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Discovering genetic mechanisms underlying the co-occurrence
of Parkinson’s disease and non-motor traits
Sreemol Gokuladhas 1, Tayaza Fadason1,2, Sophie Farrow 1,2, Antony Cooper 3,4 and Justin M. O’Sullivan 1,2,4,5,6✉

Understanding the biological mechanisms that underlie the non-motor symptoms of Parkinson’s disease (PD) requires
comprehensive frameworks that unravel the complex interplay of genetic risk factors. Here, we used a disease-agnostic brain cortex
gene regulatory network integrated with Mendelian Randomization analyses that identified 19 genes whose changes in expression
were causally linked to PD. We further used the network to identify genes that are regulated by PD-associated genome-wide
association study (GWAS) SNPs. Extended protein interaction networks derived from PD-risk genes and PD-associated SNPs
identified convergent impacts on biological pathways and phenotypes, connecting PD with established co-occurring traits,
including non-motor symptoms. These findings hold promise for therapeutic development. In conclusion, while distinct sets of
genes likely influence PD risk and outcomes, the existence of genes in common and intersecting pathways associated with other
traits suggests that they may contribute to both increased PD risk and symptom heterogeneity observed in people with Parkinson’s.
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INTRODUCTION
Parkinson’s disease (PD) is clinically heterogeneous in nature,
exhibiting a wide range of motor and non-motor symptoms that
progress over time and differ between individuals1. Despite the
substantia nigra being commonly considered the primary region
affected in PD, the neurodegenerative process has been shown to
significantly impact other brain regions, leading to a wide range of
both motor and non-motor symptoms2,3 and traits. These include
psychiatric symptoms4, reduced olfaction, sleep disorders, and
dementia5. While the motor symptoms associated with PD are
fairly well defined, the presentation of the non-motor symptoms
in PD is extremely heterogeneous. This observed heterogeneity in
symptoms associated with PD likely arises due to interactions
between genetic, epigenetic, and environmental risk factors over
an individual’s lifetime6,7. However, little is known about the
mechanisms that underlie these non-motor associations.
Non-motor symptoms that include cognitive and executive

dysfunctions are common in PD8,9. Prefrontal cortex dysfunction
in early-stage PD with rapid eye movement sleep behaviour
disorder has been proposed as an effective subtype-specific
biomarker of neurodegenerative progression10 and non-motor
functions. While the mechanisms attributing to the non-motor
symptoms of PD remain unknown, altered connectivity that
modifies the functional network organisation in the brain cortex
was observed by EEG in PD patients when compared to age-
matched controls11. This finding is consistent with cortical
processes having a substantial role in PD. Some non-motor
symptoms are frequently present during the prodromal (pre-
motor) stage of PD12; thus, investigating their genetic and
mechanistic underpinnings is critical for harnessing the non-
motor aspect of PD for earlier diagnosis and intervention.
Additionally, the altered cortical function appears to be linked

to early-stage compensation for basal ganglia dysfunction10 and,
consequently, motor functions. Given its association with non-

motor and motor symptoms in PD, the question remains whether
inherited common genetic variants associated with gene expres-
sion changes in the brain cortex can be causally linked to the
development of PD. Mendelian Randomization (MR) is a powerful
approach that determines the causal relationship between
modifiable gene expression and disease outcomes using genetic
variants associated with gene expression as instrumental variables
(IVs)13. MR has previously been used to identify genes whose
expression changes in dopaminergic neurons have a causal role in
PD13. However, given that gene expression and its regulation are
predominantly tissue-specific, identifying PD risk factors in the
brain cortex and exploring the biological mechanisms that they
affect may provide valuable insights into cortical mechanisms
contributing to PD and co-occurring traits, including non-motor
symptoms.
In addition to the motor and non-motor symptoms associated

with PD, a number of traits can co-occur with PD. Understanding
the complex connections between PD and co-occurring traits
requires integrating information across biological levels (e.g.
genetic risk, chromatin structure, protein interactions and
phenotypes) to inform on the mechanistic interactions that
impact shared inherited genetic risk. We have developed a de
novo analytical approach that uses protein-protein interaction
networks (PPIN) to identify connections across these levels14–17.
The use of tissue-specific gene regulatory networks (GRN) within
this integrative approach identifies conditions/traits co-occurring
with PD and the genetic variation and biological pathway(s) that
are responsible for the observed co-occurrence.
Here, we performed an unbiased, de novo analysis14,15,17,18

integrating the Brain Cortex-specific Gene Regulatory Network
(BC-GRN), PPIN and GWAS data. We identify SNPs (that are
associated with altered expression of specific genes) in the brain
cortex that are causally related to PD. Seeding protein interaction
networks with the genes whose expression is altered, and in
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parallel with genes regulated by PD-associated SNPs, identifies
proteins and additional genetic variants that likely explain the
genetic basis of a number of traits associated with PD. The finding
that these genetic variants are common in diverse populations
likely explains why the occurrence varies between individuals. We
contend that these findings provide mechanistic insight for
identifying therapeutics to treat a subset of the largely untreated
non-motor conditions associated with PD and for whom the
individuals can be readily identified. Downstream clinical trials
that include genetic stratification are essential for confirming
these findings and targeting the non-motor symptoms of PD,
particularly those that occur in the prodromal phase.

