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Candidate biomarkers of EV-microRNA in detecting REM
sleep behavior disorder and Parkinson’s disease
Yuanyuan Li 1,6, Ying Cao2,3,4,6, Wei Liu 2,5,6, Fangzheng Chen1, Hongdao Zhang 2, Haisheng Zhou2, Aonan Zhao1, Ningdi Luo1,
Jun Liu 1✉ and Ligang Wu 2✉

Parkinson’s disease (PD) lacks reliable, non-invasive biomarker tests for early intervention and management. Thus, a minimally
invasive test for the early detection and monitoring of PD and REM sleep behavior disorder (iRBD) is a highly unmet need for
developing drugs and planning patient care. Extracellular vehicles (EVs) are found in a wide variety of biofluids, including plasma.
EV-mediated functional transfer of microRNAs (miRNAs) may be viable candidates as biomarkers for PD and iRBD. Next-generation
sequencing (NGS) of EV-derived small RNAs was performed in 60 normal controls, 56 iRBD patients and 53 PD patients to profile
small non-coding RNAs (sncRNAs). Moreover, prospective follow-up was performed for these 56 iRBD patients for an average of 3.3
years. Full-scale miRNA profiles of plasma EVs were evaluated by machine-learning methods. After optimizing the library
construction method for low RNA inputs (named EVsmall-seq), we built a machine learning algorithm that identified diagnostic
miRNA signatures for distinguishing iRBD patients (AUC 0.969) and PD patients (AUC 0.916) from healthy individuals; and PD
patients (AUC 0.929) from iRBD patients. We illustrated all the possible expression patterns across healthy-iRBD-PD hierarchy. We
also showed 20 examples of miRNAs with consistently increasing or decreasing expression levels from controls to iRBD to PD. In
addition, four miRNAs were found to be correlated with iRBD conversion. Distinct characteristics of the miRNA profiles among
normal, iRBD and PD samples were discovered, which provides a panel of promising biomarkers for the identification of PD patients
and those in the prodromal stage iRBD.
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INTRODUCTION
Parkinson’s disease (PD) is the second most common neurode-
generative disease, imposing increasingly heavy social and
economic burdens on aging societies1,2. Idiopathic rapid eye
movement (REM) sleep behavior disorder (iRBD) is a parasomnia
characterized by the loss of normal atonia during the REM stage of
sleep which results in overt motor behaviors that frequently
represent the enactment of dreams3. In the past decade, iRBD has
been established as one of the earliest and most specific
prodromal signs of α-synucleinopathies, including PD, dementia
with Lewy bodies (DLB) and multiple system atrophy (MSA)3. Thus,
accessible and reliable biomarkers for early diagnosis of PD and
iRBD are urgently needed to identify candidate therapeutic targets
and to monitor disease progression during therapeutic
interventions4,5.
Currently, the diagnosis of PD mostly relies on clinical

symptoms, which hampers the detection of the earliest phases
of the disease, the time at which treatment may have the greatest
therapeutic effect. A variety of biomarkers for diagnosing PD are
under investigation, including factors based on pathological,
imaging, biochemical, and genetic data4. Biofluid biomarkers have
markedly expanded over the past 5 years, including α-synuclein,
lysosomal enzymes, and neurofilament light chain in CSF6,7. Blood
biomarkers, such as α-synuclein, are also under investigation;
whereas their quantities are strongly influenced by red blood cell
(RBC) contamination and haemolysis, which limit the utility
for diagnostic purposes8. Besides, although non-invasive

neuroimaging techniques can provide in-depth information about
brain structure and function, these methods require major
investments in infrastructure which limit their wide clinical
deployment9. Therefore, a minimally invasive test for early
detection of iRBD and PD and for monitoring disease progression
still poses a major challenge.
In consideration of potential biomarkers, microRNAs (miRNAs)

are small non-coding RNAs (sncRNAs) that are generally expressed
in all eukaryotic cells, and which perform critical regulatory
functions at the posttranscriptional level. Cellular miRNAs released
into body fluids can be readily detected, making them ideal
biomarkers for diagnosis of various diseases10. Previous studies
have reported that salivary miR-153 and miR-223 can be used as
biomarkers for idiopathic PD11, while serum miR-221 is a potential
predictor of PD12. In addition, circulating brain-enriched miRNAs
have been used to distinguish idiopathic and genetic PD13.
However, all of these studies used reverse transcription followed
by real-time quantitative PCR (RT-qPCR) method to measure the
relative expression of a few miRNAs in bodily fluids. Since this
method detects a limited number of known miRNAs and is also
inefficient in distinguishing miRNAs with similar sequences14, the
most diagnostically informative miRNAs could be potentially
overlooked.
Extracellular vesicles (EV) are nano-scale, membrane-enclosed

