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Early-stage idiopathic Parkinson’s disease is associated with
reduced circular RNA expression
Benjamin J. Whittle 1, Osagie G. Izuogu 2, Hannah Lowes3, Dasha Deen3, Angela Pyle3, Jon Coxhead4, Rachael A. Lawson5,
Alison J. Yarnall5, Michael S. Jackson4, Mauro Santibanez-Koref4✉ and Gavin Hudson 1✉

Neurodegeneration in Parkinson’s disease (PD) precedes diagnosis by years. Early neurodegeneration may be reflected in RNA
levels and measurable as a biomarker. Here, we present the largest quantification of whole blood linear and circular RNAs (circRNA)
in early-stage idiopathic PD, using RNA sequencing data from two cohorts (PPMI= 259 PD, 161 Controls; ICICLE-PD= 48 PD, 48
Controls). We identified a replicable increase in TMEM252 and LMNB1 gene expression in PD. We identified novel differences in the
expression of circRNAs from ESYT2, BMS1P1 and CCDC9, and replicated trends of previously reported circRNAs. Overall, using
circRNA as a diagnostic biomarker in PD did not show any clear improvement over linear RNA, minimising its potential clinical
utility. More interestingly, we observed a general reduction in circRNA expression in both PD cohorts, accompanied by an increase
in RNASEL expression. This imbalance implicates the activation of an innate antiviral immune response and suggests a previously
unknown aspect of circRNA regulation in PD.
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INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disease char-
acterised by a progressive loss of dopaminergic neurons in the
substantia nigra1. Diagnosis is predominantly based on the
presentation of cardinal symptoms, including motor (such as
bradykinesia and gait disturbances) and non-motor (sleep
problems, cognitive impairment and dementia) symptoms1, which
result in substantial morbidity2. Unfortunately, the clinical
manifestation of PD typically occurs years after the onset of
dopaminergic neuron loss, making early diagnosis challenging3.
Measures to slow the rate of progression, therefore, remain a key
goal in PD research4. The reliance on the observation of clinical
symptoms hampers the detection in the earliest phases of
neurodegeneration when disease-modifying intervention would
be most beneficial5. Additionally, diagnostic accuracy is adversely
affected by shared clinical presentations with other neurodegen-
erative conditions, resulting in an estimated misdiagnosis rate of
~25% in the early stages of disease3. The identification of
biomarkers that can facilitate accurate early diagnosis and lead
to the discovery of new therapeutic targets are therefore crucial
for the future clinical management of PD, particularly in the early
stages of disease6.
Despite significant effort, few PD biomarkers have been

translated into clinical practice6, in part limited by a lack of
replication7. Efforts to identify biomarkers of PD onset have
been hampered by heterogeneity in clinical presentation and
the rate of progression of patients8. Familial PD cases, both
dominant and recessive, account for ~10–15% of cases9, whilst
the majority of remaining cases are considered idiopathic. The
current largest GWAS meta-analysis identified 90 variants
explaining ~16–36% of PD heritability10, yet polygenic risk
scoring is not currently at a stage to be used clinically to predict
an individual’s risk10. Neuroimaging show promising results,

with accuracies typically >80%11. However, these techniques are
expensive and usually most accurate in advanced disease12 or
when applied in combination13.
Biofluid-based biomarker candidates, including neurochem-

icals such as orexin14 and metabolites including lactate and
acylcarnitines15,16 have been proposed. Recent work assessing α-
synuclein seeding in CSF is promising in specific PD subgroups17,
although the invasive nature of a lumbar puncture limits its
utility. The accessibility of whole blood, as well as a high degree
of overlap with neuronal expression (>80% shared gene
expression)18,19, has prompted research into assessing blood-
based RNAs as biomarkers of PD. Early array-based and, more
recently, RNA sequencing-based experiments have identified
several messenger RNA (mRNA)20–28, long non-coding RNAs
(lncRNA)29 and microRNAs (miRNAs)30–33 as potential biomarkers
of PD. However, there is little concordance between stu-
dies24,26,34,35, likely a result of differences in methodologies,
sample cohorts and study design24,26,36.
Circular RNA (circRNA) is an RNA species characterised by the

formation of a back-splice junction (BSJ, Fig. 1)37. CircRNA
expression can vary across cell, tissue and development
stages38–40. Interestingly, circRNA expression can be uncoupled
from that of its parental host gene40–42 and several modulators of
global circRNA levels have been reported43–53. CircRNAs are
abundant in the brain54, enriched in genes related to neuronal
function55, and readily identifiable in blood40,56. Their reported
resistance to RNA exonuclease activity and increased stability
compared to their linear counterparts57,58, have prompted
investigations of their potential use as biomarkers in a range of
human diseases, including PD59,60. Differential expression of
circRNAs in PD has been reported59–65. However, these studies
typically use small cohorts, identify specific circRNAs that are not
replicated and show limited classification ability when compared

1Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. 2European Molecular Biology Laboratory, European
Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK. 3Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute,
Newcastle University, Newcastle upon Tyne, UK. 4Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK. 5Translational and Clinical Research Institute, Newcastle
University, Newcastle upon Tyne, UK. ✉email: mauro.santibanez-koref@newcastle.ac.uk; gavin.hudson@ncl.ac.uk

www.nature.com/npjparkd

Published in partnership with the Parkinson’s Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00636-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00636-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00636-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41531-024-00636-y&domain=pdf
http://orcid.org/0009-0005-5156-9701
http://orcid.org/0009-0005-5156-9701
http://orcid.org/0009-0005-5156-9701
http://orcid.org/0009-0005-5156-9701
http://orcid.org/0009-0005-5156-9701
http://orcid.org/0000-0003-3116-2558
http://orcid.org/0000-0003-3116-2558
http://orcid.org/0000-0003-3116-2558
http://orcid.org/0000-0003-3116-2558
http://orcid.org/0000-0003-3116-2558
http://orcid.org/0000-0001-7210-2733
http://orcid.org/0000-0001-7210-2733
http://orcid.org/0000-0001-7210-2733
http://orcid.org/0000-0001-7210-2733
http://orcid.org/0000-0001-7210-2733
https://doi.org/10.1038/s41531-024-00636-y
mailto:mauro.santibanez-koref@newcastle.ac.uk
mailto:gavin.hudson@ncl.ac.uk
www.nature.com/npjparkd