RESULTS
Mendelian randomization (MR) identified 19 genes whose
altered expression in the brain cortex was causally linked to
PD
Changes in gene expression associated with germline variants in
the brain cortex may contribute to the development of PD, and
investigating these changes could provide new insights into
disease mechanisms underlying PD. Therefore, we aimed to
identify gene regulatory interactions in brain cortex that may be
causally linked to PD. We constructed a Brain Cortex Gene
Regulatory Network (BC-GRN) that consisted of 1,050,132 sceQTLs
associations between 862,963 sceQTLs and 14,427 genes (Fig. 1a;
Supplementary Fig. 1). From the BC-GRN, regulatory interactions
involving 4304 genes and 190,357 sceQTLs with association p < 1e
−5 and FDR < 0.05 were considered for MR analysis (see
‘Methods’). Using the selected sceQTLs as instrumental variables
(IVs), we estimated the causality of their target genes (exposures)
on PD using a two-sample MR approach (Figs. 1b and 2a). Of 3968
genes tested, changes in the expression of 19 genes (three non-
coding and 16 protein-coding genes) were identified as causally
related to PD at a stringent threshold (p < 1.28e−05), hereafter
referred to as “PD-risk” genes (Fig. 2b). Expression changes (allelic
fold change (aFC)) for the 19 PD-risk genes were associated with
18 unique sceQTLs in the brain cortex. Among these 19 PD-risk
genes, nine increase and ten decrease the odds ratio (OR; risk) of
PD. For example, increased expression of ARHGAP27 and RNF40 in
the brain cortex was associated with decreased OR of PD. By
contrast, cortical down-regulation of FAM200B, GPNMB, and NUPL2
(HGNC official name NUP42) was associated with increased OR of
PD. In addition to the 19 PD-risk genes, 300 genes were identified
as being suggestive (1.28e−05 > p < 0.05) of causal associations
with PD, hereafter referred to as “suggestive PD-risk genes”
(Supplementary Table 1). Pathway enrichment analysis did not
return any biological pathways enriched for these suggestive PD-
risk genes.

Identification of traits that co-occur with PD
Given that genes/proteins don’t function in isolation, it is
important to consider additional regulatory and interaction
networks for the 19 PD-risk genes under the premise that
regulatory or interaction effects may modify the impact of these
genes on PD risk. With this in mind, we used the BC-GRN to map
additional regulatory sceQTLs, in addition to the 18 causal
sceQTLs, for each gene on each level of the protein interaction
network and tested the sceQTLs for enrichment in GWAS traits to
create the “PD-causal network” (Fig. 1c). Similarly, we created a
separate “PD-associated network”; that is, the PPIN expanded from
the genes that are regulated by PD-associated SNPs19 (i.e. GWAS
SNPs; Supplementary Table 2) and their regulatory sceQTLs in the
cortex. To identify co-occurring traits of PD, the PPIN was
expanded up to five levels in PD-causal and -associated networks
(Fig. 1c). However, subsequent analyses of the PD-causal and PD-
associated networks were restricted to three interaction levels (L0-

L3) to minimise the risk of including traits that co-occur with PD by
chance (Supplementary Fig. 2), resulting in 53 and 93 genes within
the PD-causal and PD-associated networks, respectively (Supple-
mentary Tables 3 and 5).
Forty-nine traits were significantly enriched within the PD-

causal network (Fig. 3a; Supplementary Table 3). Two of the 49
traits were PD and proxy-PD (first-degree relative), which is
consistent with the identification of the genes (LINC02210, KANSL1,
TMEM175, CD38, MMRN1, RAB29, STX4, PRSS36, GPNMB, NUPL2,
KAT8, KLHL7-AS1, and ARHGAP27) being causally linked to PD, as
the loci containing the regulatory sceQTLs have previously been
associated with PD risk through GWAS. The identification of PD on
level three is due to eQTLs regulating WNT3, SETD1A, and AP2B1
and is consistent with the hypothesis that modifiers of the PD-risk
genes can be detected. Smoking initiation was a level three trait
associated with a set of 47 SNPs associated with 19 genes
(Supplementary Table 4), five of which (AP2B1, ERBB2, GAB2, PTK2,
RAF1) are enriched in the EGF/EGFR signalling pathway (WikiPath-
ways: WP437, p= 1.716 × 10−3) (Supplementary Table 6). Given
that the regulatory loci associated with L0 traits (Fig. 3a—grey
box) directly modulate the PD-risk genes, it can be inferred that
these traits are “comorbid” with PD, add to the patient’s
symptoms, and they may additionally worsen the disease
trajectory. In contrast, the regulatory loci associated with traits
spanning L1-L3 within the PD-causal network (Fig. 3a—blue
dashed box) influence PD-risk genes by acting as modifiers of
genes (proteins) that interact with the PD-risk gene encoded
proteins. It is important to remember that the tissues affected by
the traits associated with the sceQTLs are not restricted to the
brain cortex. As such, it is possible that these traits mechanistically
modify the disease trajectory of PD.
Thirty-one traits were significantly enriched within the PD-