particles released from (possibly) all eukaryotic cells to transport
proteins, lipids, RNAs, and DNA fragments15, a process shown to
have important biological functions16,17. EVs have been found in
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serum, plasma, urine, saliva, cerebrospinal fluid, and breast milk15.
Moreover, the EV membrane effectively prevents degradation of
the enclosed miRNAs by ribonucleases that are abundant in
biofluids18,19. These features of EV-associated miRNAs cumula-
tively enhance miRNA biomarker reliability compared with
unprotected, cell-free, miRNAs20–23. However, the full spectrum
of EV-associated miRNAs presents in the plasma of iRBD and PD
patients remains unknown, and characterizing the miRNA
population in PD or iRBD patients may unveil several effective
diagnostic biomarkers. In this study, we used high throughput
sequencing to profile the EV-associated sncRNA population in the
plasma of iRBD and PD patients. Here, we report several such
candidate EV-miRNA biomarkers for diagnosis of iRBD and PD
patients.

RESULTS
Clinical characteristics of participants
A total of 169 participants were enrolled in this study and
subsequently divided into three groups consisting of 56 iRBD
patients, 53 PD patients, and 60 healthy individuals. The
demographics and clinical characteristics of the enrolled partici-
pants are listed in Table 1. No significant differences were found in
age distribution among the three groups, although the PD group
contained a significantly higher proportion of female subjects. The
average disease duration for iRBD patients was 7 years, and 5
years for PD patients. In addition, the iRBD patient group exhibited
a higher average RBDSQ score than that of the PD group
(P < 0.001), while PD patients showed lower SS-16 (P= 0.03) and
higher SCOPA-AUT (P= 0.001) scores, on average, than iRBD
patients. The HAMD scores were higher in PD patients than in
healthy controls (P < 0.001). No significant differences in NMSQ
and HAMD scores were observed between the iRBD and PD
groups. Models were then trained on a training set (60% of data)
and evaluated on a validation set (remaining 40% of the data),
with an equal distribution of individuals in the disease groups
(Supplementary Table 1).

Identification of PD-specific miRNA biomarkers
We next sought to determine whether plasma EV-associated
miRNA profiles could be used to distinguish PD patients from
healthy individuals. We identified a total of 87 upregulated and 39

downregulated miRNAs unique to the PD patient group (Fig. 1a, b,
Supplementary Data 1). Unsupervised hierarchical clustering and
principal component analysis (PCA) of the differentially expressed
miRNAs separated PD patient samples from healthy controls with
minor overlap (Fig. 1c). We then constructed a support vector
machine (SVM) classifier to distinguish PD patients. Feature
selection from the training set (n= 67) identified 15 informative
miRNAs (Supplementary Data 2), including 10 upregulated
miRNAs (miR-27b-3p, miR-199a-5p, miR-151a-3p, miR-584-5p,
miR-889-3p, miR-619-5p, miR-130b-5p, miR-197-3p, miR-4433b-
5p, and miR-4433a-3p) and 5 downregulated miRNAs (miR-96-5p,
miR-155-5p, miR-150-5p, miR-150-3p, and miR-3615). We then
used a 5-fold cross-validation SVM algorithm to classify PD
patients from healthy individuals, which showed 97.14% sensitiv-
ity, 87.5% specificity, and 92.54% accuracy in the training set
(35 healthy controls and 32 patients with PD) and 92% sensitivity,
85.71% specificity and 89.13% accuracy in the validation data set
(25 healthy controls and 21 patients with PD) (Fig. 1d). The
classifier could also identify patients with PD from healthy
individuals in both the training (AUC= 0.917; 95% CI, 0.913-0.92)
and validation (AUC= 0.916; 95% CI, 0.911-0.921) sets (Fig. 1e).
These results suggested that the 15 miRNA features from the
sncRNA profile of PD patients could be used to distinguish PD
samples from healthy controls.

Identification of iRBD-specific miRNA biomarkers
To identify patients in this early stage of pathogenesis, we further
explored whether EV miRNAs could distinguish iRBD patients from
healthy individuals. A total of 75 differentially upregulated and 46
downregulated miRNAs were identified among the total plasma
EV-associated sncRNAs expressed in iRBD patients compared with
healthy subjects (Fig. 2a, b, Supplementary Data 3). Unsupervised
hierarchical clustering and PCA based on the differentially
detected miRNAs separated iRBD patient samples from control
samples with minor overlap (Fig. 2c). We performed feature
selection (n= 69) and resulted in a miRNA signature comprised of
three informative features. Specifically, miR-27b-3p was upregu-
lated in the iRBD group, while miR-182-5p and miR-7-5p were
downregulated (Supplementary Data 4). The diagnostic perfor-
mance of this training set showed 97.14% sensitivity, 88.24%
specificity, and 92.75% accuracy and independent validation of
the training model with a separate validation set (n= 47) revealed
96% sensitivity, 86.36% specificity, and 91.49% accuracy (Fig. 2d).
Ultimately, this classifier could effectively distinguish iRBD patients
from control subjects in both the training (AUC 0.97; 95% CI,
0.967–0.972) and validation (AUC 0.969; 95% CI, 0.966–0.973)
datasets (Fig. 2e), which indicated that the three miRNA signature
features could sufficiently distinguish iRBD patients. Moreover, we
found that several iRBD or PD related EV-associated miRNAs were
highly expressed in the human brain, including miR-7-5p and miR-
27b-3p (Fig. 2f), which may be secreted as EV-associated miRNAs
by neuronal cells in the brain.