to existing clinical predictors. Thus, a large-scale, unbiased
assessment of circRNAs in PD is warranted.
Here, we investigate the potential utility of circRNA as

biomarkers for early-stage idiopathic PD in two large unrelated
cohorts, The Michael J Fox Foundation Parkinson’s Progression
Markers Initiative66 (PPMI) and The Incidence of Cognitive
Impairment in Cohorts with Longitudinal Evaluation-PD (ICICLE-
PD)67, adopting a discovery-replication strategy. Our analysis
indicates that, although circular RNAs and some genes are
differently expressed, neither has sufficient discriminatory power
to displace existing PD biomarkers. Interestingly, we observed a
reproducible reduction in general circRNA expression levels in PD
patients compared to controls, which was not recapitulated in

canonical splice junction expression, suggestive of a link between
circRNA expression and PD.

RESULTS
We utilised high-depth total RNA sequencing of whole blood in
two unrelated PD cohorts to investigate circular RNA expression
(Fig. 1). CircRNA expression does not always reflect host gene
expression40–42, thus prior to analysing circRNAs, we compared
gene expression (i.e., linear mRNA) between PD patients and
controls in both PPMI and ICICLE-PD. We limited all our analysis to
early-stage idiopathic Parkinson’s disease (PD) patients (i.e.,
diagnosed <13 months and no known predisposing genetic
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Fig. 1 Circular RNA formation and study overview. The canonical splicing of pre-mRNA produces a linear RNA molecule containing forward-
spliced junctions (FSJ). Circular RNA molecules are formed by a back-splicing reaction and can be identified through the presence of a back-
spliced junction (BSJ). Individuals from our discovery (PPMI, PD= 259, Controls= 161) and replication (ICICLE-PD, PD= 48, Controls= 48)
cohorts underwent whole blood total RNA sequencing to detect and quantify linear and circular RNAs.
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variation) to age and sex-matched controls, using PPMI as a
discovery cohort and ICICLE-PD as a replication cohort (Fig. 1 and
Supplementary Table 1).

Differential gene expression in early-stage idiopathic PD
Differential gene expression analysis was carried out on 16,191
(PPMI) and 15,852 (ICICLE-PD) genes respectively (overlap of

95.53%). In PPMI, we identified 44 significantly differentially
expressed genes (log2FC <−0.1/ > 0.1, FDR < 0.05), with 28
upregulated and 16 downregulated in PD (Fig. 2a and Supple-
mentary Data 1). Of these 44, TMEM252 and LMNB1 were similarly
upregulated in ICICLE-PD (log2FC > 0.1, FDR < 0.05) (Fig. 2a, b and
Supplementary Data 1).
To gain an overview of global alterations in gene expression

patterns we performed gene set enrichment analysis (GSEA)68. After
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Fig. 2 Gene differential expression in early-stage idiopathic PD. Figures showing the comparative expression of genes between PD cases
and controls in PPMI and ICICLE-PD. a Volcano plot of differential expression in PPMI and ICICLE-PD, highlighted (orange) are the 44 genes
significantly differentially expressed in PPMI (FDR < 0.05 and log2 fold change >0.1/ <−0.1) and the corresponding results in ICICLE-PD
(Supplementary Data 1). b Graph showing the comparative log2 fold changes and 95% CI of genes (TMEM252 and LMNB1) that were significant
in both PPMI and ICICLE-PD. c Results from the gene set enrichment of Gene Ontology terms. Terms that were significantly enriched
(FDR < 0.05) were replicated in ICICLE-PD. Displayed are the first 10 terms from each ontology as ranked by P-value in PPMI. NES=Normalised
Enrichment Score (Supplementary Data 2). d Volcano plots showing the differential expression of genes reported as differentially expressed in
PD from previous blood RNAseq studies70–73 (Supplementary Data 4). Genes significantly differentially expressed (FDR < 0.05 and log2 fold
change >0.1/ <−0.1) in each cohort are labelled. e Volcano plots showing the differential expression of risk genes highlighted in PD GWAS10

(Supplementary Data 5). Genes significantly differentially expressed (FDR < 0.05 and log2 fold change >0.1/ <−0.1) in each cohort are labelled.
Grey dashed lines on the volcano plots indicate the log2 fold changes 0.1 and −0.1.
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classifying into GO terms, we identified 97 biological processes, 11
molecular functions and 29 cellular components that were
significantly enriched in PPMI and subsequently replicated in
ICICLE-PD (FDR < 0.05 with the same direction of enrichment)
(Supplementary Data 2). Ontologies related to ribosomal function
and translation were more likely to be decreased in PD. In contrast,
ontologies related to the innate immune response, including
antiviral and interferon signalling processes, tended to be increased
in PD (the top 10 ranked by PPMI P-value in each ontology are
shown in Fig. 2c with all results present in Supplementary Data 2).
GSEA of KEGG pathways also showed the significant enrichment of
the pathways Ribosome (PPMI FDR= 7.58 × 10−24; ICICLE-PD
FDR= 5.57 × 10−10) and NOD-like receptor signalling (PPMI FDR=
0.0016, ICICLE-PD FDR= 2.27 × 10−6), part of the innate immune
response69 (Supplementary Data 3).
We were able to independently replicate (FDR < 0.05) genes

previously reported as differentially expressed in the blood70–73

using PPMI (LSMEM1, TPST1 and SLED1) and ICICLE-PD (IFIT1,
RSAD2, IFI44L and OLIG2) datasets (Fig. 2d and Supplementary
Data 4). Overlapping the expression of genes potentially under-
pinning PD GWAS risk loci10, identified five significantly differen-
tially expressed genes (BST1, FCGR2A, SIPA1L2, NOD2 and VAMP4,
log2FC > 0.1/ <−0.1, FDR < 0.05) in PPMI, although none passed
multiple testing correction in ICICLE-PD (Fig. 2e and Supplemen-
tary Data 5). Overlapping with highly penetrant pathogenic
parkinsonism genes, we identified PTRHD1 as significantly

decreased in PD (FDR= 0.015), with a similar trend reported in
ICICLE-PD (FDR= 0.088) (Supplementary Data 6).

