPDprediction in
the combined model. However, it is also possible that some participants are
easier to differentiate with information fromcertain inputmaps but not from
others. This could also explain how the model including all available maps
achievedhigherperformance than themodels trainedwith thebest individual
mapFAmaps (i.e.,CNNFA), highlighting the benefits of training amodel that
combines macro- and micro-structural imaging. Overall, the models trained
usingmicro-structural informationperformedbetter than themodels trained
using macro-structural information only. This implies that the models can
identify important micro-structural differences, which are not present in
macro-structural data. Nevertheless, considering that T1-weighted images
are part of virtually any MRI protocol, it appears reasonable to still include
them as inputs of the model, even if the enhancements they offer are modest
at a group level. Therefore, this study investigates the use of a combination of
micro- andmacro-structural information as a multi-channel input to train a
CNN for PD classification.

In the context of deep learning, a simple and accurate model is also
typically assumed to be more generalizable and easier to explain, which is
particularly important for amultimodal approach where data complexity is
increased. The proposed deep learning model is relatively lightweight,
containing only 2,982,369 trainable parameters. In contrast, larger CNN
models or ensembled approaches ranging from 16 to 89 million trainable
parameters (not to mention trained with far smaller sample sizes) as pre-
viously described in literature24,27,35,37 could lead to less interpretable results
and are more vulnerable to overfitting.

The prediction performance of the proposedmodel on unseen data
is in the range of previously reported accuracies based on macro-
structural brain data, micro-structural brain imaging, and a combina-
tion of both (ranging from 71.5% to 100%; accuracy reported due to the
lack of AUC in all works)13,23,24,26–30,33–35,37,42. While accuracy levels close
to 100% in previous works seem impressive, some of these studies have
not been peer-reviewed, so that the results described should be taken
with a grain of salt, while in other cases, such high accuracies were
achieved on very small and imbalanced datasets. This result inflation is a
well-known challenge in neuroimaging research, which should be
considered43,44. In contrast, the machine learningmodels created for this
study were trained on a much richer and balanced database of Parkin-
son’s disease patients and healthy control subjects using well-
established and common pipelines for image registration and DTI
map calculation. The results achieved on the diverse test set (which also
contained data from the eight different studies) with robust processing
pipelines suggest that our model generalizes well to unseen data.
Moreover, the complexity of the datasets used for this study resembles
that of a current real clinical scenariowhere it is essentially impossible to
collect highly homogeneous data. This data diversity can enhance the
generalizability of our classifier when applied in various clinical con-
texts. Nevertheless, to address potential biases resulting from dataset
imbalances between studies, we applied weights to the loss function
during training. Thus, our model stands out as an important step
towards a computer-aided diagnosis tool for PD because of its ability to
identify micro- and macro-structural differences between the groups
despite the heterogeneity of the data.

This study applies methods from the explainable artificial intelligence
domain to complex CNN models for PD classification from multimodal
data. CNNmodels are often considered “black box”models, which suggests
that it is challenging to understand how they arrive at their predictions.
Through explainable techniques, we can overcome the currently existing
clinical adoption barrier in precision medicine. In this context, the devel-
oped model could be employed by medical professionals to evaluate the
validity of the models’ predictions and use the generated saliency maps for
multimodal biomarker identification.

Table 1 | Table of results

Model ROC-AUC ACC SPE SEN

CNNCOMBINED 0.89 80.8% 82.4% 79.1%

CNNDTI 0.86 78.1% 79.3% 76.9%

CNNFA 0.86 81.3% 78.3% 82.6%

CNNMD 0.85 77.1% 79.3% 74.7%

CNNRD 0.84 77.6% 77.3% 78.0%

CNNAD 0.85 77.6% 79.3% 75.8%

CNNJAC
a
(P 0.032) 0.83 73.9% 67.0% 81.3%

CNNAFF
a
(P 0.035) 0.85 76.0% 85.5% 65.9%

RFCOMBINED

(159
FEATURES)