Identification of miRNAs for distinguishing iRBD and PD
Moreover, we further explored differences in miRNA levels
between iRBD patients and PD patients and identified a total of
33 and 19 differentially up- and downregulated miRNAs,
respectively, in total plasma EV-associated sncRNAs expressed in
the latter group (Fig. 3a, b, Supplementary Data 5). Unsupervised
hierarchical clustering and PCA based on the differentially
detected miRNAs also separated PD from iRBD patient samples
with minor overlap (Fig. 3c). We then identified a total of 9 miRNA
in the training set, including 5 upregulated (miR-182-5p, miR-183-
5p, miR-335-5p, miR-505-5p, and miR-340-3p) and 4 down-
regulated (miR-847-3p, miR-181b-5p, miR-4676-3p, and miR-
2115-3p) miRNAs (Supplementary Data 6). The sensitivity,
specificity, and accuracy of the SVM model built with these 9

Table 1. Demographic and clinical profiles of healthy, iRBD, and PD
participants.

Clinical parameters Healthy iRBD PD P value

No. of participants 60 56 53 /

Age 63.5 ± 9.0 64.0 ± 7.3 63.0 ± 9.0 0.62

Sex (M/F) 35/25 34/22 25/28 <0.001

Disease duration (y) / 7.0 ± 5.1 6.9 ± 12.4 /

UPDRS III / / 30.6 ± 18.0 /

RBDSQ / 8.1 ± 3.2 4.4 ± 3.2 <0.001

NMSQ / 7.0 ± 3.9 8.2 ± 3.4 0.09

SS-16 / 8.8 ± 4.4 7.1 ± 3.5 0.03

HAMD / 3.6 ± 4.0 5.1 ± 5.0 0.11

SCOPA-AUT / 7.8 ± 4.7 14.4 ± 12.9 0.001

iRBD idiopathic rapid eye movement sleep behavior disorder, PD
Parkinson’s disease, UPDRS III the Unified PD Rating Scale III, RBDSQ the
REM Sleep Behavior Disorder Screening Questionnaire, NMSQ Non-Motor
Symptom Questionnaire, SS-16 the Sniffin’ Sticks 16-item test, HAMD the
17-item Hamilton Depression Rating Scale, SCOPA-AUT Scale for Outcomes
in PD-Autonomic.
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miRNAs in the training set (n= 65) were 83.33%, 97.14%, and
90.77%, respectively, compared to 84.62%, 94.44%, and 88.64% in
the validation set (n= 44) (Fig. 3d). The AUC values of the classifier
to distinguish PD from iRBD patients in the training and validation
sets were 0.927 (95% CI, 0.924–0.93) and 0.929 (95% CI,
0.925–0.933), respectively (Fig. 3e).
Furthermore, of the 53 PD patients studied, 34% (18/53) also

presented with iRBD (i.e., PD-iRBD patients), a ratio similar to that
reported in previous studies24,25. We further investigated the
miRNAs discriminating PD-iRBD from iRBD patients by comparing
their small RNA profiles. In total, we identified 31 up- and 13
downregulated miRNAs, with 480 miRNAs with no expression level
changes between the groups (Supplementary Fig. 1a, b, Supple-
mentary Data 7). Moreover, we found 20 differentially expressed
miRNAs between PD patients without iRBD (i.e., PD-no-iRBD

patients) and PD-iRBD patients (Supplementary Fig. 1c, d,
Supplementary Data 8). Intriguingly, among the 20 differentially
expressed miRNAs, 5 (miR-10a-5p, miR-874-3p, miR-4485-3p, miR-
369-5p, and miR-625-5p) showed no significant differences in
expression levels between iRBD patients and PD-iRBD patients but
could distinguish PD-no-iRBD from both iRBD and PD-iRBD
patients (Supplementary Fig. 1e).