associated network (Fig. 3b; Supplementary Table 5). A subset of
regulatory loci associated with traits at L0 of the PD-associated
network also regulate PD-risk genes (Fig. 3c). The majority of these
shared GWAS traits are either brain-related phenotypes or
psychiatric traits (e.g. depressed affect, irritable mood, etc.).
Further, 16 of the 31 traits enriched within the PD-associated
network (Fig. 3, highlighted in yellow) were also present within the
PD-causal network, consistent with convergence between the
causal and associated networks. We hypothesised that this
observation might extend to convergence between common
genetic variation associated with PD and suggestive PD-risk genes.
Therefore, we tested to see if the genes that are within the PD-
associated network overlapped the suggestive PD-risk genes from
the MR analysis to predict alternate converging pathways that
influence PD and associated symptoms. Of the 93 genes in the PD-
associated network (Supplementary Table 5), ten genes (FAM47E,
PCGF3, CTSB, SH3GL2, WNT3, ITGA8, IP6K2, P4HTM, BIN3, and AREL1)
were found to overlap with the set of 300 suggestive PD-
risk genes.

17q21.31 genes contribute to the interaction between PD and
mood-related traits
In both the PD-causal and PD-associated networks, we identified
regulatory loci associated with PD and brain/mood-related traits
(e.g. worry, depressed effect, feeling miserable) that predomi-
nantly regulate gene expression in the 17q21.31 region (Fig. 4a).
This suggests that the 17q21.31 locus may contribute to the
relative risk of non-motor mood-related traits in PD, consistent
with previous findings highlighting this region’s importance for
cognitive and mood-related traits20. Most of these mood-related
trait-associated regulatory loci are located within the 900 kb
inversion breakpoint within the 17q21.31 locus and exert their
regulatory activity through cis-regulatory interactions (Fig. 4b, c).
Furthermore, we found that most of these regulatory interactions
at the 17q21.31 locus are shared between both the PD-causal (Fig.
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Fig. 1 Overview of the study. a The CoDeS3D pipeline56 was used to construct the Brain Cortex Gene Regulatory Network (BC-GRN) by
integrating Hi-C data from cortex cells and eQTL data from brain cortex tissue to map common SNPs to their target genes. The sceQTL-gene
associations that passed the Benjamini–Hochberg FDR correction threshold constitute the BC-GRN. b Transcriptome-wide Mendelian
randomization (MR) was used to estimate the causal effect of the expression of the brain cortex genes (exposures) on PD using sceQTLs as IVs.
c The multimorbid3D pipeline was used to connect the PD-risk genes (identified by MR analysis in b) and PD-associated GWAS SNPs (Nalls
et al., 2019) to co-occurring traits and the genetic and biological interaction that connects them (see ‘Methods’). Biological pathways enriched
for the PD-causal and PD-associated network were detected. d Medical conditions that co-occur with PD (ICD10 code – G20) were identified
within the clinical records of ~2 million NZ public health patients (January 2016 and December 2020) using the comorbidity R package. ICD10
codes for co-occurring conditions were converted to MeSH terms using the Unified Medical Language System application programming
interface. The MeSH terms for the observed co-occurring conditions were compared to the MeSH terms for the genes that are linked to PD
risk, following disease-gene mapping (R interface of DisGeNET (disgenet2r64)).
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4b) and PD-associated networks (Fig. 4c). Notably, LINC02210 and
KANSL1 (located within 17q21.31 inversion) are identified in both
the PD-causal and PD-associated networks, while ARHGAP27 is not
within the PD-associated network (Fig. 4d).

Shared biological pathways link PD and co-occurring traits of
PD
Mapping PD-risk and PD-associated genes to biological pathways
is vital to gain insights into pathogenic mechanisms and under-
stand the relationships between PD and other traits. Therefore, we
performed pathway enrichment analysis and identified the
biological pathways over-represented by genes within the PD-
causal network (Supplementary Table 6) and PD-associated
network (Supplementary Table 7). Although 18 genes appear in
both the PD-risk and PD-associated networks (Supplementary
Table 8), only ten pathways were shared between them (Fig. 5c;
Supplementary Table 9). The majority of genes and the biological
pathways enriched for those genes are distinct and do not overlap

within these two networks. Of note, PD-risk genes are enriched
within shared pathways alongside genes from subsequent levels
of the PD-causal and associated networks. This focused (pre-
dominantly involving a small number of genes associated with
many traits [compare Fig. 5a, b]) analysis leads to the observation
that traits associated with genes at levels L1 to L3, along with their
regulatory loci, may exert their influence on PD through
interconnected biological pathways (Fig. 5c).

