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Cortical thickness and white matter microstructure predict
freezing of gait development in Parkinson’s disease
Fabin Lin1,2,3,4,8, Xinyang Zou1,2,3,5,8, Jiaqi Su1,2,3,6,8, Lijun Wan1,2,3,6, Shenglong Wu1,2,3,6, Haoling Xu1,2,3, Yuqi Zeng1,2,3, Yongjie Li7,
Xiaochun Chen1,2,3, Guofa Cai 7✉, Qinyong Ye 1,2,3✉ and Guoen Cai 1,2,3✉

The clinical applications of the association of cortical thickness and white matter fiber with freezing of gait (FoG) are limited in
patients with Parkinson’s disease (PD). In this retrospective study, using white matter fiber from diffusion-weighted imaging and
cortical thickness from structural-weighted imaging of magnetic resonance imaging, we investigated whether a machine learning-
based model can help assess the risk of FoG at the individual level in patients with PD. Data from the Parkinson’s Disease
Progression Marker Initiative database were used as the discovery cohort, whereas those from the Fujian Medical University Union
Hospital Parkinson’s Disease database were used as the external validation cohort. Clinical variables, white matter fiber, and cortical
thickness were selected by random forest regression. The selected features were used to train the support vector machine(SVM)
learning models. The median area under the receiver operating characteristic curve (AUC) was calculated. Model performance was
validated using the external validation cohort. In the discovery cohort, 25 patients with PD were defined as FoG converters (15 men,
mean age 62.1 years), whereas 60 were defined as FoG nonconverters (38 men, mean age 58.5 years). In the external validation
cohort, 18 patients with PD were defined as FoG converters (8 men, mean age 66.9 years), whereas 37 were defined as FoG
nonconverters (21 men, mean age 65.1 years). In the discovery cohort, the model trained with clinical variables, cortical thickness,
and white matter fiber exhibited better performance (AUC, 0.67–0.88). More importantly, SVM-radial kernel models trained using
random over-sampling examples, incorporating white matter fiber, cortical thickness, and clinical variables exhibited better
performance (AUC, 0.88). This model trained using the above mentioned features was successfully validated in an external
validation cohort (AUC, 0.91). Furthermore, the following minimal feature sets that were used: fractional anisotropy value and mean
diffusivity value for right thalamic radiation, age at baseline, and cortical thickness for left precentral gyrus and right dorsal posterior
cingulate gyrus. Therefore, machine learning-based models using white matter fiber and cortical thickness can help predict the risk
of FoG conversion at the individual level in patients with PD, with improved performance when combined with clinical variables.
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INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disorder char-
acterized by involuntary and uncontrollable movements, including
tremors, rigidity, and difficulties with balance and coordination,
frequently leading to freezing of gait (FoG)1. FoG is characterized
by a transient or marked decrease in forward foot movement
despite the intention to walk (4th International Workshop on
Freezing of Gait). There is a correlation between FoG prevalence
and disease duration, with a higher prevalence in individuals with
a disease duration of more than 9 years (64.6%) than in those with
a disease duration of up to 5 years (37.9%)2. Severe FoG
significantly decreases the health-related quality of life of patients
with PD3,4. Therefore, developing a reliable and objective method
to predict its occurrence is vital.
We can obtain valuable insights by understanding the

pathophysiological basis of FoG conversion in PD. At present,
the specific pathophysiological mechanisms of FoG are still
unclear; however, studies have suggested that abnormal cortical
and white matter fiber tracts play a role in its pathogenesis5. These
abnormalities include disruptions to the connection between the

frontal and parietal lobes6, changes in the microstructural integrity
of the bilateral superior frontal gyrus7, and decreased white matter
fiber tracts connecting the pedunculopontine nucleus8. We
speculate that cortical and white matter damage patterns can
function as promising imaging evidence for predicting FoG.
However, the results from longitudinal studies are scarce, and
whether cortical and white matter damage patterns can predict
the risk of PD progression remains unknown.
Machine learning is a vital branch of artificial intelligence that

uses data-driven methods to facilitate the automatic extraction of
latent patterns and regularities from vast datasets by computer
systems via algorithm and model training. This, in turn, facilitates
decision-making and predictions among researchers9. Machine
learning has recently emerged as a powerful tool in the field of
medical imaging, including computer vision techniques that can
autonomously recognize and analyze image features. This
technology can help extract advanced features and patterns from
complex neural imaging data10. Furthermore, owing to its
remarkable multidimensional analytical capabilities, machine
learning can be used for classification at the individual level in
the field of medical imaging11,12. However, neuroimaging-based
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techniques are rarely used to detect and predict FoG in PD.
Therefore, in the present study, we developed a machine learning-
based model that used white matter fiber data from diffusion
tensor imaging (DTI), cortical thickness data from T1 magnetic
resonance imaging (MRI), and clinical variables to predict the risk
of FoG at the individual level in patients with PD.