0.85 79.7% 76.2% 79.8%

ROC-AUC area under the receiver operating characteristic curve, ACC accuracy, SPE specificity, SEN sensitivity.
aSignificant difference (P < 0.05) with CNNCOMBINED.
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In general, the salient brain areas found in this study are consistentwith
our existing understanding of Parkinson’s disease and how it affects the
brain, both at a micro- and macro-structural level. More in detail, wide-
spread morphological changes were identified in subcortical and cortical
regions as important by our proposed combined model (CNNCOMBINED).
Themodel also gave high importance to the FADTImaps. Thisfinding is in
line with multiple previous studies that identified significant brain changes
associated with Parkinson’s disease in FAmaps36,37,45,46. Jacobian maps were
given the second highest importance, despite not leading to such high
classification accuracies when used without the DTI data, emphasizing the
importance of a multimodal classification approach. The associated sub-
cortical regions included the brainstem, thalamus, amygdala, and hippo-
campus.Thebrainstem is considered a vulnerable structure,which is known
to be affected very early in neurodegenerative diseases like PD47. The tha-
lamus is known to suffer a 40–50% neuronal loss in PD patients48, which
could explain its appearance in the saliency maps. Nevertheless, how this

contributes to the pathology is not yet clearly understood49. Changes in the
amygdala and hippocampus have also been reported in the literature50–54

andhavebeen linked tonon-motor symptomsofParkinson’s disease,which
can present early in the disease. The occipital cortex (occipital pole, lateral
inferior and superior divisions, and cuneus cortex), temporal cortex (tem-
poral pole, temporal fusiform cortex, and parahippocampal gyrus anterior
and posterior divisions), parietal cortex (supramarginal anterior and pos-
terior gyrus, postcentral and precentral gyrus, angular gyrus, superior
lobule, operculum and precuneus cortex), and subcallosal cortex were
identified as the most important cortical regions by our model. These
findings are also in line with current literature. For example, micro- and
macro-structural differences of the temporal cortices in PD compared with
HC have been reported55. Moreover, macro-structural differences of the
occipital and parietal cortices have been found in previous studies56.
Additionally, micro-structural changes of the subcallosal cortex have been
linked to non-motor symptoms in PD57. While the brain atlas regions used

Fig. 1 | Average saliency maps of the correctly
classified PD patients overlayed on the PD25 atlas
for the independent input maps. AD axial diffu-
sivity, FA fractional anisotropy, MD mean diffu-
sivity, RD radial diffusivity, JAC Jacobian, AFF
affine, a anterior, p posterior. To help link anato-
mical regions shown in Fig. 2 to the most important
saliencymap regions shown here, a color codingwas
inserted in the FA slices. Cortical regions like the
postcentral cortex are displayed in purple, the
supramarginal gyrus and posterior division in pink,
the lateral occipital cortex, superior and inferior
divisions in teal, and the occipital pole in beige.
Subcortical regions like the left and right thalamus
are shown in turquoise and the brainstem in green.
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Fig. 2 | Heatmap of importance for each region of the Harvard-Oxford atlases.
Intensity mean values are represented according to the color in each rectangle.
Additionally, each region has a percentage of volume covered by the thresholded

average saliency map of the correctly classified PD patients. Regions were ranked
according to an average of the importance in each input map.
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to analyze the saliency maps include two labels for the white matter in each
hemisphere, aiding in the identification of important regions. However,
these relatively large regions may not be specific enough for detailed post-
hoc analysis of whitematter tracts, an aspect that could bemore thoroughly
explored in future research.Nevertheless, due to the voxel-wise nature of the

CNNmodel, it is able to use detailed data from white matter regions. More
generally, the brain areas that our model identified as important are con-
sistent with Braak’s staging model4, which proposes that alphasynuclein
deposition moves in ascending manner, starting in the brainstem and
moving through the subcortex (i.e., subcortical regions) and mesocortex

Fig. 3 | Heatmap of mean intensity importance difference for each region of the Harvard–Oxford atlases. Every color represents the difference between early and non-
early subjects’ activations (e.g., right thalamus of early subjects minus right thalamus of non-early subjects) as indicated by the corresponding color bar.
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(parahippocampal gyrus) to ultimately the neocortex (making up to 90% of
the human cortex).