Longitudinal evaluation of candidate EV-miRNAs for
conversion of iRBD
In the longitudinal data, we found 8 iRBD patients converted to PD
(7 patients)/MSA (1 patient) to the end of follow-up of 3.3 years.
After adjustment for age and sex, plasma EV-derived miR-7-5p,
miR-4665-5p, miR-5001-3p and miR-550b-3p were found to
be correlated with RBD conversion (Supplementary Table 2).

Fig. 1 EV-associated miRNA biomarkers for detecting PD. a Unsupervised clustering heatmap of differentially expressed miRNAs for PD
patients (blue) and healthy individuals (red). Each row represents a differentially expressed miRNA. b MA-plot of differentially expressed
miRNAs between PD patients and healthy individuals by transforming read abundance onto M (log2 fold change) and A (log2 average
normalized read counts) scales. Up- or down-regulated miRNAs are shown in red or blue, respectively. c Three-dimensional scatter plot of
principal component analysis (PCA) for the differentially expressed miRNAs between PD patients and healthy individuals. The percentage of
variance explained by PC1, PC2, and PC3 are shown in the label. d Confusion matrix of the support vector machine (SVM) classifier for PD
patients and healthy individuals in the training set (left) and validation set (right). The sensitivity, specificity, and accuracy are shown at the
bottom. e The receiver operating characteristic (ROC) curve of the SVM classifier in the training set (Red, n= 67) and validation set (blue,
n= 46). The values of area under the curve (AUC) and 95% confidence interval (CI) are shown in the plot.
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Fig. 2 EV-associated miRNA biomarkers for detecting iRBD. a Unsupervised clustering heatmap of differentially expressed miRNAs of iRBD
patients and healthy individuals (red). Each row represents a differentially expressed miRNA. b MA-plot of the differentially expressed miRNAs
between iRBD patients and healthy individuals. The up- or down-regulated miRNAs are shown in red or blue, respectively. c Three-
dimensional scatter plot of PCA for the differentially expressed miRNAs between iRBD patients and healthy individuals. d Confusion matrix of
the SVM classifier for iRBD patients and healthy individuals in the training set (left) and validation set (right). The sensitivity, specificity, and
accuracy are shown at the bottom. e The ROC curve of the SVM classifier in training set (red, n= 69) and validation set (blue, n= 47). The
values of AUC and 95% confidence interval are shown in the plot. f The expression levels of PD- and iRBD-specific miRNA biomarkers in
human tissues.
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We divided the patients into groups according to plasma
EV-derived miRNAs levels according to best cut-off values
produced by R survival and survminer packages. Kaplan-Meier
plots suggested that RBD patients with higher levels of plasma
EV-derived miR-7-5p, miR-4665-5p, miR-5001-3p and miR-550b-3p
were prone to convert to PD or MSA (Fig. 4).

Identification of different miRNA expression patterns in the
healthy-iRBD-PD hierarchy
To next investigate whether (and which of) these miRNAs might
be linked to PD development through iRBD, we compared the
miRNA profiles in the plasma EVs derived from healthy, iRBD, and
PD samples. A total of 208 miRNAs (Kruskal-Wallis P values < 0.05)
were clustered into 8 significant discrete clusters (Fig. 5a,

Supplementary Data 9). There were 46 miRNAs (Cluster4)
progressively increased from healthy control to iRBD to PD
samples and 40 miRNAs (Cluster1, Cluster8) progressively
decreased from healthy control to iRBD to PD samples. We
showed 20 miRNAs examples that consistently increased or
decreased in expression from control to iRBD to PD patients
(Fig. 5b, c). Let-7i-5p, miR-4433b-5p, miR-335-3p, miR-130b-5p,
miR-766-3p, miR-744-5p, miR-1301-3p, miR-4433a-3p, miR-889-3p,
and miR-4433a-5p all significantly increased in transcript abun-
dance following the control<iRBD<PD hierarchy. By contrast,
miR-10b-5p, miR-150-5p, miR-342-3p, miR-186-5p, miR-192-5p,
miR-361-3p, miR-155-5p, miR-3615, miR-150-3p, and miR-500a-3p
all decreased in expression following the order of contro-
l>iRBD>PD (Fig. 5c).