RESULTS
Baseline characteristics
Two cohorts were used in this study: discovery and external
validation cohorts. The discovery cohort was obtained from the
Parkinson’s Progression Marker Initiative (PPMI) database, whereas
the external validation cohort was obtained from the Fujian
Medical University Union Hospital Parkinson’s Disease (FJMUUH-
PD) database. Table 1 summarizes the demographic and clinical
characteristics of the patients in the discovery and external
validation cohorts. Supplementary Table 1 summarizes the
demographic and clinical characteristics according to FoG
evolution. Of the 125 patients newly diagnosed with PD under-
went Movement Disorder Society Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) evaluation and MRI scanning and were
followed up for at least 4 years in the discovery cohort, 40 patients
were excluded: 10 who developed FoG patten at baseline, three
who underwent deep brain stimulation (DBS) during follow-up,

and 27 with unstable non-FoG pattern during follow-up. (Fig. 1A).
Finally, the discovery cohort comprised 85 patients with PD, 25
FoG converters (10 women and 15 men, age 62.1 ± 13.2 years;
Supplementary Table 1), and 60 FoG nonconverters (22 women
and 38 men, age 58.5 ± 9.3 years; Table 1). In the validation cohort,
among the 95 patients newly diagnosed with PD underwent
UPDRS evaluation and MRI scanning and were followed up for at
least four years, 32 with FoG patten at baseline were excluded, 8
with unstable non-FoG pattern during follow-up were excluded
(Fig. 1B). Finally, 55 patients, 18 FoG converters (10 women and 8
men, age 66.9 ± 8.7 years), and 37 FoG nonconverters (16 women
and 21 men, age 65.1 ± 6.3 years) were included for analysis.

Feature selection
The discovery dataset was divided in a 3:1 ratio into the training
and test sets. Then, the training set was subjected to 10-fold cross-
validation using the random forest model for feature selection.
Among the clinical features, age and MDS-UPDRS-I, MDS-UPDRS-II,
and MDS-UPDRS-III scores were selected. Among the features
associated with white matter fiber, right thalamic radiation,
callosum forceps major, right arcuate, left thalamic radiation,
and left corticospinal tract were selected. Among the features
associated with cortical thickness, rG_cingul-post-dorsal, lG_pre-
central, lG_temp_sup-Plan_polar, and rG_temp_sup-Plan_tempo
were selected (Fig. 2). Table 2 and Fig. 3 presents the selected
feature variables obtained from the training set of the discovery
cohort. Supplementary Tables 2 and 3 summarizes the additional
clinical, white matter fiber, and cortical thickness data for the FoG
converters and nonconverters.

Model performance and external validation
Figure 4 and Supplementary Tables 4 and 5 summarize the
performance of the model in the discovery cohort and external
validation set. Discovery cohort analysis revealed that the models
trained using feature selection [the receiver operating character-
istic curve (AUC), 0.567–0.922] consistently exhibited better
performance than those without feature selection (AUC,
0.500–0.767). Therefore, we only used the models trained using
feature selection to compare model performance in the discovery
cohort and validate them in the external validation set.
In the discovery cohort, the combined models trained using white

matter fiber, cortical thickness, and clinical variables (AUC, 0.67–0.88)
exhibited better performance than those trained using only clinical
variables (AUC, 0.61–0.69), only cortical thickness variables (AUC,
0.55–0.77), only white matter fiber variables (AUC, 0.57–0.86),
combined clinical and cortical thickness variables (AUC, 0.66–0.81)
or combined clinical and white matter fiber variables (AUC,
0.59–0.82). Notably, support vector machine(SVM)-radial kernel
models trained using random over-sampling examples(ROSE),
incorporating white matter fiber, cortical thickness, and clinical
variables exhibited better performance (AUC, 0.88). In the external
validation cohort, the combined model trained using white matter
fiber, cortical thickness, and clinical variables exhibited the best
performance compared with the other models (AUC, 0.77–0.91),
particularly the SVM radial kernel model using ROSE with AUC of
0.91. Combining the model results from the discovery and external
validation cohorts, we observed that the SVM radial kernel model
using ROSE exhibited the best and most consistent performance.
Furthermore, the combined model trained using white matter fiber
bundles, cortical thickness, and clinical variables exhibited consis-
tently better performance than the other models, particularly the
SVM model prepared using the ROSE oversampling method. In the
discovery and external validation cohorts, pairwise comparisons
revealed that the models trained using white matter fiber bundles,
cortical thickness, and clinical variables consistently exhibited better
performance more often than the combined model trained using

Table 1. Patient demographics and clinical characteristics.