Model explanationswere independently computed for early (i.e., PPMI
study) and non-early patients in the test set to investigate how each imaging
modality affected their predictions. We found a general increase in
importance of theDTImaps, in particular FA, and a decrease of importance
for themorphological T1-weighted image information for the early patients
from the test set as depicted in Fig. 4. This is in line with the current clinical
understanding that micro-structural changes precede macro-structural
alterations in neurodegenerative diseases58,59. The early participants were
selected from PPMI, which is a multicenter study collected without a har-
monized imaging protocol. Given the large number of centers contributing
data to PPMI, it is unlikely that the differences found are simply due to site
differences or biases.

Many of the brain regions identified by the CNN model were also
found to be important by the RELIEFF feature selection technique (e.g.,
brainstem, thalamus, amygdala, subcallosal cortex, postcentral and pre-
central gyrus, as well as multiple regions from the temporal and occipital
lobes). Nonetheless, the reduced performance when compared to the
CNNCOMBINED, demonstrates how CNN models can extract more mean-
ingful micro- and macro-structural changes than those extracted through
feature engineering.

Some limitations of this work need to be mentioned. First, although
using data from multiple centers generally improves the reliability of the
findings and the generalizability of themodel, the retrospective nature of the

data collection also results in differences in the specific inclusion/exclusion
criteria, psychiatric co-morbidities, cognitive impairment (including
dementia), and overall PD diagnosis criteria. We mitigated these effects by
including approximately the same proportion of subjects with respect to
group, age, and sex from each of the included studies whenever possible as
part of the training, validation, and testing splits. Furthermore, a weight was
given to each subject during training to help mitigate negative effects of an
imbalanced dataset by putting more weight on individual samples from
underrepresented studies/groups (i.e., the PD patients from the study with
less PD subjects would have a higher weight and vice versa). Nevertheless,
additional thorough prospective research is needed to validate the proposed
model placing special emphasis on the training weights and their effect on
model performance. Additionally, while we rigorously and visually
inspected all data for motion artifacts and excluded subjects with visible
corruptions, we cannot fully rule out that more subtle motion artifacts
survived our quality control. Due to the retrospective nature of this study, it
was not possible to correct for motion prospectively or quantify any head
motion during image acquisition so that we were limited to the manual
quality control. Thus, the classifier developed may also make use of small
motion artefacts that could affect the PDcohortmore because of the tremor.
It should also be mentioned that no advanced data harmonization
approaches were utilized to remove potential site- or scanner-specific image
data biases, which may still affect the otherwise quantitative DTI maps and
log Jacobian maps to some extent. It is also important to highlight that the
use of a combined multimodal approach can lead to scalability challenges

Fig. 4 | Preprocessing pipeline. a Illustrates part
one of the preprocessingwith the computation of the
DTI metrics and the registration to the T1-weighted
(T1w) MRI subject space. b Depicts the registration
of the subject’s T1-weighted MRI to the PD25 atlas;
the transformation of the DTI metrics to the atlas
space, and the computation of the affinely registered
T1-weighted MRI and the log-Jacobian maps.
c Showcases the use of the inverse Φy transforma-
tion to warp the atlas anatomical regions to the
individual’s T1-weighted MRI space.
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since more time is required to preprocess and quality control the data for
each imaging modality available to every individual subject. However, the
pipeline used in this study is well-established and was found to be robust.
Additionally, higher datadimensionality inherently results inmore complex
models, which can be harder to train and optimize, requiring additional
computational resources. Thus, we selected a lightweight CNN, which was
able to identify clinically reasonable important features and be explainable
without compromising performance.

In conclusion, the present study demonstrates that multimodal MRI
can be used and is beneficial to develop an explainable computer-aided
diagnosis model based on a lightweight 3D CNN for Parkinson’s disease
prediction. This model was trained using pre-processed, paired micro- and
macro-structuralMRI data from eight separate imaging studies, resembling
real clinical scenario data. The model achieved performance in the range of
literature values while providing clinically sound explanations for its pre-
dictions. The proposed model is not meant to replace but rather comple-
ment the decision-making process at the discretion and interpretation of
experienced physicians22.