Fig. 3 EV-associated miRNAs for distinguishing iRBD and PD. a Unsupervised clustering heatmap of differentially expressed miRNAs in PD
patients (blue) and iRBD patients (red). Each row represents a differentially expressed miRNA. bMA-plot of the differentially expressed miRNAs
between PD patients and iRBD patients. The up- or down-regulated miRNAs are shown in red or blue, respectively. c Three-dimensional
scatter plot of PCA for the differentially expressed miRNAs between PD patients and iRBD patients. d Confusion matrix of the SVM classifier for
PD patients and iRBD patients in the training (left) and validation (right) sets. Sensitivity, specificity, and accuracy are shown at the bottom.
e ROC curve of the SVM classifier in the training (red, n= 65) and validation (blue, n= 44) sets. AUC values and 95% confidence intervals are
shown in the plot.
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Profiling EV-associated sncRNAs in plasma samples
Profiling the relative abundance of specific sncRNAs by high
throughput sequencing typically requires tens of nanograms of
total RNA26,27 and our initial attempts to construct a high-quality
EV-associated sncRNA library using commercially available kits
were unsuccessful, mainly due to the effects of low RNA inputs
that result in 5’ and 3’ adapters generating the predominant
ligation byproducts which severely compromise subsequent PCR
amplification and sequencing quality. We, therefore, optimized
the conditions for 5’ and 3’ adapter ligation and introduced an
extra 5’ exonuclease treatment step that effectively reduced
adapter dimer formation (Supplementary Fig. 2a). The EV RNAs
(0.5 to 2 ng) treated with Cas9/sgRNA showed comparable and
clear miRNA bands, indicating that we were able to reduce the
input of EV RNA to 1 ng or less (Supplementary Fig. 2b). The Cas9/
sgRNA in vitro cleavage step led to an effective reduction of both
ysRNAs and adapter dimer byproducts, enabled a straightforward
PAGE-based method for detection and recovery of miRNA
products (~140 bp) (Supplementary Fig. 2c, d). Although the
Cas9/sgRNA treatment couldn’t remove ysRNAs completely, the

cleavage efficiency could be further increased by raising the Cas9/
sgRNA concentration in the reaction. The comparison of sequen-
cing results between the pairwise samples with or without
Cas9/sgRNA treatment showed high correlations among miRNA
profiles (Spearman correlation coefficient ≥ 0.99) (Supplementary
Fig. 2e, f), which indicated that Cas9/sgRNA treatment had no
obvious effect on the individual miRNA abundance.

DISCUSSION
Accessible and reliable biomarkers for early diagnosis of PD and
iRBD are urgently needed to identify candidate therapeutic targets
and to monitor disease progression during therapeutic interven-
tions5. In this study, we investigated the expression of sncRNAs
associated with plasma-derived EVs from 169 individuals using an
improved library preparation protocol for high throughput
sequencing. Our analysis revealed 15 EV-associated miRNA
features that were diagnostically informative for PD, and three
miRNA signature features that could serve as biomarkers for iRBD.

Fig. 4 Longitudinal evaluation of candidate EV-miRNAs for conversion of iRBD. Kaplan-Meier plot of disease-free survival of patients with
idiopathic REM sleep behavior disorder (iRBD), stratified according to EV-miRNA levels. a EV miR-7-5p; b EV miR-4665-5p; c EV miR-5001-3p;
d EV miR-550b-3p. The solid line indicates patients with less or equal relevant levels.
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Fig. 5 Identification of different miRNA expression patterns from healthy controls to iRBD to PD samples. a An expression pattern
composed of 8 different miRNAs were identified in healthy controls, iRBD and PD groups. The number of miRNA species in the clusters is
indicated in the figure. Each line represents a specific miRNA. The black line represents the cluster center. The membership values of miRNAs
and the cluster center are indicated by the color gradient. Examples of 10 miRNAs with an expression that progressively increases (b) or
decreases (c) from healthy controls to iRBD to PD samples. The p-values of a Kruskal-Wallis rank sum test for comparisons among the three
groups are shown in the boxplot for each miRNA. The mean and standard deviation of miRNA expression levels are shown in black.
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Moreover, four EV- miRNAs associated with conversion of RBD to
synucleinopathies.
The high-quality high-throughput sequencing data of sncRNAs

in EVs were scarce, making it difficult to obtain sufficient useful
information for the identification of specific biomarkers. We
optimized the protocol for EV-sncRNA library construction and
used Cas9/sgRNA system to remove the highly abundant
endogenous-sncRNAs that had little correlation with diseases.
Through these modifications, we successfully reduced the total
required EV-RNA inputs to 0.5 ng. We named this optimized library
construction method for sncRNA sequencing with low EV-RNA
inputs as EVsmall-seq, which is suitable for clinical application and
helpful to readers. Each library was sequenced to a mean depth of
19 million reads (median depth: 15 million) (Supplementary Fig.
3a, Supplementary Data 10). After low-quality and short reads
being discarded, the average proportion of high-quality reads in
these samples was 82.3% (Supplementary Fig. 3b), and 65.2% of
these high-quality reads could be mapped to the reference
sequence for sncRNAs indicating the overall high quality of the
sncRNA libraries (Supplementary Fig. 3c). We found that the
miRNAs (17-24 nt), ysRNAs (25–33 nt), tRNA-derived small non-
coding (tsRNAs, 30–33 nt), and rRNA-derived small non-coding
(rsRNAs, 17–20 nt) were the most prevalent types of sncRNAs
associated with EVs (Supplementary Fig. 3d, e). On average, 390
different miRNA species were detected in each sample (average
normalized read count >1, expressed frequency of all samples >
25%) (Supplementary Fig. 3f, Supplementary Data 11).
According to previous studies, some of these miRNAs may