CircRNAs are differentially expressed in early-stage
idiopathic PD
CircRNAs were detected based on the presence of a back-spliced
junction (BSJ, Fig. 1), combining multiple detection algorithms to
define high-confidence BSJs (see Circular RNA detection and
quantification). Filtering of lower expressed circRNAs left a set of
abundant circRNAs (PPMI= 403, ICICLE-PD= 457, 62.57% over-
lap). We observed no overrepresentation of GO terms after
grouping circRNAs based on their host gene (Supplementary Data
7). We identified three BSJs significantly reduced in PD patients
versus controls in PPMI (log2FC <−0.1/ > 0.1, FDR < 0.05) (Fig. 3a, b
and Supplementary Data 8). These BSJs, derived from the genes
ESYT2, BMS1P1, and CCDC9 were similarly decreased in ICICLE-PD
but did not reach statistical significance (FDR > 0.05) (Fig. 3a, b and
Supplementary Data 8). Seven circRNAs previously reported as
differentially expressed in PD61,62 were sufficiently expressed in
the PPMI or ICICLE-PD cohorts (Supplementary Data 9). Two BSJs,
derived from DOP1B and INTS6L, showed altered expression in
PPMI (P-value < 0.05) (Supplementary Data 9). While no BSJ
reached statistical significance after multiple testing correction
(FDR > 0.05), we were able to replicate the direction of change of
four BSJs in PPMI and three in ICICLE-PD (Fig. 3c and
Supplementary Data 9).
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Fig. 3 Circular RNA differential expression in early-stage idiopathic PD. Figures showing the comparative expression of circular RNAs
(shown as individual back-spliced junctions, BSJs) between PD cases and controls in PPMI and ICICLE-PD. a Volcano plot of differential
expression in PPMI and ICICLE-PD, highlighted (blue) are the three BSJs significantly differentially expressed in PPMI (FDR < 0.05 and log2 fold
change >0.1/ <−0.1) and the corresponding results in ICICLE-PD (Supplementary Data 8). Grey dashed lines indicate the log2 fold changes of
0.1 and −0.1. b Graph showing the comparative log2 fold changes of the three BSJs that were significantly differentially expressed in PPMI.
None reached significance in ICICLE-PD (P-values > 0.05) (Supplementary Data 8). c Graph showing the comparative log2 fold changes of BSJs
previously reported as being differentially expressed in PD61,62 (Supplementary Data 9). The arrows indicate the previously reported direction
of change in PD relative to controls. Error bars in b and c show the 95% CI of the fold change. BSJ positions are reported as chromosome:start-
end:strand (GRCh38).
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Early-stage idiopathic PD is characterised by a reduction in
circRNA abundance
Whilst we observed differential expression of specific BSJs,
perhaps the more striking observation was an imbalance of BSJ
fold changes, i.e., where the expression of the majority of BSJs
tended to be reduced in PD compared to controls (PPMI

imbalance= 0.09, Bonferroni P-value= 9.2 × 10−32, ICICLE-PD
imbalance= 0.29, Bonferroni P-value= 9.4 × 10−10, Exact binomial
test) (Fig. 4a, Supplementary Data 10). To explore whether
reduced expression was specific to BSJs, we also examined the
expression of other RNA types (Supplementary Fig. 7, Supple-
mentary Data 10). Forward-spliced junction (FSJ) counts provide
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the best approximation of the linear RNA as gene expression
estimates will inevitably include circRNA-derived reads that do not
span the BSJ and thus cannot be distinguished. Crucially, a
reduction was not evident when examining the fold changes of
FSJs (PPMI imbalance= 0.54, Bonferroni P-value= 1.0, ICICLE-PD
imbalance= 0.50, Bonferroni P-value= 1.0, Exact binomial test)
(Fig. 4a, Supplementary Data 10). A comparison of fold changes
based only on genes that host circRNAs identified no reduction
(PPMI imbalance= 0.27, Bonferroni P-value= 0.1, ICICLE-PD
imbalance= 0.54, Bonferroni P-value= 1.0, Exact binomial test).
Global gene expression also showed no reduction in PPMI
(imbalance= 0.49, Bonferroni P-value= 1.0), yet was signifi-
cantly increased in ICICLE-PD (imbalance= 0.56, Bonferroni
P-value= 3.6 × 10−18) (Fig. 4a, Supplementary Data 10).
As fold change imbalance estimates are dependent on the

number of RNAs passing the fold change threshold, we also
directly compared expression levels of all RNAs included in
differential expression analyses. This also provided evidence of a
significant reduction in circRNA expression in PD (PPMI P-
value= 4.4 × 10−6, ICICLE-PD P-value= 8.6 × 10−11, Wilcoxon
rank-sum test) (Fig. 4b), yet no reduction in the expression of
flanking FSJs, expression of circRNA host genes or total gene
expression (Supplementary Fig. 8).
To highlight differences in circRNA regulation, we compared

fold changes between BSJ expression and their flanking FSJs. For a
subset of junctions, this was not possible as no corresponding FSJs
were detected (PPMI= 95/403 or 23.6%, ICICLE-PD= 92/457 or
20.1%). We observed a weak correlation in fold change differences
between BSJs and corresponding FSJs (PPMI R2= 0.08, ICICLE-PD
R2= 0.07, Fig. 4c). BSJ fold changes were consistently lower, albeit
generally modest, across both cohorts (PPMI P-value= 2.9 × 10−34,
ICICLE-PD P-value= 1.6 × 10−9, Wilcoxon rank-sum test) (Fig. 4d).
Together, these results suggest that the observed imbalance in
circRNA expression in early-stage idiopathic PD is not solely driven
by a reduction in parental host gene expression.