Characteristic Level PPMI FJMUUH-PD P-value

n= 85 n= 55

Age at baselinea – 59.6 (10.6) 65.7 (7.1) <0.001

Sex (%)b Female 32.0 (37.6) 26.0 (47.3) 0.259

Male 53.0 (62.4) 29.0 (52.7) –

Years of educationc – 16.0 [14.0,18.0] 9.0
[6.0,12.0]

<0.001

H&Y (%)b <2 45.0 (52.9) 16.0 (29.1) 0.005

≥2 40.0 (47.1) 39.0 (70.9) –

MDS-UPDRS-I scoresc – 1.0 [0.0, 2.0] \ \

MDS-UPDRS-II scoresc – 5.0 [2.0,7.0] \ \

MDS-UPDRS-III scoresc – 18.0 [13.5,24.0] \ \

UPDRS-I scoresc – \ 2.0 [1.0,4.0] \

UPDRS-II scoresa – \ 9.6 (4.9) \

UPDRS-III scoresc – \ 27.0
[18.0,36.0]

\

RBDSQc – 3.0 [2.0, 5.0] 2.0 [0.0,4.0] 0.004

MoCAc – 28.0 [26.0,29.0] 21.31 (5.4) <0.001

MoCA (%)b ≥26 67.0 (78.8) 14.0 (25.5) <0.001

<26 18.0 (21.2) 41.0 (74.6) –

Bold values represent correlations that are statistically significant.
PPMI Parkinson’s Progression Marker Initiative, FJMUUH-PD Fujian Medical
University Union Hospital Parkinson’s Disease, PD Parkinson disease, H&Y
Hoehn–Yahr, MDS-UPDRS Movement Disorder Society Unified Parkinson’s
Disease Rating Scale, RBDSQ REM sleep behavior disorder Screening
Questionnaire, MoCA Montreal Cognitive Assessment.
aNormally distributed continuous variables were compared using inde-
pendent t-tests, and the results were reported as means along with
standard deviations (means ±standard deviations).
bCategorical variables were compared using Chi-square tests, and the
results were reported as counts and percentages (n (%)).
cNon-normally distributed continuous variables were assessed using the
Mann–Whitney U test, and the results were reported as medians, along
with interquartile ranges (medians [interquartile ranges]).
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white matter fiber bundles or cortical thickness and clinical variables
(Fig. 5 and Supplementary Tables 6 and 7).

DISCUSSION
In clinical settings, group comparisons correlating cortical thick-
ness and microstructural abnormalities in whole brain white
matter with FoG in PD have limited applications. Therefore, in this
study, we investigated whether the MRI data of cortical thickness
and whole brain white matter microstructure and machine
learning can help predict FoG development at the individual
level in patients with PD. Our study suggested that using the ROSE
oversampling method, SVM models, particularly the radial kernel
model, trained using white matter fiber, cortical thickness data,
and clinical variables, including the fractional anisotropy (FA) and
mean diffusivity (MD) values of right thalamic radiation, age at
baseline, cortical thickness of the IG_precentra and rG_cingul.-
Post.dorsal regions, can help predict FoG conversion at the
individual level in patients with PD.
In previous studies, we observed that age, postural instability

and gait disorder score, cognitive function, autonomic nervous
function, sleep behavior, and fatigue are risk factors for PD-FoG5,13.
However, apart from these clinical features, previous studies have
also attempted to identify a responsible brain region or white

matter tract that can be attributed to FoG conversion; never-
theless, most studies have focused on the differences in brain
regions or white matter tracts between patients with PD who have
already experienced FoG and those who have not experienced
FoG. In the present study, we explored the potential brain regions
and white matter tracts responsible for FoG conversion. We
identified the right middle frontal gyrus and left postcentral gyrus
as the responsible brain regions and the left and right thalamic
radiations as the responsible white matter tracts. This highlights
the essential role of age of occurrence.
In the feature importance analysis, we determined the

pathophysiological features most relevant to FoG conversion,
except for the precentral gyrus14, whose gray matter atrophy
correlates with motor deficit severity14, the right dorsal posterior
cingulate gyrus exhibited high importance and weight among the
features associated with cortical thickness. The cingulate gyrus is
part of the limbic system and is associated with human emotions
and self-evaluation15,16. Arguably, previous studies have reported
that the atrophy of the posterior cingulate gyrus is frequently
associated with depression and anxiety6,17. An accepted explana-
tion is that emotional load detracts from attentional resources in
PD-FoG, in turn leading to sudden gait dysfunction15,17,18.
Furthermore, the importance of the bilateral superior temporal
gyrus (STG) has been emphasized when selecting clinical and

Fig. 1 Flowchart depicting the patient inclusion process. A PPMI database and B FJMUUH-PD database. PPMI Parkinson’s Progression Marker
Initiative, FJMUUH-PD Fujian Medical University Union Hospital Parkinson’s Disease, PD Parkinson’s disease, UPDRS Unified Parkinson’s Disease
Rating Scale, MDS-UPDRS Movement Disorders Society-Unified Parkinson’s Disease Rating Scale, DBS deep brain stimulation, MRI magnetic
resonance imaging, FOG freezing of gait.
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white matter features, which may be associated with balance in
previous studies19. Patients with PD with frequent falls have
considerably lower gray matter volume and functional connectiv-
ity in the STG and inferior parietal lobule than those who were
able to maintain balance19. The STG may be involved in
processing vestibular information and postural functions; neuro-
modulator inhibition of the STG may result in impairments in self-
motor perception, leading to dyskinesia20,21.
Among the features associated with white matter fiber, we

observed that bilateral thalamic radiation exhibits high impor-
tance and weight to clarify FoG converters. Many studies have
reported that thalamic radiation is associated with FoG in