Diseases associated with PD-causal network genes overlap
with comorbid medical conditions in PD patients
Comorbidity analysis for PD was conducted using patient health
records within New Zealand’s integrated data infrastructure to
corroborate the gene-linked co-occurring traits we have identified
in this study (Fig. 1d; see ‘Methods’). The prevalence of PD in the
patient population studied was 0.27% (i.e. 5556 out of the
2,051,661 individuals) of those seen by NZ’s public health system
between 1 January 2016 and 31 December 2020. The comorbidity
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Fig. 2 Identification of PD-risk genes in the brain cortex using MR. a The sceQTL-gene associations within the BC-GRN with an association p-
value (<1 × 10−5) were included in the exposure dataset. Clumping identified independent sceQTLs (IVs) for each gene (exposure). IV
summary statistics were extracted from the outcome GWAS19. Proxy SNPs (LD; r2 >=0.9) were used for IVs that were absent in the outcome
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Finally, MR analysis was performed using Wald ratio and Inverse variance weighted (IVW) methods for exposure with single IV and >1 IV,
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analyses identified 281 ICD-10 codes with a statistical (q-value,
0.05) relationship with PD (Supplementary Table 10). Ninety-three
(33%) ICD-10 codes mapped to 100 medical conditions (MeSH
terms) in the Unified Medical Language System (UMLS). Of these

100 medical conditions, 12 were also identified as being gene-
linked conditions by DisGeNet (Supplementary Table 11; see
‘Methods’). Notably, the odds ratio for obesity and ovarian cysts
were consistent, with them having a known reduced frequency in
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PD patients. However, the remaining ten conditions occurred
more frequently in the PD patients (Fig. 6a).
The genes we identified within the PD-causal network were

linked to GWAS traits (Fig. 3a). However, although GWAS traits can
offer mechanistic insights, most are non-medical conditions.
Therefore, we used gene-disease association information from
the DisGeNet database to annotate the PD-causal network genes
to medical conditions (MeSH terms). Of 53 genes in the PD-causal
network, 33 were annotated to MeSH terms (Supplementary Table
12). The MeSH terms were then compared to those identified
amongst NZ’s PD patients. Of 33 genes mapped to MeSH terms,
13 were also found to be associated with comorbid conditions in
PD patients. Notably, two of these genes, GPNMB and KAT8, were
identified as (i) PD-risk genes and (ii) are regulated by PD-
associated loci (GPNMB - rs28624974, rs199347, KAT8 - rs14235)
(Fig. 6b).

DISCUSSION
We created and utilised a disease-agnostic BC-GRN to undertake
an unbiased scaled approach that identified 19 genes whose
changes in expression in the cortex were causally linked to PD.
Seven of these genes were novel for their association with PD,
while twelve of them (i.e. ARHGAP27, FAM200B, TMEM175, CD38,
ZSWIM7, GPNMB, STX4, KANSL1, ADORA2B, KAT8, MMRN1, PRSS36)
were previously identified by Alvarado et al.21, validating our
approach. Notably, our study provided additional evidence for
their causal role, specifically within the brain cortex. Furthermore,
we identified an additional set of 300 genes that show suggestive
evidence of a causal association with PD in the cortex. The
chr17q21.31 inversion is particularly important as it contains three
non-coding RNAs (LINC02210, KLHL7-AS1, RP11-196G11.2) where
increases in expression were causally linked to both reductions in
the risk of developing PD and non-motor symptoms. However, the
extended networks on which the PD-risk genes and their
associated SNPs have convergent effects also connect to
established traits that co-occur with PD and hold significant allure

for therapeutic development (Fig. 7). Although distinct sets of
genes likely influence PD risk, symptoms, and comorbidities,
additional intersecting genes and pathways suggest that the
genes that occur in both the PD-causal and associated networks
may contribute to increased disease risk and altered PD-related
outcomes or complications. This study contributes valuable
insights into the molecular mechanisms underlying PD and
presents potential therapeutic targets for future investigations.
We identified CD38 as a PD-risk gene. CD38 encodes a

multifunctional enzyme that is a key modulator of NAD
metabolism and plays a central role in dictating age-related
NAD decline22. CD38 interacts with genes encoding proteins that
are involved in the NAD biosynthetic Preiss-Handler pathway (i.e.
NMNAT1/2, NADSYN1; Fig. 7a), which uses dietary nicotinic acid to
synthesise NAD23. There is preliminary evidence that NAD
supplementation (using nicotinamide riboside [NR]) increases
cerebral NAD levels and clinical improvement24. We propose that
the sceQTLs we identified as associated with the Preiss-Handler
pathway may contribute to the observed heterogeneity in
“NOPARK” trial participant responses to nicotinamide riboside24,
as only certain sceQTL combinations will likely have significant
impacts on the participants. Furthermore, eQTL-SNPs associated
with the expression of the NADSYN1 gene in both the PD-causal
and PD-associated networks have been linked to reduced Serum
25-Hydroxyvitamin D levels by GWAS. This, in turn, may contribute
to the subgroup of PD patients with significantly lower serum 25-
Hydroxyvitamin D concentrations than age-matched controls25,
and which correlated with higher UPDRS scores26. Therefore,
reduced serum vitamin D levels may help identify individual PD
patients who also have altered NAD cycling through the cortical
Preiss-Handler pathway and thus would benefit from NR-based
NAD replenishment therapy24,27. Notably, vitamin D is central to
calcium homeostasis28, while the products of CD38 activity (i.e.
cyclic ADP-ribose and nicotinic acid adenine dinucleotide
phosphate) are potent mobilisers of endoplasmic and endo-
lysosomal calcium stores29,30. Therefore, it is also tempting to
speculate that these genetic variants might contribute to PD
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through changes that affect calcium homeostasis, and thus
contribute to the selective degeneration of dopaminergic
neurons31,32.
Loci on chromosomes 1 and 4 (e.g. RAB29 and TMEM175) are