RNASEL and ADAR expression is increased in early-stage
idiopathic PD
CircRNA biogenesis and degradation are linked to several cis- and
trans-acting factors37. We explored whether differential expression
of previously reported circRNA regulators43–53 may be contribut-
ing to the reduced circRNA abundances in PD (regulators and
evidence are given in Supplementary Data 11). In PPMI, RNASEL
and ADAR were significantly increased in PD, with RNASEL also
increased in ICICLE-PD and significant after multiple testing
correction (Fig. 4e, Supplementary Data 11). RNASEL encodes
Ribonuclease L, which is known to be involved in the degradation
of circRNA, subsequently allowing the activation of PKR as part of
the integrated stress response50. We also observed significantly
increased expression of EIF2AK2, which encodes PKR, in both
cohorts (PPMI P-value= 0.010; ICICLE-PD P-value= 0.019) (Fig. 4f,
Supplementary Data 1). Increased PKR activity has been reported
in lymphocytes of PD patients74. This, combined with the
downregulation of protein synthesis genes and the upregulation
of genes involved in the innate immune response (Fig. 2c,
Supplementary Data 2), suggests that the antiviral integrated
stress response may be active in early-stage idiopathic PD.

Evaluating RNA expression as a predictor of early-stage
idiopathic PD
To evaluate the use of RNA expression as a predictor of early-stage
idiopathic PD, we first examined the potential of BSJ and FSJ
expression, as well as BSJ:FSJ expression ratios, to separate PD
from controls. Area under the receiver operating characteristics
curves (AUC) were generated using the expression of each
abundant junction type as a predictor. The median AUC across
all junction measures was higher in ICICLE-PD (0.57) compared to

PPMI (0.53). The strongest correlation between PPMI and ICICLE-
PD AUCs was for BSJ:FSJ ratios (Spearman’s ρ= 0.33), followed by
FSJ (Spearman’s ρ= 0.22) and BSJ counts (Spearman’s ρ= 0.18)
(Fig. 5a).
With no clear individual junction biomarker candidates, we

included multiple features in multivariable regularised logistic
regression models (see Classification of Parkinson’s status using
RNA abundances). Using cross-validation, we trained and eval-
uated the classification performance of models using the PPMI
cohort. We then used the ICICLE-PD as an independent test cohort
to assess the performance of classifiers trained using the PPMI
cohort. The best performance in the PPMI cohort was achieved by
combining gene and BSJ counts (AUC= 0.85 [0.81, 0.89], Fig. 5b)
and appeared primarily driven by gene expression (AUC= 0.84
[0.81, 0.88], Fig. 5b) rather than BSJ counts (AUC= 0.61 [0.55, 0.66],
Fig. 5b). In ICICLE-PD, combining gene and BSJ counts produced
an AUC of 0.60 [0.48, 0.71] (Fig. 5b). Similarly, the performance of
the gene expression strategy also decreased in the ICICLE-PD
cohort (AUC= 0.59 [0.48, 0.71], Fig. 5b). All other classifiers had an
AUC < 0.6 in the PPMI cohort (Fig. 5b, Supplementary Table 2).
Using BSJ:FSJ ratio as a classifier achieved the best generalisability
in the ICICLE-PD cohort (AUC= 0.63 [0.52, 0.74], Fig. 5b). All other
unmentioned models achieved an AUC < 0.6 in the ICICLE-PD
cohort (Fig. 5b, Supplementary Table 2).

DISCUSSION
We identified differences in gene and circRNA expression between
early-stage idiopathic PD patients and controls, with elevated
expression of TMEM252 and LMNB1 observed in both PPMI and
ICICLE-PD PD cases compared to controls. We independently
validated expression changes in genes shown to modulate PD
risk10 and in genes that had been previously reported to be
differentially expressed in PD70–73. Additionally, we discovered
three novel circRNAs that were decreased in PD, with similar
trends observed in our replication cohort. After evaluating the
performance of multivariable classification models, our results
suggest that circRNAs are unlikely to be useful biomarkers for
early-stage idiopathic PD, particularly when compared to classi-
fication using gene expression. Perhaps more interestingly, we
observed a tendency towards generalised decreased circRNA
expression in PD in both cohorts, which correlated alongside
decreased expression of genes involved in protein translation and
increased expression of genes involved in the immune response.
These findings suggest that reduced circRNA levels in the blood
may be a proxy measure of the underlying pathology and add to
the growing body of evidence linking RNA metabolism and
immune response to PD75,76.
The global downregulation of circRNA expression we observed