PD18,22,23. Marumoto et al. have reported that thalamic radiation
is connected to the frontal motor areas of the thalamus, including
supplementary motor areas, and that the FA characteristics of this
white matter bundle can be used to predict gait speed23. Similarly,
Lenfeldt et al. have reported that diffusion changes in the
thalamus can help differentiate tremor dominance from postural
instability and gait disorder phenotypes24. This finding is
consistent with the ability of thalamic radiation to differentiate
FoG converters from FoG nonconverters in the present study.
Furthermore, callosum forceps major and right arcuate fasciculus
play notable roles in white matter fiber tracts and white matter
fiber tracts and clinical features. Many researchers consider the

Fig. 2 Bar graphs depicting the clinical variables, white matter fiber values, and cortical thickness features selected for the classification
of freezing of gait converters and nonconverters according to the six feature combinations. MDS-UPDRS Movement Disorders Society-
Unified Parkinson’s Disease Rating Scale, FA fractional anisotropy, RD radial diffusion, MD mean diffusivity, l left, r right, G_temp_sup-
Plan_polar G_temp_sup-Planum_polare, G_temp_sup-Plan_tempo G_temp_sup-Planum_tempolare, G_cingul-post-dorsal G_posterior-dorsal.

F. Lin et al.

4

npj Parkinson’s Disease (2024)    16 Published in partnership with the Parkinson’s Foundation



arcuate fasciculus to be a part of the superior longitudinal
fasciculus (SLF), the frontotemporal segment. The SLF, similar to
thalamic radiation, is significantly different in patients with PD
with and without FoG25; this difference may be centered in the
temporal bundle6, which coincides with the findings of our study.

However, our study is the first to identify the role of the callosum
forceps major in PD-FoG. The callosum forceps major connects the
splenium of the corpus callosum to the occipital cortex. Previous
studies have reported that the corpus callosum and its surround-
ing structures and occipital region are closely associated with PD-
FoG6,18,22,26. Furthermore, the pressor region of the corpus
callosum is closely associated with cognitive function in patients
with PD26. Previous studies have considered gait an automatic
motor task that does not require much cognitive involvement.
However, recently growing evidence suggests the importance of
cognition in gait, indirectly confirming the correlation between
the callosum forceps major and PD-FoG27,28. However, in addition
to these regions and white matter fiber tracts, other regions, such
as, the corpus callosum, subfrontal gyrus triangle, subparietal
marginal angular gyrus, cingulum hippocampus, cingulum cingu-
late, left corticospinal tract, callosum forceps minor, right uncinate,
and SLF are associated with PD-FoG6,23,25. One plausible reason for
this inconsistency is that in the present study, we differentiated
patients who would develop FoG within 4 years of PD diagnosis
from stable patients without FoG. This is essentially different from
the cortical thickness and white matter tract abnormalities

Table 2. Selected clinical, white matter fiber, and cortical thickness features according to the FoG evolution.

PPMI FJMUUH-PD

Characteristic FoG
nonconverters

FoG
converters

P-value Adjusted
P-value*

FoG
nonconverters

FoG converters P-value Adjusted
P-value*

n= 60 n= 25 n= 37 n= 18

Age at baselinea 58.5 (9.3) 62.1 (13.2) 0.163 / 65.1 (6.3) 66.9 (8.7) 0.382 /

UPDRS-I scoresb / / / / 2.0 [1.0,4.0] 2.0 [0.0,4.3] 0.643 /

UPDRS-II scoresa / / / / 9.6 (5.1) 9.61 (4.6) 0.994 /

UPDRS-III scoresb / / / / 26.0 [18.0,34.0] 29.0 [17.75,38.3] 0.355 /

MDS-UPDRS-I scoresb 1.0 [0.0, 1.0] 1.0 [1.0, 3.0] 0.007 / / / / /

MDS-UPDRS-II scoresb 4.0 [2.0, 6.2] 6.0 [5.0, 9.0] 0.003 / / / / /

MDS-UPDRS-III scoresa 18.2 (7.4) 22.4 (9.5) 0.031 / / / / /

rG_cingul-post-dorsal 2.85 ± 0.17 2.73 ± 0.25 0.007 0.072 0.39 ± 0.03 0.38 ± 0.03 0.004 0.110

lG_precentral 2.51 ± 0.16 2.32 ± 0.26 <0.001 0.008 1.13 ± 0.16 0.99 ± 0.2 0.005 0.103