widely recognised as being amongst the top risk loci for PD due to
the presence of more than one independent risk signal at these
loci19. Therefore, their identification among the PD-risk genes was
not unexpected. RAB29, GAK and TMEM175 are all connected
through the lysosomal function to PD and through GWAS SNPs to
alpha-L-iduronidase levels (IDUA) levels in plasma (Fig. 7b). RAB29
functionally interacts with GAK33 and regulatory variants of GAK
are associated with elevated extracellular levels of lysosomal
hydrolase IDUA (alpha-L-iduronidase) in the blood (Fig. 7b). This
supports the contribution of GAK and RAB29 to PD, and potential
mechanistic pathways include the mis-sorting and secretion of
lysosomal hydrolases and the corresponding reduced activity of
multiple hydrolases in the lysosome. Nascent soluble lysosomal
hydrolases are bound by sorting receptors (e.g. mannose-6-
phosphate receptor (M6PR)) in the trans-Golgi network (TGN) and
sorted into clathrin-coated vesicles destined for late endosomes/
lysosomes where the sorting receptors release the hydrolases in
the low pH environment before undergoing retrograde transport
to the TGN. Perturbation of this cyclic sorting process results in the
mis-sorting/secretion of the hydrolase(s) and accompanying
reduced hydrolase activity in lysosomes. GAK participates in
uncoating clathrin-coated vesicles, and decreased GAK expression
reduces the trafficking of M6PR from the TGN to the lysosome34.
Similarly, decreased RAB29 expression perturbs retrograde traffick-
ing of M6PR from late endosomes/lysosomes to the TGN35.
Elevated levels of IDUA in the blood are also associated with
regulatory variants of TMEM175, a late endosomal/lysosomal

protein that regulates lumenal pH and whose increased expres-
sion elevates lumenal pH36. Notably, deficiencies in IDUA levels
have also been linked to an autosomal recessive lysosomal
storage disorder (Mucopolysaccharidosis type 1)37,38. As such, our
findings provide evidence to support the screening of patients for
elevated IDUA blood levels, with the aim of identifying patients
with lysosomal sorting defects and associated reductions in
lysosomal hydrolase activities.
Individuals with PD have a lower risk of most cancers except for

melanoma, for which they are at increased risk, while a family
history of melanoma in first-degree relatives is associated with a
higher risk of PD39,40. Despite many associations, the mechanistic
underpinnings of the positive and significant genetic correlation
between melanoma and PD41 are not fully understood. Our
analysis identified the PD causative protein TTC19 as interacting
with CHMP48, which was regulated by variants that are associated
with melanoma (Fig. 7c). Notably, the regulatory variants
associated with CHMP48 and melanoma also regulate the
expression of ASIP in human skin. ASIP regulates pigment
synthesis and is strongly associated with the risk of melanoma
and melanoma survival42–44. ASIP is an antagonist of MC1R
signalling, which is critical for the synthesis of the UV-protective
dark-coloured eumelanin, and elevated ASIP expression in the skin
reduces eumelanin biosynthesis and results in the elevated
production of pheomelanin, a yellow-coloured and less UV-
protective isoform of melanin45. Increased expression of ASIP in
the skin is associated with variants that increase the risk for
melanoma in PD patients who possess the appropriate combina-
tion of these variants and can thus be genetically identified. Thus,
our orthogonal approach has provided the first mechanistic
insight into the Parkinson’s-melanoma relationship while
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demonstrating how inheritance of these common SNPs (MAF >
5%, for each of the sceQTLs) can co-contribute to risk for both PD
and melanoma and their co-occurrence/comorbid relationship.
Despite smoking being associated with a decreased risk of PD,

in individuals with PD, studies using generalised linear models
have highlighted positive associations between smoking and non-
motor mood-related symptoms46,47. However, these exploratory
analyses were far from providing mechanistic insights into these
associations. We observed that eQTLs targeting genes within the
EGF/EGFR signalling pathway (AP2B1, ERBB2, GAB2, PTK2, RAF1)
were also associated with smoking in the causal network.
Activation of EGFR in airway epithelial cells is responsible for
mucin production after inhalation of cigarette smoke in airways in
vitro and in vivo48. Mutations in Parkin and LRRK2 have both been
associated with defects in EGFR internalisation, degradation and
recycling (reviewed in ref. 49). In the brain, EGFR signalling has also
been implicated in neurodegeneration through changes in the
regulation of cortical astrocyte apoptosis50. Consistent with this,
Nalls et al. identified that Parkinson’s disease has a significantly
positive causal effect on smoking initiation (MR effect 0.027, SE
0.006, Bonferroni-adjusted p= 1.62 × 10−5)19. We contend this
inter-relationship results from a genetic interaction between EGFR
signalling and PD.
The position effect theory posits that a deleterious change in