in blood is reminiscent of the reduction in microRNA expression
seen in PPMI participants33. CircRNA expression is influenced by
trans-acting proteins, including Ribonuclease L (RNase L, encoded
by RNASEL)50 and adenosine deaminase RNA specific (ADAR,
encoded by ADAR), an enzyme responsible for A-I RNA editing that
can modulate the base-pairing of reverse complementary matches
in the flanking introns of circRNAs, influencing their biogen-
esis53,54,77,78. ADAR was significantly increased in PPMI PD cases
and showed a similar trend in ICICLE-PD (Supplementary Data 11).
Although ADAR expression levels do not necessarily correlate with
editing activity79, altered RNA editing has been observed in PD
patients’ blood and brain regions61,80. RNase L degrades circRNAs
as a response to viral infection50. The degradation of circRNAs is
required for the activation of Protein Kinase R (PKR, encoded by
EIF2AK2), a regulator of the integrated stress response (ISR)50,81.
This is consistent with our results, where the reduction in circRNAs
in PD we observed coincides with increased expression of RNASEL
and EIF2AK2 (Fig. 4e, f, Supplementary Data 1), as well as the
upregulation of genes related to antiviral activity and the innate
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immune response (Fig. 2c, Supplementary Data 2, 3). Although the
role of RNase L in the antiviral immune response is well
documented82, and despite the links between viral infection and
PD83, to our knowledge, there have been no reports showing
RNASEL expression changes in PD. Conversely, PKR activation has
been observed in PD74,84. Endogenous dsRNA can lead to PKR
activation85,86 and has been recently implicated in neurodegen-
erative diseases other than PD87–89. In mice, exogenous dsRNA
triggered α-synuclein aggregation and dopaminergic neuron loss,
suggesting the existence of aberrant dsRNA may have a potential
role in the pathogenesis of PD90. Activated PKR leads to eIF2α
phosphorylation, and results in global protein synthesis attenua-
tion81. Protein synthesis is reduced in PD patient cell lines91,92,
consistent with the reduced expression of genes related to protein

synthesis and ribosomal function we observed in PD (Fig. 2c,
Supplementary Data 2, 3). Based on our findings, we propose that
reduced circRNA levels in early-stage idiopathic PD is related to
activation of an antiviral immune response, reflected through
increased expression of RNASEL, ADAR and EIF2AK2 (which
encodes PKR) (Fig. 6). Reduced circRNA expression would allow
activation of PKR, consistent with the increased activity of PKR in
lymphocytes of PD patients74, triggering the cellular ISR. Overall,
these results highlight a potential role of RNase L and PKR in the
pathogenesis and/or systemic response to PD (Fig. 6).
Using gene expression as a classifier of early-stage PD in the

PPMI cohort was in line with previously published estimates
(AUC= 0.84 compared to 0.80 in Makarious et al. 93, Fig. 5c). In our
independent replication cohort (ICICLE-PD), the AUC of the gene
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expression classifier was lower (ICICLE-PD AUC= 0.59, Fig. 5c).
Despite promising results using circRNA as a biomarker in other
diseases59, circRNAs performed substantially worse than gene
expression when classifying PD in PPMI (AUC= 0.61 vs 0.84, Fig.
5c), although similar performance was seen in ICICLE-PD (AUC=
0.59 vs 0.59, Fig. 5c). Similar to previous work assessing circRNAs
as a lung cancer biomarker94, combining circRNA expression with
gene expression showed a small improvement in predictive ability
over gene expression alone in both PPMI (AUC= 0.85 vs 0.84, Fig.
5c) and ICICLE-PD (AUC= 0.60 vs 0.59, Fig. 5c). Put into context,
circRNAs perform worse than their linear counterparts when
classifying PD as a group, leading us to the conclusion that
circRNA expression in isolation has limited utility as a clinical PD
biomarker. Although combining circRNAs and gene expression
data does improve classification power, the performance of
circRNAs either in isolation or combined with gene expression
falls short of recent estimates using alpha-synuclein seeding as a
biomarker17.
When comparing differential gene expression, we identified

two genes (TMEM252 and LMNB1) that were upregulated in PD
cases in both cohorts, consistent with previous work27. TMEM252
encodes a transmembrane protein of unknown function that has
been linked to cancer95, but has not previously been implicated in
PD. LMNB1 encodes Lamin B1, a component of the nuclear lamina.
Increased LMNB1 expression has been reported in the dopami-
nergic neurons of PD patients96 and a variant within LMNB1 has
been associated with cognitive outcomes in PD97.
We were also able to independently replicate the differential

expression of genes that have been previously reported in blood
RNA-seq studies as differentially expressed in PD patients70–73

(LSMEM1, TPST1 and SLED1, Fig. 2d). As previous studies were not
limited to early-stage PD (diagnosed <13 months), these genes
may reflect those with altered expression throughout PD
development. Of the three genes replicated using PPMI, SLED1
and LSMEM1 encode proteins of unknown function. TPST1
encodes tyrosylprotein sulfotransferase 1, an enzyme required
for post-translational modification of proteins that also plays
important roles in the inflammatory process, leukocyte movement
and cytosis, viral cell entrance, and other cell-cell and protein-

protein interactions98. Interestingly, 3 out of the 4 previously
reported genes replicated in ICICLE-PD (IFIT1, RSAD2, IFI44l, Fig. 2d)
are induced by type-1 interferons99. Their increase in expression is
consistent with an increase in type-1 interferon signalling in PD100.
In addition, our data provide a potential mechanistic link between
PD-associated genetic variation, identifying differential expression
among genes associated with PD risk. These included PTRHD1
(Supplementary Data 6), which encodes a peptidyl-tRNA hydrolase
that has been linked to recessive parkinsonism101,102, and genes
identified by association studies (BST1, FCGR2A, SIPA1L2, NOD2 and
VAMP4, Fig. 2e)10.
Our analysis of circRNAs identified three that were over-

expressed in PPMI PD cases compared to controls (within the
genes BMS1P1, CCDC9 and ESYT2) with similar trends observed in
ICICLE-PD (Fig. 2a, b). These circRNAs, or their host genes, have not
previously been associated with PD. The protein product of CCDC9
is believed to be a member of the exon junction complex involved
in RNA splicing103. CircRNAs from CCDC9 have been implicated in
cancer, acting as a miRNA sponge to suppress tumorigenesis104,
and in stroke, suppressing NOTCH signalling in mouse models of
ischaemia105. Interestingly, alterations in NOTCH signalling has
been linked to PD through the function of LRRK2106. ESYT2
encodes extended synaptotagmin 2, a member of the E-Syt family,
which are endoplasmic reticulum (ER) localised proteins involved
in tethering the ER to the cellular plasma membrane107. There is
suggestive evidence that circRNAs derived from ESYT2 may be
upregulated upon viral infection108, in contrast to the decreased
expression we observed in PD patients (Fig. 2a, b). BMS1P1
encodes a pseudogene of ribosome biogenesis factor pseudogene
1 (BMS1), and there are no known disease associations for
circRNAs produced by this gene.
We were also able to independently replicate trends in several