affect PD development by regulating PD-related genes. For
example, miR-7-5p is expressed mainly in neurons and represses
α-synuclein protein levels through targeting the 3’UTR of
α-synuclein mRNA28. We also found a panel of EV-associated
miRNAs that consistently increased or decreased in expression
levels when comparing healthy subjects to iRBD and PD patients,
which might be linked to iRBD-mediated PD development. In
support of this hypothesis, it has been previously reported that
miR-150-5p expression is dysregulated during PD progression29. In
addition, previous studies conducted on let-7 showed its
involvement in the regulation of neuronal degeneration in PD30

and promoting inflammation and neuronal death31. Moreover, the
accumulation of let-7 can lead to increased α-synuclein expression
and decreased autophagy32. Intriguingly, miR-10b-5p, miR-342-3p,
miR-186-5p, miR-361-3p, miR-155-3p, miR-130b-5p, and miR-744-
5p also showed aberrant expression levels in neurodegenerative
diseases, such as Alzheimer’s disease, MSA, and prion diseases33.
These results demonstrated that high throughput sequencing-
based detection and quantification of sncRNAs expression can
provide more informative profiles that include all types and
relative abundance of sncRNAs and their sequence variants,
thereby significantly improving the overall performance of
machine learning diagnostic classifiers and ultimately the AUC
values of miRNA biomarkers11,13.
Notably, the predicted targets of miR-7-5p, miR-27b-3p, and

miR-182-5p, were enriched in pathways such as ‘neuron projec-
tion’, ‘neurotransmitter secretion’, ‘generation of neurons’, and
‘nervous system development’ (Supplementary Fig. 4a). In
addition, both miR-199a-5p and miR-182-5p were predicted to
target the 3’UTR of several genes previously associated with
parkinsonism (Supplementary Fig. 4b), as in the cases of ATP13A2
and SCARB24.
In addition to the high specificity and long interval between

iRBD onset and clinical manifestations of α-synucleinopathies, the
prodromal phase of this disorder represents a unique opportunity
for potential disease interventions34. To the best of our knowl-
edge, this is the first EV-miRNA study in patients with iRBD with
longitudinal follow-up. In our current study, miR-7-5p, miR-4665-
5p, miR-5001-3p, miR-550b-3p were found to be correlated with
RBD conversion. Our findings have implications for disease

prediction strategies and early detection of synucleinopathies,
such as PD and MSA, and further studies in other prodromal
cohorts are warranted.
However, the current study also has several limitations. First, as

a single-center study, it is uncertain whether these predictive
markers are applicable to other populations with different
exposures to environmental or genetic factors (i.e., ethnicity).
Future work with larger cohorts from multiple centers is required
to confirm these results, ideally through a prospective validation
study. Second, only the miRNA signature was used in this study.
A combination of miRNAs with v-PSG, neuroimaging, and
neuropathological assessment may improve the sensitivity and
specificity of diagnosis for prodromal PD (i.e., iRBD) and PD. Third,
no available genetic data exists for the patients and healthy
controls in the current cohort, which could help in the future to
reduce the diagnostic bias for PD and iRBD. Additionally, we
acknowledge the importance of replicating these findings in an
independent cohort.
In conclusion, we established a cDNA library construction

method, named EVsmall-seq, for high throughput sequencing of
sncRNAs in plasma-EV using as low as 0.5 ng of total RNA input
and identified miRNA signature features that could serve as
biomarkers for distinguishing iRBD and/or PD from healthy
individuals with high sensitivity and accuracy. Moreover, our
study provides a valuable resource for sncRNA profiles in plasma
EVs from the plasma of iRBD and PD patients and reveals an
effective and non-invasive diagnostic strategy, with relevant
biomarkers, for neurodegenerative diseases.