gene expression levels can be caused by a position change of the
gene relative to its normal chromosomal environment51 (e.g.
moving a gene can disrupt interactions with regulatory elements).
Therefore, it is notable that integrating genome organisation into

analyses of disease-associated eQTLs at chromosome 17q21.31
identifies a regulatory network linking variation inside and outside
of the locus with changes in gene transcript levels in a phenotype-
specific manner. The 17q21.31 locus exists as two haplotypes due
to an ancient inversion; the H2 allele (inverted) is the ancestral
organisation of this locus (H1 is the reference orientation52).
Campoy et al.20 present an in-depth analysis of the 17q21.31
inversion, mapping associations with 64 traits (including many
brain-related disorders) that are associated with the supergene20.
Consistent with this, we identified regulatory interactions invol-
ving non-motor traits-associated loci within the supergene loci.
We argue that the substantial contributions of the
17q21.31 supergene to PD and non-motor traits/symptoms are
due to regulatory changes in spatially-constrained eQTLs that
interact to link the regulation of two PD-risk genes (LINC02210 and
KANSL1) within the inversion boundaries. Moreover, these
regulatory changes also affect the regulation of one established
PD-risk gene (ARHGAP27) and one potentially suggestive PD-risk
gene (WNT3) located outside the inversion boundaries (Fig. 4b, c).
Therefore, we propose that position effects play a pivotal role in
the inter and intra-inversion effects of eQTLs at this locus. We
suggest that investigating the impacts of the relative positioning
of eQTLs to the genes across the inversion boundaries would
provide valuable insights into both PD risk and the associated
manifestations of the supergene.
There are a number of genes that have been previously

associated with PD among the 300 suggestive PD-risk genes. For
example, the P14K2A protein has been shown to accumulate
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rapidly on damaged lysosomes as part of an endoplasmic
reticulum-mediated process of lysosomal repair53. The identifica-
tion of P14K2A as being suggestive of causality is consistent with
hypotheses that the ability (or inability) to repair lysosomal
damage has a significant role in PD. However, further work must
be conducted to confirm this and the roles of other genes within
the suggestive PD-risk genes.
This study is not without limitations, many of which derive from

the reliance upon existing HiC, GWAS and PPIN data, all of which
are subject to study bias. This includes a bias for participants of
primarily European ancestry within GWAS studies54. Secondly,
although incorporating brain cortex eQTL data is invaluable to our
investigation, tissue sample size (n= 205) may be insufficient to
identify all potential PD risk factors in the brain cortex. For
example, despite detecting sceQTLs for SNCA, LRRK2, and GBA in
the BC-GRN, their p-values did not meet the threshold (<1 × 10−5)
required for inclusion in the MR analysis. Alternatively, it is
possible that: (1) there are additional biological mechanisms that
account for risk associated with these known PD genes; (2) rare
high-impact mutations within these genes are responsible; or (3)
these genes’ association with PD are not via the cortex. Thirdly,
our analysis does not include sceQTL target genes that do not
have curated interactions in STRING. Fourthly, the gene regulatory
and protein interaction networks we generated were not dynamic,
representing only a snapshot of possible interactions, and are thus
subject to change. Finally, our analyses combine information
sources that do not originate from the same biological samples
(i.e. eQTL data from GTEx55, Hi-C datasets, GWAS, and interaction
data). Notwithstanding these limitations, our approach improves
our ability to identify the direct contribution(s) of PD-risk genes
and associated traits to PD.
In summary, we used Mendelian Randomisation to identify 19

genes whose changes in expression in the cortex were causally
linked to PD, and further integration of gene and protein
interaction datasets enabled the identification of the wider
networks associated with these genes. However, our results have
significant mechanistic implications beyond identifying these PD-
risk genes, such as potential links between cortical non-motor
function and changes in the plasma (e.g. IDUA and vitamin D). The
altered protein interaction networks and eQTLs that are associated
with these changes provide valuable resources and potential
biomarkers for designing and stratifying clinical trials that aim to
target therapies for non-motor PD symptoms. Initially, these
findings may be used to retrospectively stratify already-completed
clinical trials, with the potential to rescue previously failed trials by
sub-selecting individuals who possess altered regulatory elements
for the genes within the targeted pathway (including modifiers).
Beyond this, and moving forward, incorporating this knowledge as
an a priori during trial design will be a critical step towards
reducing initial failure rates and taking a more precision medicine
approach towards treating PD.

METHODS
Building the brain cortex eQTL gene regulatory network (BC-
GRN)
All genetic variants called in the whole genome sequencing of the
GTEx project55 (dbGaP accession phs000424.v8.p2, project
#22937) were downloaded (10 January 2022) and run through
the CoDeS3D algorithm56 to identify spatially constrained expres-
sion quantitative loci (i.e. sceQTL)-gene associations. Briefly, the
CoDeS3D algorithm identified HindIII digested restriction frag-
ments harbouring genetic variants (i.e. SNPs) from Hi-C libraries of
dorsolateral prefrontal cortex cells57. Gene-harbouring fragments
that were captured as physically interacting with the variant-
harbouring fragments were identified. SNP-gene pairs with >1
interaction in >1 Hi-C biological replicate were then tested for

eQTL associations using tensorQTL58. SNP-gene pairs that pass a
chromosome-based Benjamini–Hochberg false discovery rate
(FDR < 0.05) correction were deemed significant sceQTL associa-
tions and formed the brain cortex gene regulatory network (BC-
GRN). The BC-GRN comprises sceQTL associations categorised as
cis (where linear DNA distance between sceQTL and gene is
<1Mb), trans-intra-chromosomal (where linear DNA distance
between sceQTL and gene is >1 Mb on the same chromosome),
and trans-inter-chromosomal (where sceQTL and gene is on
different chromosome) (Fig. 1a).