previously reported differentially expressed circRNAs observed in
PD blood and brain tissue61,62 although none reached statistical
significance (Fig. 3c, Supplementary Data 9). This is likely due to
methodological differences (e.g., circRNA detection and normal-
isation), tissue-specific expression (whole blood compared to the
brain) or differences in blood cell composition (whole blood
compared to peripheral blood mononuclear cells). Unfortunately,
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23 of the 30 previously reported circRNAs (20 from the substantia
nigra and three detected in peripheral blood mononuclear cells)
were undetectable in either PPMI or ICICLE-PD. We identified
altered expression of circRNAs (derived from DOP1B and INTS6L),
whose host genes have not been functionally linked to PD
(Supplementary Data 9). However, copy number variation in
DOP1B has previously been linked to Alzheimer’s disease109, while
deletion of INTS6L leads to a cardiomyopathic phenotype110.
Nonetheless, our data extend the growing body of evidence
linking circRNA dysregulation to PD60.
As a key vehicle for immune cells, the differences we observe in

blood RNA expression in PD patients add to the proposed role of
inflammation and immune dysfunction in the development and
response to PD76. It is possible that changes in blood can be
detected early on in disease duration, in line with the early
presentation of non-motor symptoms and peripheral aggrega-
tions of α-Synuclein111. Pre-diagnosis changes in lymphocyte
levels and function have been reported112,113. In addition,
inflammation markers within blood have been associated
extensively with both PD risk and symptom progression114.
In this work, we have drawn together and performed the largest

whole-blood circular transcriptome analysis of PD, focusing on the
potential utility of circRNAs as biomarkers. However, several
limitations must be considered. Biomarker detection using whole-
blood has numerous advantages, including accessibility and ease
of processing, but we could not account for variation in the
proportions of different blood cell types across samples115,116. In
addition, despite efforts to increase homogeneity (see Cohorts),
both cohorts differ in some respects. Firstly, PPMI participants
were not receiving treatment at sample collection, whereas most
ICICLE-PD participants were. Dopaminergic treatment may influ-
ence biological measures, such as circulating cell-free mitochon-
drial DNA levels117. It must also be noted that some PPMI samples
were recruited during a treatment interval (up to ~60 days before
enrolment) and a large number of individuals were taking
concomitant medications for a range of non-PD and PD-related
symptoms66. This may have influenced our results, however, the
concordances we see between RNA expression as well as the
reproducible reduction in circRNA expression in PD patients
between cohorts suggests this is minimal. Secondly, it is inevitable
that the difference between cohort sizes affected our ability to
detect rarer RNAs, particularly circRNAs. We attempted to mitigate
against this by using the largest cohort as discovery (PPMI) opting
to replicate in the smaller cohort (ICICLE-PD). In addition, we
limited our analysis to abundant genes and circular RNAs, with the
majority (95.53% of genes and 62.57% of circRNAs) detectable in
both cohorts. Finally, some circRNA quantification studies use
circRNA enrichment steps such as RNase R treatment118 to
enhance the detection of lesser expressed circRNAs. However,
not depleting linear RNAs allowed us to quantify both linear and
circular RNAs simultaneously.
In conclusion, we observed specific and consistent alterations in

the linear and circular blood transcriptome in early-stage
idiopathic PD patients. Changes in circRNA levels were not
sufficient to facilitate reliable PD classification, particularly when
compared to existing PD biomarkers. We did, however, identify a
reproducible reduction in circRNA expression in PD. This
imbalance, along with gene expression patterns, implicates the
activation of an innate antiviral immune response, providing an
opportunity for future investigations into this previously unknown
aspect of circRNA regulation in PD.

METHODS
Cohorts
We utilised samples with corresponding demographic (e.g., age at
sample collection, sex) and clinical data (e.g., dopaminergic

treatment status, disease duration) from two large cohorts of
patients with Parkinson’s disease (PD) and controls of similar ages
and sex. The discovery cohort was obtained from The Michael J
Fox Foundation Parkinson’s Progression Markers Initiative66 (PPMI,
https://www.ppmi-info.org/), while The Incidence of Cognitive
Impairment in Cohorts with Longitudinal Evaluation-PD67 (ICICLE-
PD, https://www.bam-ncl.co.uk/iciclepd) was used for replication.
To study transcriptomic changes in the early stages of PD and to
ensure parity between discovery and replication cohorts, only PD
patients recently diagnosed with PD (<13 months) were included.
PD patients harbouring causative variants in select genes (e.g.,
LRRK2, GBA, SNCA, PINK1, PRKN) were excluded and are thus all PD
cases are idiopathic. Both studies were conducted in accordance
with the Declaration of Helsinki and Good Clinical Practice
guidelines after approval of local ethics committees of the
participating sites (PPMI, https://www.ppmi-info.org/ and ICICLE-
PD, Newcastle and North Tyneside Research Ethics Commit-
tee)66,67. All subjects provided written informed consent.