lG_temp_sup-
Plan_polar

3.48 ± 0.24 3.27 ± 0.32 0.002 0.053 0.51 ± 0.07 0.47 ± 0.1 0.018 0.181

rG_temp_sup-
Plan_tempo

2.55 ± 0.13 2.49 ± 0.41 0.334 0.562 0.58 ± 0.1 0.5 ± 0.1 0.651 0.852

FA-right thalamic
radiation

0.48 ± 0.03 0.46 ± 0.02 0.012 0.122 2.61 ± 0.43 2.79 ± 0.37 0.676 0.722

FA-callosum forceps
major

0.61 ± 0.06 0.58 ± 0.16 0.276 0.480 2.29 ± 0.24 2.31 ± 0.17 0.493 0.540

FA-right arcuate 0.48 ± 0.04 0.46 ± 0.05 0.297 0.495 1.86 ± 0.17 1.86 ± 0.21 0.924 0.924

MD-left thalamic
radiation

0.72 ± 0.03 0.77 ± 0.05 <0.001 0.015 1.68 ± 0.18 1.74 ± 0.15 <0.001 0.004

MD-left corticospinal 0.68 ± 0.03 0.71 ± 0.03 0.012 0.111 2.13 ± 0.21 2.21 ± 0.17 0.004 0.010

MD-right arcuate 0.7 ± 0.03 0.72 ± 0.06 0.060 0.252 2.26 ± 0.22 2.31 ± 0.13 0.005 0.010

RD-right arcuate 0.5 ± 0.04 0.53 ± 0.06 0.084 0.281 1.84 ± 0.28 1.88 ± 0.32 0.016 0.024

Categorical variables were compared using χ2 tests, and the results were reported as counts and percentages (n (%)).
Bold values represent correlations that are statistically significant.
PPMI Parkinson’s Progression Marker Initiative, FJMUUH-PD Fujian Medical University Union Hospital Parkinson’s Disease, FoG freeze of gait, MDS-UPDRS
Movement Disorder Society Unified Parkinson’s Disease Rating Scale, FA fractional anisotropy, MD mean diffusivity, RD radial diffusion; l left, r right,
G_temp_sup-Plan_polar G_temp_sup-Planum_polare, G_temp_sup-Plan_tempo G_temp_sup-Planum_tempolare, G_cingul-Post-dorsal G_posterior-dorsal.
aNormally distributed continuous variables were compared using independent t -tests, and the results were reported as means along with standard deviations
(means ± standard deviations).
bNon-normally distributed continuous variables were assessed using the Mann-Whitney U-test, and the results were reported as medians, along with
interquartile ranges (medians [interquartile ranges]).
*Adjusted by false discovery rate.

Fig. 3 Visual images of selected cortical thickness and white matter
fiber features for classification of freezing of gait converters and
nonconverters.

F. Lin et al.

5

Published in partnership with the Parkinson’s Foundation npj Parkinson’s Disease (2024)    16 



observed in patients with FoG compared with those without FoG
in previous studies.
Nevertheless, the present study has some limitations, and the

first one is its generalizability. Herein, we applied different
machine-learning algorithms to 100 training and test sets;
however, the results might vary if other machine-learning
methods are applied to different cohorts. Therefore, the present
results should be interpreted with caution. Second, we observed
that the model trained using both cortical thickness and clinical
variables and the model trained solely on cortical thickness, both
exhibited seemingly unrealistic performance in the discovery
phase. However, this outstanding performance was not observed
for the external validation cohort. We think that this discrepancy
may be attributed to overfitting, and therefore, caution should be
exercised when interpreting the results of these two models.
Furthermore, the MRI scanner and acquisition parameters
employed in the external validation cohort differed from those
employed in the discovery cohort. This difference might have led
to non-biological bias in cortical thickness measurement29. SVM-
radial kernel models trained using ROSE oversampling, incorpor-
ating white matter fiber, cortical thickness, and clinical variables,
can successfully and individually predict FoG development in
patients with PD. Our model has the potential for early
identification of patients at risk of developing delayed FoG,
thereby providing valuable guidance for clinicians in the

prevention and intervention of FoG symptoms in PD patients.
Future longitudinal multicenter studies with larger sample sizes
and standardized measurements of cortical thickness and a
whole-brain white matter microstructure should be performed
to further validate the present findings.