Methods
Datasets and subjects
Datawere obtained from eight different studies comprising 632 PDpatients
and 668 control subjects (HC) (1300 participants in total). The studies
includedwere the Parkinson’s ProgressionMarkers Initiative (PPMI [www.
ppmi-info.org]), theCanadianConsortiumonNeurodegeneration inAging
(CCNA) COMPASS-ND60, PD-MCI Calgary61, PD-MCI Montreal62

(Longitudinal Study on Mild Cognitive Impairment in Parkinson’s Dis-
ease), Montreal Neurological Institute’s Open Science Clinical Biological
Imaging and Genetic Repository (C-BIG [https://www.mcgill.ca/neuro/
open-science/c-big-repository]), Hamburg dataset63, United Kingdom
Biobank (UK Biobank [https://pan.ukbb.broadinstitute.org]), and healthy
subjects only from the Alzheimer’s Disease Neuroimaging Initiative (ADNI
[adni.loni.usc.edu]). For this secondary data use study, we included all
participants thatmet the following criteria: (1) diagnosis of either PD orHC
according to each individual study, (2) availability of both T1-weighted and
DTI datasets from a 3T scanner (earliest available in case of longitudinal
studies like PPMI, and only HC fromADNIwith an age range of 65 ± 10 to
balance thedataset), and (3) bothpreprocessed scans (T1-weightedandDTI

scans) passing our quality control checks (See Preprocessing Section). The
final database after preprocessing and quality controls included 1264 sub-
jects (611 PD and 653 HC). Table 2 contains demographics, clinical, and
diagnostic criteria informationof the participantsused for the present study.
Supplementary Table 2 contains information regarding the inclusion and
exclusion criteria of the different studies. All individual studies obtained
ethical approval from their local ethics committee and ensured that all
participants provided written informed consent following the guidelines set
forth in the declaration of Helsinki. Moreover, the current study received
approval from the Conjoint Health Research Ethics Board at the University
of Calgary.

MRI acquisition
MRI images were acquired using a variety of scanners and sequence para-
meters across the eight studies. All images were acquired from a range of
MRI scanner manufacturers but all using a 3Tmagnetic field (Siemens [for
seven studies], GE [for four studies], and Phillips [for two studies]). TheT1-
weighted images had varying slice and in-slice resolution, ranging from0.94
to 2.0mm, and most of the images were obtained in the sagittal plane. DTI
scans had a slice thickness and in-slice resolution ranging between 2–5 and
1.875–2mm, respectively; b values ranged from 0 to 2000; and number of
directions of acquisition ranged from15 to 114.More information about the
imaging protocols used in each study is provided in Supplementary Table 3
in the Supplementary material.

Preprocessing
Stringent quality control checks were performed on the raw data prior to
preprocessing, these were performed through visual inspection to exclude
MRI scans affected by movement, aliasing, ghosting, and other effects.

The three steps of the data pre-processing are summarized in Fig. 4.
First, the TractoFlow pipeline64 was used for processing of the DTI data,
including skull stripping, denoising, Eddy current correction, N4 bias cor-
rection, resampling to an isotropic resolution of 1mm with linear inter-
polation, and computation of the four DTI metrics (i.e., FA, MD, RD, and
AD). Similarly, individual T1-weighted images were brain extracted,
denoised, N4 bias corrected, and resampled to have 1mm isotropic voxels.
Additionally, the extracted individual DTI metrics (using the B0 and FA
together as themoving images)were non-linearly registered (Φx in Fig. 4) to

Table 2 | Demographics of subjects included in the study

Study Total Subjects
(female %)

Age in Years
Mean (std)

Duration of Disease in Years
Mean (std)

H&Y
Median

MoCAMean (std) MDS-UPDRS3 for
PD (std)

Clinical Diagnostic
Criteria

PD HC PD HC PD PD HC PD HC

PPMI 222
(34.6%)

64
(36.3%)

62.4
(9.4)

60.2
(10.8)

0.55 (0.56) 2 -
-

27.37
(2.21)

28.22
(1.14)

20.96 (9.32) MDS

COMPASS-
ND

65
(32.3%)

- 69.1
(7.3)

- - 2 - 24.23
(4.83)

- 9.07 (5.33) MDS

PD-MCI
Calgary

108
(34.2%)

42
(52.3%)

70.5
(6.2)