ICICLE-PD RNA isolation and sequencing
Between June 2009 and December 2011, newly diagnosed PD
patients were recruited from the community and hospital
outpatient clinics in Newcastle-upon-Tyne and Gateshead. Idio-
pathic PD was diagnosed by a movement disorder specialist and
fulfilled Queen’s Square Brain Bank criteria119. Full exclusion
criteria have been published elsewhere67. Briefly, participants
were excluded if they had significant cognitive impairment at
presentation (Mini Mental State Examination <24) or a pre-existing
diagnosis of dementia, an atypical Parkinsonian syndrome, or
insufficient English to complete assessments. We limited our
analysis to 48 early-stage (diagnosed <13 months) idiopathic (i.e.,
without a known PD-related genetic diagnosis) PD patients and 48
control samples matched for age and sex. Total RNA was extracted
from 5ml of whole blood collected and stored in PAXgene tubes
as per manufacturer’s instructions (Blood RNA Kit, Qiagen), quality
assessed using an Agilent 2100 Bioanalyzer system and stored at
−80 °C. Only samples with an RNA integrity number >8 were
included. Library preparation, including ribosomal RNA and globin
depletion (Globin-Zero Gold rRNA Removal Kit, Illumina), was
carried out using the TruSeq Stranded Total RNA kit (Illumina).
Sequencing was performed using an Illumina NovaSeq 6000
generating 150 bp paired-end reads. Median sequencing depth
was estimated as 89.2 (IQR= 15.7) million paired-end reads
(Supplementary Fig. 1).

PPMI RNA isolation and sequencing
Subject recruitment and eligibility criteria for the PPMI study have
been previously published66. To increase matching between
ICICLE-PD, we limited our analysis to 287 early-stage (diagnosed
<13 months) idiopathic (i.e., without a known PD-related genetic
diagnosis) PD patients and 176 controls, additionally matching
within PPMI for age and sex. Whole blood RNAseq data was
downloaded as FASTQ files from the online PPMI repository
(https://www.ppmi-info.org/). RNA collection, isolation and sub-
sequent sequencing have been previously reported27 and is
described in the PPMI Biologicals Manual. Briefly, whole-blood
RNA was extracted from PAXgene tubes (Blood RNA Kit, Qiagen),
rRNA and globin depleted (Globin-Zero Gold rRNA Removal Kit,
Illumina). Library preparation used the NEB/Kapa (NEBKAP) kit (see
ref. 27 for more information). Sequencing was performed using an
Illumina NovaSeq 6000 generating 125–150 bp paired-end reads.
Median sequencing depth was estimated as 107 (IQR= 31.2)
million paired-end reads (Supplementary Figure 1).
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RNA alignment and quantification
FASTQ files were aligned to the human genome (Ensembl
GRCh38120) using HISAT2 v2.1.0121. RNA transcripts were quanti-
fied using the Ensembl GRCh38 v101 cDNA reference and Salmon
v1.3.0122 using the ‘selective alignment mode’ option and
correcting for sequence-specific (--seqBias), GC-content (--gcBias)
and positional biases (--posBias). Transcript counts were translated
into gene-level counts using tximport v1.26.1123 and annotated
using the Ensembl v101 GRCh38 reference.

Circular RNA detection and quantification
Reads derived from circular RNA (circRNA) molecules were
identified by the presence of a back-spliced junction (BSJ, Fig. 1)
detected using three tools: CIRI2 v2.0.6124, PTESfinder v2.0125

(https://github.com/osagiei/pfv2) and CIRCexplorer v2.3.8126. First,
FASTQ files were quality (Phred <15) and then adapter trimmed
using Trim Galore v0.67 running cutadapt v4.2127. Reads were
aligned to the human genome (Ensembl GRCh38) according to
each tool’s specification: STAR v.2.7.10a128 for CIRCexplorer2 and
PTESfinder v2, bowtie v2.3.4129 for PTESfinder v2, and BWA
v0.7.17130 for CIRI2. All BSJs were annotated using the Ensembl
v101 GRCh38 reference.
Similar to others56, we limited false positives by retaining BSJs

with a read count >1 in at least two individuals. In addition, BSJs
were only retained for downstream analysis if they were detected
by at least two tools (Supplementary Figure 2). This reduced our
initial set of BSJs (PPMI= 438,189 to 23,454, or 5.35%; ICICLE-
PD= 222,133 to 15,345, or 6.91%). These BSJs, alongside the
corresponding forward-spliced junctions (FSJs, Fig. 1), were
quantified with CIRIquant v1.1.2131 using HISAT v2.2.0121 as the
aligner.

Sample level quality control
Sample level quality control was assessed in both cohorts to
identify sample failure, RNA contamination and abnormal global
transcriptome issues. Fastq Screen v0.14.1132 and FastQC v0.11.7
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
were used to assess contamination and obtain general sequen-
cing metrics. Alignment metrics were obtained using CollectRna-
SeqMetrics from Picard v2.27.5 (http://broadinstitute.github.io/
picard/) and stats from SAMtools v1.6133. Additionally, PPMI
samples that had been previously flagged due to QC issues were
removed27. Validation of each participant’s clinically recorded sex
was based on the normalised and variance-stabilising trans-
formed134 expression of the Y chromosomal genes RPS4Y1,
KDM5D, DDX3Y and USP9Y. Principal component analysis was
carried out and the first two principal components and was used
to detect mismatches by visual inspection (Supplementary Fig. 3).
This identified one incorrectly coded individual in ICICLE-PD,
which was corrected for analysis. After QC, the final PPMI dataset
comprised of 259 PD and 161 controls; the ICICLE-PD dataset
comprised of 48 PD patients and 48 controls (summarised in
Supplementary Table 1). We observed no significant differences
between the age or sex profiles of cases and controls in either
dataset (Supplementary Table 1).

Identification of sources of variation in RNA expression data
Biological and technical factors are known to impact the
quantification of gene expression135,136. Like previous large-scale
transcriptomic studies, we quantified sources of expression
variation at both the sample and RNA level27,137,138. At the sample
level, we used univariate linear regression to identify technical
sequencing metrics (obtained from Picard and SAMtools) that
explained a high proportion of the variance (R2 > 0.5) associated
with the first 10 principal components of gene and circRNA
expression (Supplementary Figs. 4a, b and 5a, b). At the gene level,

based on recommendations139, we excluded highly correlated
factors (Spearman’s ρ > 0.9, Supplementary Figs. 4c and 5c),
subsequently quantifying the contribution of this reduced set of
covariates to gene and circRNA expression variation using
variancePartition v1.28.3 (Supplementary Figure 6). This final set
of cohort-specific covariates were then included in regression
modelling (see Differential expression).