METHODS
Study design and participants
The data used in the study consisted of two cohorts, namely a
discovery cohort and an external validation cohort.
The discovery cohort was obtained from the PPMI database30,

an ongoing international multicenter longitudinal cohort. The
inclusion criteria for this cohort were newly diagnosed patients
with PD in the preceding year who did not undergo any treatment
for it, with available clinical assessment and analyzable imaging
data. The exclusion criteria were patients under four years of
follow-up, with incomplete follow-up, those who underwent DBS
surgery during the follow-up, and those with diagnosed
neurodegenerative diseases other than idiopathic PD during the
follow-up.
The external validation cohort was obtained from the FJMUUH-

PD database. Patients with PD were diagnosed using the UK Brain
Bank criteria31. The inclusion and exclusion criteria were the same
as for the PPMI cohort. The participants underwent extensive

Fig. 4 Heat maps of the area under the receiver operating characteristic curve from various machine-learning models for predicting the
FOG conversion. A PPMI database and B FJMUUH-PD database. AUC values are presented as the median. ROSE random oversampling
example, SMOTE synthetic minority oversampling technique, SVM support vector machine.
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clinical assessments and MRI scans at the beginning of the study
and then followed up every 6 months for the 1st year, and every
20months for the next 4 years.
The PPMI cohort was registered on ClinicalTrials.gov

(NCT01141023), and the Ethical Standards Committee for Human
Subjects approved the participating sites before the start of the
study. Written informed consent was obtained from all study
participants. The Ethics Committee of Fujian Medical University
Union Hospital approved the FJMUUH-PD cohort (No. 2019-014),
and participants provided written informed consent before
enrollment, adhering to the Declaration of Helsinki.

FoG definition
UPDRS and MDS–UPDRS are widely used tools to assess motor
functions and symptoms32. The tools have been validated in
several populations with high sensitivity and specificity. Because
FoG episodes are more common when medication is discon-
tinued, clinical examinations and scans were performed in the
morning when the participants were ‘off’ medication – at least
12 h after the last dopaminergic intake. For the external test
cohort, we used the FJMUUH-PD database, with a larger number
of individuals using the entire Unified Parkinson’s Disease Rating
Scale (UPDRS) to assess PD symptoms, whereas the MDS-UPDRS
has only been used in recent years, with fewer individuals with
complete data. Therefore, on balance, the entire UPDRS scale was
used for the test cohort. However, according to the recommenda-
tions of the MDS-UPDRS Revision Task Force32, it is generally
accepted that the MDS-UPDRS shows high internal consistency
with the entire UPDRS (Cronbach’s alpha= 0.79–0.93 across parts)
and strong correlations with the original UPDRS (rho= 0.96). In
addition, reliable factor structures were obtained for each part,
supporting the use of sum scores for each part. Besides, we are

not the only study to use both scales to assess PD symptoms. For
instance, a study by Latourelle et al. also used two PD databases
with these two different assessment scales for the prediction of PD
motor progression33. This clinometric evidence supports the
validity of the MDS-UPDRS to assess PD. Thus, it is reasonable to
consider using the scores in your algorithm in a comparable
manner. Therefore, the use of MDS-UPDRS scores in a similar
manner in our algorithms is reasonable. While we acknowledge
that MDS-UPDRS is considered a more precise assessment tool
that may lead to improved machine model performance, in our
study, UPDRS was not included in the combined model training
(Fig. 2). As a result, its impact on the comparison of model
performance between the discovery cohort and external test
cohort is relatively minor. In the discovery cohort, patients with PD
were defined as being (1) with FoG if their MDS–UPDRS 2.13 was
>0 or 3.11 (off-med) was >0 or (2) without FoG (non-FoG) if their
MDS–UPDRS 2.13 and 3.11 (off-med) were zero. In the external
validation cohort, patients with PD were defined as being (1) with
FoG if their UPDRS 2.14 was >0 or (2) without FoG (non-FoG) if
their UPDRS 2.14 were zero. This study only included patients with
PD who were initially not diagnosed with FoG. We conducted a
four-year follow-up on these patients, assessing their FoG status at
least once a year. PD Patients without FoG during the follow-up
were classified as (1) “FoG nonconverters,” whereas if patients with
PD developed FoG symptoms in the fourth year, they were
classified as (2) “FoG converters”.

MRI metrics in PPMI
The 1.5-Tesla MRI scanners from various manufacturers, including
SIEMENS, Philips Medical Systems, and GE Medical Systems, were
used to acquire T1Wis of 11 patients. The flip angle was 8–15°, and
the matrix size was 192–516 pixels in the X and Y directions and

Fig. 5 The horizontal bars depicting the results of pairwise comparisons of model performance for each iteration based on feature
combinations. A PPMI database and B FJMUUH-PD database. When comparisons are made, a value greater than 0 indicates that the model for
that variable (the clinical variable, the cortical thickness variable, the white matter fiber variable, the combined clinical and cortical thickness
variable, and the combined clinical and white matter fiber variable) outperforms the model for the combination of clinical features, cortical
thickness, and white matter fiber variables. A value equal to 0 indicates that the performance of the model for that variable matches the
performance of the combined model for the clinical features, cortical thickness, and white matter fiber variables. Conversely, if the value is less
than 0, it indicates that the performance of the combined model of clinical features, cortical thickness, and white matter fiber variables
outperforms the model of this variable. ROSE random oversampling example, SMOTE synthetic minority oversampling technique, SVM
support vector machine.
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88–170 slices in the Z direction. The slice thickness was
1.0–1.5 mm, and the echo time (TE), inversion time (TI), and
repetition time (TR) were 2.7–4.0 ms, 0 or 1000.0 ms, and 7.0–8.5 or
2400.0 ms, respectively. The 3.0-Tesla MRI scanners from the same
manufacturers were used to acquire T1WIs of 74 patients. The flip
angle was 9–13°, and the matrix size was 240.0–288.0 pixels in the
X and Y directions and 152–192 slices in the Z direction. The slice
thickness was 1.0–1.2 mm, and the TE, TI, and TR were 2.3–3.6 ms,
0, 450 or 900.0 ms, and 3.9–2300.0 ms, respectively. The 3.0-Tesla
MRI scanner (SIEMENS TrioTim), with a flip angle of 90°, 64
gradient directions, and a matrix size of 1044.0 pixels in the X and
Y directions and 65.0 slices in the Z direction, was used to acquire
DTI images. The pixel size and slice thickness were 2.0 mm. The TE
and TR were 88.0 and 670–9300.0 ms, respectively.