METHODS
Study population and clinical assessment
A total of 169 participants were enrolled in this study between
January 2019 and March 2020, and divided into three groups: 60
healthy individuals, 56 patients with iRBD, and 53 patients with
PD. The healthy individuals were community volunteers from the
same place with PD and iRBD patients in Shanghai between
January 2019 and March 2020 without neurodegenerative
disorders. All participants belonged to the Han Chinese ethnicity
and were enrolled in Shanghai with no family history. The
diagnosis of PD was performed according to the International
Parkinson and Movement Disorder Society (MDS) diagnostic
criteria by at least two neurologists skilled in movement
disorders35, and all of the patients were diagnosed as idiopathic
PD. The diagnosis of iRBD was made based on video-
polysomnography evidence according to the standard Interna-
tional Classification of Sleep Disorders-III criteria (ICSD III). All iRBD
patients were examined by neurologists to exclude those with
motor signs of parkinsonism or secondary causes. Prospective
follow-up was performed for these 56 iRBD patients for average
3.3 years. Diagnosis of parkinsonism was made according to
current clinical diagnostic criteria by at least two movement
disorders specialists. This study was approved by the ethics
committee of Ruijin Hospital affiliated with the Shanghai JiaoTong
University School of Medicine and was carried out at the
Department of Neurology and Institute of Neurology of Ruijin
Hospital. All participants or their guardians provided written
informed consent.
For iRBD and PD patients, essential demographic, and clinical

information, including a study questionnaire for motor and
nonmotor manifestations of their disease, was collected and
documented. The motor subscale of the Unified PD Rating Scale
(UPDRS) was used to evaluate motor symptoms and ON
medications. iRBD symptoms and their severity were evaluated
by the REM Sleep Behavior Disorder Screening Questionnaire
(RBDSQ). Nonmotor symptoms and autonomic dysfunction were
evaluated by the Non-Motor Symptom Questionnaire (NMSQ) and
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Scale for Outcomes in PD-Autonomic (SCOPA-AUT), respectively.
Depressive state was measured using the 17-item Hamilton
Depression Rating Scale (HAMD); the Sniffin’ Sticks 16-item test
(SS-16) was performed to assess olfactory function.

Plasma sample collection and EV-RNA extraction
Plasma samples (0.5-1 ml) were collected from subjects in the
fasting state. For each blood collection, 2 ml of venous blood was
collected into 10-ml BD K2EDTA Vacutainer tubes (BD; Cat#
367525) to prevent coagulation. The anticoagulant-treated blood
samples were immediately inverted several times and transferred
to 2-ml conical tubes (Eppendorf; Cat# 0030120094). To obtain
plasma, blood samples were centrifuged at 1300 × g for 10 min at
room temperature (RT). The upper layer containing plasma was
transferred to new tubes and centrifuged twice at 2500 × g for
15min at RT to obtain platelet-poor plasma (PPP). Each plasma
supernatant was carefully transferred to fresh 1-ml tubes and then
stored at −80 °C until further use. Frozen plasma samples were
thawed in a thermostat water bath for 2 min at 37 °C and then
centrifuged at 2500 × g for 15 min at 4 °C to remove precipitated
proteins and lipids. Approximately 0.5-1 ml of plasma was used as
the starting material for EV isolation with an exoRNeasy Midi kit
(Qiagen; Cat# 77144) according to the manufacturer’s instructions.
To ensure obtaining high-quality plasma EVs from patients, we

established a procedure for plasma sample collection and
protocols for EV isolation (Supplementary Fig. 5a). The morphol-
ogy and size distribution of EVs were evaluated by transmission
electron microscope (TEM) and nanoparticle tracking analysis
(NTA). The size of isolated EVs ranged from 30 - 500 nm with a
median diameter of 105 nm (Supplementary Fig. 5b, c). Further-
more, enrichment for the EV markers Alix and CD63 was observed
in the EVs isolated from the plasma samples. In contrast, Calnexin
and GRP94 were undetectable in isolated EVs, which indicated the
absence of contamination by endoplasmic reticulum proteins
(Supplementary Fig. 5d). All blots were processed in parallel and
derived from the same experiments (Supplementary Fig. 6). On
average, 2 nanograms (ng) of EV RNA was obtained from 0.5
milliliters (ml) of plasma with a range between 0.61 and 2.93 ng,
and showed normal size distribution (Supplementary Fig. 5e)
consistent with the previous study20. Approximately 0.5 ng of EV-
RNA that passed the quantity and quality control criteria was used
for small-RNA library construction and sequencing analyses. Since
the sgRNA-guided Cas9 nuclease is capable of cleaving double-
stranded DNA bearing a protospacer adjacent motif (PAM)
sequence both in vitro and in vivo, we designed sgRNAs and
introduced a Cas9/sgRNA in vitro cleavage step to reduce both the
ysRNAs (Supplementary Fig. 5f) and the adapter dimers (Supple-
mentary Data 12).