69.5
(6.7)

5.94 (4.51) - - 25.57
(2.94)

27.35
(1.94)

19.50 (12.54) MDS

C-Big 82
(42.6%)

11
(81.8%)

64.1
(8.6)

64.2
(12.8)

- - - - - 38.88 (14.18) MDS

Hamburg 49
(28.5%)

39
(37.5%)

65.4
(8.2)

62.5
(11.6)

12.82 (6.94) 2 - - - 27.10 (10.40) UKBB

UK Biobank 42
(45.2%)

192
(40.1%)

69.4
(5.9)

(66.3)
(7.6)

7.46 (6.62) - - - - - UKBB

PD-MCI
Montreal

43
(39.5%)

20
(50.0%)

62.1
(5.7)

62.4
(6.2)

4.98 (3.80) - - 27.23
(1.99)

27.80
(1.93)

29.69 (8.20) UKBB

ADNI - 285
(65.6%)

- 67.7
(4.3)

- - - - - - -

Total 611
(37.6%)

653
(37.5%)

65.5
(8.7)

66.1
(7.6)

- - - - - - MDS and UKBB

H&YHoehn and Yahr rating scale,MoCAMontreal Cognitive Assessment test,MDSMovement Disorder Society clinical diagnosis criteria,UKBBUnited KingdomParkinson’s Disease Society Brain Bank
clinical diagnostic criteria.
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the preprocessed T1-weighted MRI image (fixed image) of the same indi-
vidual using ANTs65 (Fig. 4a). Briefly explained, this process included
aligning the DTI datasets to the patient’s preprocessed T1-weighted scan
using an affine transformation in thefirst step.This transformationwas then
used to initialize a non-linear registration65 as a second step. At this point, all
transformed images were visually checked to identify any misaligned
datasets. Next, the preprocessed T1-weighted image (moving image) was
non-linearly registered (Φy in Fig. 4) to theMontreal Neurological Institute
(MNI) PD25-T1-MPRAGE-1mm brain atlas (fixed image). This registra-
tion stepwas also subject to a visual inspection. Subsequently, both previous
transformations (Φx and Φy) were used to non-linearly transform all four
extracted DTI parameter maps from the patient space into the PD25 atlas
space. The affine part of the second transformation (Φy aff) was used to
affinely transform thepreprocessedT1-weighted scan in the patient space to
the PD25 atlas space. Additionally, the displacement fields that resulted
from this registration (Φy) were used to compute the corresponding log-
Jacobian maps using ANTs66. Briefly explained, log-Jacobians maps repre-
sent how much the volume differs between the atlas and individual pre-
processed T1-weighted datasets for each voxel in the atlas space. They are
symmetrical around zero with negative values indicating a decrease in
volume and positive values indicating an increase in volume with respect to
the atlas, which makes them well-suited for training CNNs to capture
macro-structural brain information as we have shown in our previous
work14. The MNI PD25 brain mask was used to remove any undesired
volume changes outside of the brain (backgroundvoxels) induced byANTs’
regularizer. To finalize step two, the DTI metrics in the atlas space, the
affinely registered T1-weighted scans, and the log-Jacobian maps were all
cropped to 160 × 192 × 160 voxels to remove unnecessary background data
and reduce the data size for the CNN setup. Lastly, the inverse transfor-
mation between the individual T1-weighted scans and the PD25 atlas (Inv
Φy)was used towarp the cortical and subcorticalHObrain regions38–41 from
the PD25 atlas space to the individual T1-weighted MRI space with the
nearest-neighbor interpolation. The HO subcortical atlas includes 21 brain
areas, such as the thalamus, hippocampus, and brainstem, and the HO
cortical atlas is comprised of 48 brain regions like the subcallosal cortex,
frontal cortex, andplanum-polare. Eachof these regions in subject spacewas
used to compute the corresponding volume and to determine the median
MD,FA,RD, andADvalues in those regions. To account for different global
head sizes, the volumes of the HO brain regions were normalized with the
individual’s intracranial volumes (i.e., each structure’s volume/intracranial
volume) calculated from every patient’s brainmask created during step two.
Median DTI values were selected over mean values to account for potential
non-normal distributions and partial volume effects at the border of brain
structures. The cortical and subcortical Harvard-Oxford atlas brain regions
were only used for the analysis of the saliency maps and for the baseline
comparison model using a classical machine learning model but are not
required for the training and testing of the deep learning model descri-
bed below.