MRI metrics in FJMUUH-PD
Brain imaging data were acquired using the GE 3.0-Tesla dual-
gradient magnetic resonance scanner, and the sequences and scan
parameters were as follows: a 3D cranial volume sequence (3D-
BRAVO) obtained from high-resolution T1WI brain structure images,
with TR= 8.7ms, TE= 3.42ms, TI= 400ms, flip angle= 12°,
matrix= 256 × 256, field of view= 240 × 240mm, and 180 layers
with a thickness of 1.1mm. A spin echo-planar imaging sequence
was used to obtain DTI scans for cross-sectional brain imaging, with
the scanning level parallel to the anterior–posterior commissure. The
DTI sequence required the following conditions: a TR of 6000ms, TE
of 65.7ms, flip angle of 90°, matrix of 128 × 128, a field of view of
240 × 240mm, 55 layers with a thickness of 3mm, continuous
scanning without spacing, b-values of 0 and 1000 s/mm2, and 16
nonlinear diffusion-sensitive gradient directions.

Cortical thickness analysis
The surface-based morphometry analysis was performed using
Statistical Parametric Mapping software (SPM12; http://
www.fil.ion.ucl.ac.uk/spm/software/spm12), extended by the Com-
putational Anatomy Toolbox (CAT12; http://dbm.neuro.uni-
jena.de/cat/). The CAT12 default settings were used as described
in detail in the manual (http://dbm.neuro.uni-jena.de/cat12/
CAT12-Manual.pdf) to estimate the cortical thickness34. T1WI was
registered with the Montreal Neurological Institute template,
segmented into gray matter, white matter, and cerebrospinal fluid,
and spatially normalized. A projection-based approach, which
calculates the distance between the external cortical surfaces (the
borders between the gray matter and cerebrospinal fluid), was
used to estimate the left and right hemisphere cortical
thicknesses. Finally, a 12-mm full width at the half maximum
Gaussian kernel was used to smooth the cortical thickness.

DTI analysis
Sequential automated steps were performed using MATLAB
(2018b) with Automatic Fiber Bundle Quantification (AFQ), an
open-source software developed by Yeatman’s team based on
MATLAB that automatically identifies, quantifies, and analyzes
white matter fiber pathways in the brain. The software auto-
matically and efficiently extracts data on 20 major nerve fiber
bundles across the brain and divides each into 100 isometric
segments. Subsequently, FA and other diffusion tensor metrics are
mapped to each segment to enable the accurate localization of
abnormal changes in fiber bundle tensor imaging metrics35. AFQ
is used to study white matter degeneration in mild cognitive
impairment and its relationship with Alzheimer’s disease36. Before
running AFQ, the path should be confirmed, and anterior
commissure (AC)–posterior commissure (PC) lines should be
aligned with midsagittal planes by entering the relevant codes
in the command window. This procedure aligns the AC (located
below the anterior front of the vault), PC (located below the

posterior thalamus and above the midbrain), and midsagittal
planes in the image. After alignment, the software extracts the FA,
axial diffusion, radial diffusion, MD, and other structural character-
istic data. The specific procedure and white matter fiber analysis
parameters are described in the methodology section of the
supplemental file.

Feature selection and training of machine-learning models
A total of 96 combinations of models were trained, including four
machine-learning methods and two oversampling methods, with
and without feature selection. Potential features were identified
from 17 clinical variables, 80 white fiber values, and 148 regional
cortical thickness variables (Supplementary Table 8). The following
combinations were used: (1) clinical variables, (2) white matter
fiber values, (3) cortical thickness variables, (4) clinical variables
and white matter fiber values, (5) cortical thickness and clinical
variables, and (6) white matter fiber values and cortical thickness
and clinical variables. We followed a feature selection approach
using the random forest method to improve the predictive
performance of the model. This method comprises several
essential steps as follows. Initially, we randomly generated 100
training and divided the dataset into training and testing subsets,
typically in a 3:1 ratio. Next, we used the 10-fold cross-validation
process to ensure the robust evaluation of the model. The method
was crucial because it could calculate feature importance. Within
each cross-validation iteration, we trained a random forest
classifier in the training subset to estimate the contribution of
each feature to the predictive accuracy of the model. The
computed feature importance accumulated across the cross-
validation iterations. Features exceeding a predefined threshold,
which was set at 50%, were deemed significant and subjected to
further analysis. Next, the retained features were sorted based on
their frequency of selection throughout the cross-validation
process, ensuring that the most frequently selected and consistent
features were prioritized.