Identification of PD causal genes in BC-GRN using Mendelian
Randomisation (MR)
To estimate the causality explained by changes in gene expression
(i.e. exposure) on the outcome (i.e. disease) using MR, each
genetic variant included in the MR analysis must satisfy three basic
assumptions: (i) it is associated with the exposure (i.e. relevance
assumption), (ii) it is not associated with any confounder of the
exposure-outcome association (i.e. independence or exchange-
ability assumption), and (iii) it is only associated with the outcome
through the exposure (i.e. exclusion restriction assumption). A
genetic variant satisfying these assumptions is designated an
instrumental variable(s) (IVs). Here, we used sceQTLs within the
BC-GRN as IVs to estimate the causality explained by their target
genes within the BC-GRN on PD (Fig. 1b). Given that the number
of brain cortex samples used for the eQTL analysis in GTEx55 is
small (n= 205) and only genetic variant – gene association
confirmed by both chromatin interaction and eQTL analysis were
included in the analysis, using a stringent association threshold
(p < 5 × 10−8) would eliminate most of the sceQTLs and genes.
Therefore, to select valid sceQTLs from the BC-GRN, we used a less
stringent p-value threshold 1 × 10−5 as it is shown that eQTLs with
association p-value < 1 × 10−5 would greatly minimize the weak
instrument bias13,59,60. The sceQTLs that had passed this associa-
tion threshold were chosen as IVs. These IVs and their respective
target genes were included in the exposure dataset. Furthermore,
to obtain independent IVs for each gene (exposure), we
performed LD clumping using the ld_clump() function in the
TwoSampleMR package (v0.5.6)61. European superpopulation (EUR)
from the 1000 genome project (Phase III) was used as a reference
panel for clumping. In a 10 Mb window, two or more SNPs were
considered independent only if they were not linked (LD;
r2 < 0.001).
The largest PD GWAS reported by Nalls et al.19 was used as

outcome data for MR analysis. The summary statistics were
accessed from the IEU OpenGWAS portal (GWAS ID: ieu-b-7) using
the extract_outcome_data() function in the TwoSampleMR package
(v0.5.6)61. Only GWAS summary statistics of publicly available
datasets (33,674 cases and 449,056 control 17,891,936 SNPs) were
included in this study. When an IV was absent in the outcome
GWAS, we replaced it with their proxy SNPs (r2 > 0.9). When a
proxy SNP was also unavailable, we excluded the IV from the
analysis.
Sensitivity analysis was performed for exposures with more than

one IV. The presence of heterogeneity means violation of IV
assumptions for which horizontal pleiotropy is likely the main
cause. We performed a heterogeneity test using the mr_heter-
ogeneity() (Cochrane Q method) function in the TwoSampleMR
package61 and removed exposures with IVs having significant
heterogeneity (Q_pval < 0.05). Further, we evaluated the horizon-
tal pleiotropic effect using the MR-Egger intercept term, which
was performed using mr_pleiotropy_test(). It is considered that
directional pleiotropy is present when the MR-intercept term
differs from the null (p < 0.05).
We harmonised the exposure and outcome datasets to ensure

the estimated causal effect is attributed to the same allele in both
datasets. Harmonisation was done using the harmonise_data()
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function in the TwosampleMR package61. The Wald ratio (also
known as the ratio of coefficients) method is the most
straightforward way of estimating the causal effect of the
exposure on the outcome, so it was used for calculating the
causal effect of exposures with only one IV. In short, the Wald ratio
causal estimate was obtained by dividing the coefficient of the IV-
outcome association by the coefficient of the IV-exposure
association. The inverse variance weighted (IVW) method was
used for exposure with more than one IV. The MR analysis was
performed using the mr_singlesnp() function in the TwosampleMR
package61. The MR analysis results were corrected using the
Bonferroni multiple testing correction procedure. The exposures
with p-values lower than the Bonferroni multiple testing correc-
tion threshold (p < 0.05/number of exposures) were considered
genes causally linked to PD (i.e. “PD-risk” genes). We used an
extremely conservative correction threshold to prevent the
inclusion of false positive findings. The association between an
exposure and outcome is considered suggestive if adjusted
p > 0.05/number of exposures and <0.05.