Deep learning and machine learning models
The simple fully convolutional neural (SFCN) network67 served as the basis
for the deep learningmodel trained and optimized in this study. Thismodel
has obtained state-of-the-art performance in multimodal adult brain age
prediction and sex classification using T1-weighted MRI datasets68,69.
Additionally, the SFCN model has been effectively combined with techni-
ques for computing saliencymaps for a variety of applications14,68,69. Shortly
described, the proposed architecture contained two input layers, one 4D
input layer with dimensions of 160 × 192 × 160 × 6 for the input imaging
maps (all four 3D DTI parameter maps, the affinely registered 3D T1-
weighted scan, the 3D log-Jacobian map) and a second input layer for age
and sex; five convolutional blocks, each including a 3D convolutional layer
with a 3 × 3 × 3kernel (samepadding), batchnormalization, a 2 × 2 × 2max
pooling (same padding), and ReLU activation. A 3D convolutional layer
with a 1 × 1 × 1 kernel (same padding), a batch normalization layer, a 3D
average pooling layer (same padding), and ReLU activation made up the

sixth convolutional block. The individual filter sizes for each convolutional
layerwere 32, 64, 128, 256, 256, and64.The seventh and last block contained
a dropout layerwith a rate of 0.2, the output was flattened and concatenated
with age and sex. The result was then passed to an additional dense layer
with 16 units and ReLU activation before being transferred to a single
classification node with sigmoid activation.

The data were split into 75% training, 10% validation, and 15% testing
stratified by age, sex, group (HC and PD), and data origin (study) in each
split. This was done to minimize the risk of adding data biases during
training and to counteract data imbalances in the individual studies. The
proposed model was trained from scratch in an end-to-end fashion and by
utilizing all four computed 3D DTI maps (FA, MD, RD, AD), the affinely
registered 3DT1-weighted scans, the 3D log-Jacobianmap, and age and sex
(CNNCOMBINED) with randomly initiated weights through 110 epochs
following an early stopping condition determined by the model’s perfor-
mance based on the validation set. The atlas region information was not
used in the CNNat any time. The Adam optimizer70 was used to optimize a
binary cross entropy loss during training. The losswasweighted so that each
study received equal weights in terms of data size disparities and patient
distribution. These weights were specified as 1 minus the proportion of
participants fromaparticular group (PDorHC) that each study contributed
to the total number of datasets in that group (e.g., PPMI gave 222 PD
patients, hence the weight was = 1− (222/611)). In addition, the learning
rate was empirically determined to be 0.01, with a beta1 parameter of 0.95,
an epsilon parameter of 0.001 for the Adam optimizer, and a batch size of 4.
All experiments in this study were implemented on a GeForce RTX 3090
using TensorFlow71.

Eight other models, including deep learning and classical machine
learning methods, were created for comparison purposes. The first com-
parison model was trained to investigate how well a CNNmodel using the
3D DTI maps alone (CNNDTI) but with age and sex as additional features
can identify patients with PD.Moreover, we trained sixmore CNNmodels,
one for each DTI map alone (CNNFA, MD, RD, and AD), one using the
preprocessed T1-weighted data only, and one using the log-Jacobian maps
(CNNAFF and CNNJAC). Each of these models also included age and sex as
additional features. These sixmodelswere trainedusing the samedata splits,
architecture, and validation techniques used for the CNNCOMBINED. The
baselinemodelswere tunedusing independent hyperparameters, which can
be found in Table 3. Finally, a classical random forest machine learning
model72 was trained using the extracted tabulated data to enable a com-
parison with previously developed classical machine learning
models13,23,26,28–30,33,34. The random forest model was trained using volume
and median DTI metric values for each anatomical region in the Harvard-
Oxford atlases (RFCOMBINED). This model was optimized with the same
data splits as the CNNmodels described above, a batch size of 100, and 200
trees. RELIEFF feature selection with ten nearest neighbors73 was used to
rank the features based on their importance using the training set to
determine the most predictive features, thereby restricting the amount of
redundant and non-informative parameters. Iteratively, the least significant
featurewas removed, themodelwas re-run, building a newmodel each time
a feature was discarded until only two features remained. RELIEFF was