Model performance and external testing
We used the following four machine-learning methods: SVM with
four different kernels (linear, polynomial, radial basis function
(RBF), and sigmoid). SVMs are implemented using various kernels
using the e1071 package in R(v 4.2.0)37,38. SVMs are powerful
models for classification and regression that find the optimal
hyperplane, which maximizes the margin between classes, thus
effectively separating different class data points, and it has been
used in our previous study39. SVMs use different kernels to shape
their behavior. The linear kernel assumes linear separability and
uses straight lines or hyperplanes to separate data; thus, it is
suitable for linearly separable data. The polynomial kernel maps
data to a higher-dimensional space using polynomial functions;
thus, the method can capture complex decision boundaries. The
RBF kernel is highly flexible and effectively models non-linear
decision boundaries. Additionally, it is governed by a Gaussian-like
kernel function. The sigmoid kernel introduces non-linearity
through sigmoid functions and adds versatility to the behavior
of the model. When dealing with imbalanced datasets in the
present study, we considered two distinct oversampling methods:
ROSE and synthetic minority over-sampling technique (SMOTE).
ROSE improved class balance by replicating existing samples
within the minority class, whereas SMOTE generated synthetic
new samples by interpolating between samples in the minority
class. These synthetic samples were generated based on feature
relationships among neighboring samples that introduced greater
diversity. The choice of method depended on dataset character-
istics and specific requirements. ROSE was suitable for straightfor-
ward oversampling needs, whereas SMOTE was more appropriate
when greater diversity and complex interpolation were desired.
We opted for one of these methods or combined them to
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effectively address the issue of patient imbalance. We employed
different data preprocessing strategies tailored to the specific
requirements of each model. Specifically, we normalized the
variables for the SVM model, ensuring they had a mean of zero
and a standard deviation of one. This normalization improved the
performance of SVM in handling the data effectively. Additionally,
we considered the following two scenarios during modeling: one
with feature selection and another without feature selection.
Finally, we compared the performance of these two models with
and without feature selection to determine the most suitable
approach for our data and task. This flexible approach allowed us
to gain a better understanding of the data and optimize the
modeling outcomes. The use of the four machine-learning
methods, cross-validation techniques, two oversampling
approaches, and standardization methods have been reported
in a previous study by Shin et al.40.

Model performance and external testing
A dataset was initially divided into a training set and a test set,
with a ratio of 3:1, during machine-learning performance analysis.
The training set was used for model construction and parameter
tuning, whereas the test set was reserved for the final evaluation
of the performance of the model. Further, to select the best model
and fine-tune hyperparameters, we followed the 10-fold cross-
validation method to assess the model on the training set.
Ensuring the independence of the test set from the training set
and the cross-validation sets was crucial to guarantee the
reliability of the final model evaluation. This workflow helped
prevent overly optimistic estimations during evaluation because
the test set remains separate from the model selection process.
The machine-learning models were trained to predict the
probability of FoG development for each patient in the test
dataset, aiming to discover potential patient clusters.
Subsequently, we reconstructed and tested these probabilities

in 100 resampled training and test datasets, evaluating the
performance of each model using the area under the AUC. Owing
to the skewed distribution of results in certain models, we used
the median AUC as a performance metric. We compared the AUCs
of models with different feature combinations and recorded the
number of iterations in which model performance differed.
Specifically, we conducted pairwise AUC comparisons in each
iteration, tallying the frequency at which one model outperformed
another, and calculated AUC differences between these pairs by
performing paired t-tests. Hence, we could quantify performance
disparities between the models and identify feature combinations
that significantly affected model performance improvement.
Within the 100 resampled datasets, we used the average feature
importance and weights from random forest and SVM with a
linear kernel to ascertain the predictive contribution of each
feature to FoG occurrence. Finally, these models were applied to
the external validation cohort to assess their generalizability and
portability, with results showed based on the median AUC of the
models.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The discovery cohort, Parkinson’s Progression Marker Initiative (PPMI) database, is
available on Parkinson’s Progression Markers Initiative www.ppmi-info.org/data. The
external validation cohort, Fujian Medical University Union Hospital Parkinson’s
Disease (FJMUUH-PD) database, is available from the corresponding author upon
request.

CODE AVAILABILITY
R (v 4.2.0), CAT12, Automatic Fiber Bundle Quantification (AFQ), FSL (https://
fsl.fmrib.ox.ac.uk), MATLAB R2018b (http://www.mathworks.com) and SPM12 in the
study are open sources.
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