Identifying traits with shared molecular interactions with PD
We undertook a de novo approach to identify traits with shared
molecular interactions with PD. We used the multimorbid3D
algorithm17,18 to integrate BC-GRN, protein-protein interactions
(PPIs) and SNP-trait associations from GWAS Catalog62 to identify
traits that are linked to PD-risk genes and PD-associated GWAS
loci. Firstly, the multimorbid3D pipeline used the BC-GRN to
identify the significant sceQTLs that are associated with the PD-
risk genes in the cortex. The PD-risk genes with their regulatory
loci constitute ‘level0 (L0)’ of the “PD-causal network”. Similarly, we
identified genes targeted by the 90 PD-associated SNPs (from
Nalls et al.19) and SNPs that are strongly linked to them with
linkage disequilibrium (LD) (r2 ≥ 0.8, within ± 5000 bp window,
using 1000 genomes phase III EUR super-population). The
resulting gene set and the associated sceQTLs formed the ‘level0
(L0)’ of the “PD-associated network” (Fig. 1c).
Since the proteins encoded by genes do not function

independently, identifying all the protein-encoding genes inter-
acting with the L0 genes (using PPI data) could help identify
additional genes relevant to PD. We therefore interrogated the
STRING database63 (accessed 30/03/2023) to identify genes/
proteins that interact with the L0 genes/proteins. The genes
encoding the interacting proteins, together with their associated
sceQTLs, form the next level (or L1) of the PD-causal network and
PD-associated network. This process was repeated to obtain five
levels of the protein interaction network (Fig. 1c).
We tested for traits in the GWAS Catalog (accessed 30/03/2023)

that are enriched for sceQTLs (and SNPs in strong linkage
disequilibrium (R2 >= 0.8) with these sceQTLs) at each level (Fig.
1c). To do this, we calculated the hypergeometric survival function
for each trait; thus,

sf Trait; Levelð Þ ¼ 1�
Xn

i¼0

n
xi

� �
M�n
N�xi

� �

M
N

� � (1)

where M is the total number of unique SNPs in the GWAS
Catalog62, n is the number of SNPs associated with a given trait, N
is the number of BC-GRN sceQTLs identified at the given level
(plus SNPs in LD as described above), x is the number of sceQTLs
(plus SNPs in LD) associated with the given trait at the given level.
Bonferroni correction (FDR < 0.05) was subsequently applied to
obtain significantly enriched traits at each level.
Monte Carlo simulations (n= 1000) were performed to identify

traits that are enriched within the PD-causal and PD-associated
gene networks that are not accounted for by chance alone. Each
simulation was started with a random set of genes of the same
size as the L0 gene set (for each PD-causal and PD-associated

network), selected from the BC-GRN. The simulations were then
run through the multimorbid3D pipeline.

Identification of biological pathways enriched for genes
within the PD-causal and associated networks
We aimed to identify biological pathways in which genes that
form the PD-causal and PD-associated gene networks are over-
represented. Gprofiler2 was used to perform the enrichment
analysis for pathways in KEGG, REACTOME and WikiPathways with
all genes in BC-GRN as background set. All enrichment p-values
were corrected for multiple testing using the ‘fdr’ correction
method implemented in the gprofiler2 package. Only those
pathways that passed the corrected p-value threshold of <0.05
are reported in this study.

Identification of diseases associated with PD-causal
network genes
We aimed to identify the disease conditions associated with the
genes forming the PD-causal network. Since the GWAS catalog
contains ‘traits’ that are not clinically recognised or diseases (e.g.
household income, white matter microstructure), we retrieved
“curated” gene-disease associations from DisGeNET64 (v7.0) using
gene2disease function (disgenet2r package64) for the genes.
Disease annotations were mapped to their corresponding Medical
Subject Heading (MeSH) identifiers using the mapping informa-
tion provided on the DisGeNET portal (https://www.disgenet.org/
downloads).

Comorbidity analysis
The New Zealand (NZ) Integrated Data Infrastructure was
interrogated for diagnostic records from patients who were seen
by NZ’s public health system between 1 January 2016 and 31
December 2020. Records of patients (<100 years of age) were used
in this analysis (N= 2,051,661). Statistics New Zealand (project
number MAA2020-63) reviewed and approved the use of the
Integrated Data Infrastructure within Stats NZ Data Lab. The
comoRbidity65 R algorithm was used to identify conditions that
were co-occurring with PD (ICD-10-AM code, G20) in the NZ
patients. Measures of comorbidity (i.e. relative risk, odds ratio, and
comorbidity score) were calculated as defined below:

Relative riskAB ¼ CABN
PAPB

(2)

Odds ratioAB ¼ CABH
CACB

(3)

Comorbidity score ¼ log2
observed CAB þ 1
expected CAB þ 1

� �
; expected CAB ¼ PAPB

N

(4)

where A is PD and B is the disease condition being tested, CAB is
the number of patients diagnosed with PD and disease B, N is the
total number of patients in the population, PA and PB are the
prevalence of PD and disease B, respectively, H is the number of
patients without PD and disease B, CA is the number of patients
diagnosed with PD, and CB is the number of patients diagnosed
with disease B. Conditions with <6 patients were excluded from
the analysis. Conditions with a 95% confidence interval of odd
ratios overlapping zero were also excluded from the analysis. The
ICD-10-AM codes were converted to MeSH terms using the Unified
Medical Language System (2022AA release) API from the National
Library of Medicine.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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