Differential expression
Normalisation and differential expression analysis of genes (i.e.,
linear mRNA) and BSJs was carried out using DESeq2 v1.38.2140.
Gene and BSJ raw counts were filtered for low counts (>10 counts
in the smallest sample group). Gene counts were library normal-
ised using the default median-of-ratios method in DESeq2 (Anders
and Huber, 2010). Junction counts (both BSJs and FSJs) were
normalised using the sample size factors generated during the
normalisation of gene counts.
Differential expression between PD and controls was assessed

using a Wald test in DESeq2, adjusted for specific technical and
biological covariates relevant to each cohort and RNA type (see
Identification of sources of variation in gene expression data). Across
all cohorts and RNA types, we adjusted for sex, age of collection
and sequencing batch. For gene differential expression, we
adjusted for the percentage of usable bases (PPMI), in addition
to the percentage of coding and intronic bases (ICICLE-PD). For
circRNA differential expression, we adjusted for the percentage of
intronic bases (PPMI and ICICLE-PD), in addition to the median
Coefficient of Variance of transcript coverage (ICICLE-PD). P-values
were adjusted for multiple significance by the Benjamini-
Hochberg procedure at a false discovery rate (FDR) of 5%141.
Similar to previous work27, significantly differentially expressed
genes and BSJs were defined as those that had an FDR < 0.05 and
a log2 fold change (log2FC) <−0.1/ > 0.1.

Ontology and pathway analysis
Enrichment of gene sets was performed using clusterProfiler
v4.6.2142. Gene set enrichment analysis (GSEA)68 was based on
gene lists ranked by fold change. For each cohort, all genes
included in differential expression testing were used as the
background set. Gene sets were obtained as Gene Ontologies143

(including biological processes, molecular functions, and cellular
compartments) and KEGG pathways144 using the gseGO and
gseKEGG functions, respectively.
GSEA is not suitable for circRNA enrichment at the junction level

as each gene can host multiple circRNAs. As such, we carried out
circRNA enrichment using an over-representation test of the host
genes using the enrichGO function from clusterProfiler. To detect
groups enriched in common BSJs, those included in differential
expression testing were compared against all abundant BSJs
detected in that cohort (>10 reads in the smallest sample group).
To detect categories enriched in differentially expressed BSJs,
those that were significant were compared to all BSJs included in
differential expression testing. For all enrichment analyses, where
possible, categories that passed the multiple testing threshold in
the PPMI (FDR < 0.05) were validated in the ICICLE-PD cohort.

Relating RNA expression to previous work
Genes reported to be differentially expressed in PD were taken
from previously published blood RNA sequencing studies70–73,
resulting in a total of 354 genes. GWAS loci associated with PD risk
were obtained from the current largest GWAS meta-analysis10.
Expression of the nearest genes to these loci was then compared
with 70 detected in PPMI and 69 detected in ICICLE-PD. Genes that
host established pathogenic parkinsonism variants were obtained
from the Genomics England Parkinson Disease and Complex
Parkinsonism panel v1.111 (accessed 10/22)145. Out of 35 genes,
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30 were detected at sufficient expression levels in the PPMI and
ICICLE-PD cohorts.

Classification of Parkinson’s disease status using RNA
expression
The following features were used for classification: normalised
counts (gene, BSJ and FSJ) counts after Variance Stabilising
Transformation as implemented in DESeq2134. Circular to linear
(BSJ:FSJ) ratios were extracted from CIRIquant131. We also explored
the use of circRNA differential expression imbalance as a
classification feature. The principle was to compare the expression
value of each BSJ from a sample we want to classify with the
average expression value in controls, subsequently assessing
whether the directional deviation from the mean (i.e., over- or
under-expression) was consistent with the direction observed in
the training group (PPMI). Each BSJ was scored as 1 when the
directions agreed or as 0 when the directions disagreed. BSJ
scores were summed per sample and the ability of this sum to
discriminate between cases and controls was assessed.
For gene predictors, we selected those that were nominally

significantly differentially expressed (P-value < 0.05). For BSJ, FSJ,
BSJ:FSJ ratio and BSJ imbalance models, we used all highly
expressed junctions. We investigated the following sets of
features: Expression levels by gene (Gene), BSJ counts (BSJ),
circular to linear ratios (BSJ:FSJ ratio), circular RNA imbalance (BSJ
imbalance), expression levels by gene and BSJ counts (Gene and
BSJ). With the exception of the BSJ imbalance (see above), the
ability of the selected sets of features to classify cases and controls
was assessed using regularised logistic regression as implemented
in glmnet v4.1.6146 and quantified using the area under the
receiver operating characteristic curve (AUC). AUCs and their 95%
confidence intervals (Delong’s method) were calculated using
pROC v1.18.0147. Classifiers were derived from the PPMI cohort,
using the nestcv.glmnet function from nestedcv v0.4.4148, and 10
fold cross-validation for both inner and outer cross-validation
steps. Final model parameters were derived from a cross-
validation fold fit on PPMI data. Model generalisability was
assessed in the ICICLE-PD cohort.

Statistical analyses
All statistical analyses were carried out in R v4.2.1. Correlations
were assessed by Spearman’s rank correlation (cor.test), reported
in the text as Spearman’s rho (ρ). We use the term imbalance to
describe whether there is an excess of loci (genes or junctions
depending on the context) that are overexpressed in PD
compared to controls. It describes the number of features
showing log2 fold change >0.1 divided by the number of loci
with log2 fold change >0.1 or <−0.1. Significance was assessed
using a two-sided exact binomial test (binom.test). Group
differences were assessed using a Wilcoxon rank-sum test
(wilcox.test). Where appropriate, multiple testing correction was
performed using Benjamini-Hochberg or Bonferroni corrections
(p.adjust).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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