Table 3 | Hyperparameters for baseline models

Model Learning
rate

Beta 1 Epsilon

CNNDTI 1e-5 0.85 0.001

CNNFA 0.0003 0.9 1e-7

CNNMD 0.0003 0.95 1e-6

CNNRD 0.0001 0.9 1e-7

CNNAD 0.0003 0.85 1e-6

CNNJAC 0.0005 0.85 0.0001

CNNAFF 0.003 0.9 0.001
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chosen for this task because of its ability to detect non-linear correlations
between features and the output class. Themodelwith the best performance
within the RFCOMBINED framework was selected to serve as an optimized
baseline model representing the combination of traditional feature engi-
neering and machine learning models.

Saliencymap calculation and region of importance identification
Saliencymaps were created for the best-performing CNNmodel (based on
the ROC-AUC) to determine which areas of the brain and imaging para-
meter contributed the most to the classification of HC and PD. These
saliency maps were generated using the SmoothGrad method74 for each
correctly predicted participant from the test set using CNNCOMBINED,
which performed best overall for the test set (see Results Section). Briefly
explained, this method adds random noise from a Gaussian distribution to
each test dataset and feeds the noisy images into the trained model. The
approach then computes and backpropagates the loss function’s associated
partial derivativewith respect to the noisy input picture. Consequently, each
voxel is allocated one value that indicates its relevance to themodel’s output.
To smoothen the saliency maps, this method is repeated 25 times with a
noise standard deviation of 0.01. The intensities of the saliency maps were
thenmin–max normalized to a range of 0 to 1, and the resultingmaps were
averaged.Toacquire a betterunderstandingof themodel’s general behavior,
a single population saliency map was constructed for each modality by
averaging the subject-specific saliencymaps across all correctly classified test
subjects. The lower voxel intensity values of the averagemapswere removed
with a 0.5 threshold to focus the analysis on themost important highlighted
regions.

The Harvard–Oxford cortical and subcortical atlas brain areas (see
Preprocessing Section) were utilized to quantify the computed average
saliency maps and determine the most relevant regions for classifying
Parkinson’s disease patients across the differentMRImodalities. Aside from
this post-hoc analysis, the atlas regions were not used in any stage of the
model training or testing. The volume proportion of each Harvard-Oxford
atlas region covered by the thresholded average saliencymaps, as well as the
corresponding mean saliency map values were computed and explored for
each imaging input map for this purpose. Lastly, micro-structural changes
of the brain are known to precede macro-structural changes13. Thus, the
saliencymaps of early patients (PPMI patients in the test set) and non-early
patients (rest of the test set) were also computed and analyzed to investigate
if DTI metrics are more important for early-onset PD patients.

Evaluation metrics
The area under the receiver operating characteristic curve was used to
evaluate the performance of each trained classifier, which is sensitive to the
trade-off between true and false positive rates21. Additional metrics
including accuracy, specificity, and sensitivity based on a probability
threshold (0.5) were also computed as secondary evaluation metrics.
Additionally, a paired t-test was also conducted to establish statistical sig-
nificance between the models’ predictions, whereas a p value of 0.05 was
considered statistically significant.

Data availability
Openly available datasets that support the findings of this study were
obtained from the Parkinson’s Progression Markers Initiative (PPMI)
database (www.ppmi-info.org/data), the C-BIG repository (https://www.
mcgill.ca/neuro/open-science/c-big-repository), and the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNIwas launched in2003as apublic–privatepartnership, ledbyprincipal
Investigator Michael W.Weiner, MD. The primary goal of ADNI has been
to test whether serialmagnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined tomeasure the progression of
mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For
up-to-date information, see www.adni-info.org. The other studies included

in this work retain ownership of their scans and are thus not openly
available.

Code availability
The underlying code for this study will be made publicly available to facil-
itate reproducibility (https://github.com/miltoncamachocamacho/
PD-SFCNN).
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