EV isolation
For EV-RNA extraction, 1 ml of TRIzol reagent (Invitrogen; Cat#
15596026) was added to the column, which was centrifuged at
3000 × g for 1 min. Total EV-RNA was isolated by TRIzol reagent
according to the manufacturer’s recommendations. The RNA
pellet was dissolved in 11 μl of deionized water treated with
diethylpyrocarbonate (DEPC); 1 μl was used for yield measurement
of EV-RNA by Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher
Scientific; Cat# R11490); 2 μl was used for quality and size
distribution examination by a 2200 Bioanalyzer (Agilent Technol-
ogies, CA, USA). The remaining 8 μl was used for sncRNA library
construction and sequencing. For EV characterization, 1 ml of XE
buffer was added to the column and centrifuged at 3000 × g for
1 min. Eluates were concentrated by ultrafiltration using Amicon
Ultra-0.5 ml Centrifugal Filters with a molecular weight cutoff of
100 kDa (Millipore; Cat# UFC5003). EV was resuspended in 40 μl of
phosphate-buffered saline (PBS) and was ready for downstream

applications, including transmission electron microscopy (TEM),
nanoparticle tracking analysis (NTA), and western blotting.

Construction of the cDNA libraries from plasma EV-RNA
EV-RNA samples obtained from the plasma of healthy controls,
iRBD patients, and PD patients were profiled by EVsmall-seq. For
each sample, 0.5 ng RNA per sample was used as input material
for generating sncRNA libraries. Ligation reaction for 5’ and 3’
adapters was performed according to the procedure described
previously with some modifications (manuscript in preparation). In
brief, adapter-ligated RNA was mixed with ProtoScript II Reverse
Transcriptase, RNase Inhibitor, and reaction Buffer (NEB; Cat#
M0358), and incubated for 1 h at 44 °C. After PCR amplification of
RT products, the sequence-specific sgRNAs were assembled with
Cas9 to cleave self-ligating adapters and RNA contaminants in the
libraries. The oligo sequences of 3’adapter, biotin-RT primer,
5’adapter, adapter-sgRNA, ysRNA-sgRNA (Y RNA-derived small
non-coding RNA sgRNA), P5 primer, and P7 primer used for
sncRNA library construction were listed in Supplementary Data 12.
Size selection of PCR products was performed by high-resolution
polyacrylamide gel electrophoresis through 6% gels. For miRNAs,
the bands corresponding to 135–145 bp were purified for
sequencing. All gels derived from the same experiment and that
they were processed in parallel.

Transmission electron microscopy (TEM) analysis
Purified concentrated EVs in PBS were mixed with an equal
volume of 4% paraformaldehyde (PFA). Five microliters of
resuspended pellets were added to a formvar-carbon-coated EM
grid and absorbed for 20 min in a dry environment. The grids were
washed once with PBS for 1 min, followed by once with 1%
glutaraldehyde for 5 min, and seven times with Milli-Q water for
2 min per wash. The grids were then negatively stained with 2.5%
uranyl-oxalate solution for 10 min and air-dried for 5 min under
incandescent light. Images were acquired on a Tecnai G2 Spirit
TEM (FEI, The Netherlands) with a wide-angle AMT 2k CCD camera
operating at 120 kV at the Shanghai Institute of Biochemistry and
Cell Biology, Chinese Academy of Sciences.

Nanoparticle tracking analysis (NTA)
The particle size and concentration of purified EV in PBS were
analyzed using a ZetaView PMX 110 (Particle Metrix, Germany)
equipped with a 405-nm laser and a high-sensitivity sCMOS
camera. The ZetaView system was calibrated using 110 nm
polystyrene particles. All measurements were performed at RT.
Furthermore, NTA measurement was recorded and analyzed at 11
positions for 60 seconds at a frame rate of 30 frames/second. The
result for each sample is presented as an average of the 3
measurements. Particle movement was analyzed using NTA
software (ZetaView 8.04.02 SP2).

Western blotting
For protein analysis, the protein concentrations of purified EV in
PBS were quantified using a bicinchoninic acid (BCA) assay
(Beyotime; Cat# P0010S). Ten micrograms of total protein of each
sample were denatured in 4× sodium dodecyl sulfonate (SDS)
buffer at 95 °C for 5 min before being separated through 8%
polyacrylamide SDS gels and transferred to nitrocellulose mem-
branes. The membranes were blocked with 5% (wt/vol) fat-free
milk in PBS with Tween (PBST) for 1 h at RT prior to incubation
with anti-Alix antibody (1:1000 dilution; Abcam; Cat# 186429),
anti-CD63 antibody (1:200 dilution; Abcam; Cat# 193349), anti-
Calnexin antibody (1:1000 dilution; Abcam; Cat# 22595), and anti-
GRP94 antibody (1:500 dilution; Abcam; Cat# 108606). All primary
antibodies were diluted in 5% fat-free milk, and blots were probed
overnight at 4 °C. The membranes were washed four times for
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10min and incubated with HRP-conjugated secondary antibodies
for 1 h at RT. The secondary antibodies were goat anti-rabbit IgG
for Alix, GRP94, or Calnexin (1:5000 dilution; MultiSciences; Cat#
GAR007) and goat anti-mouse IgG for CD63 (1:5000 dilution;
MultiSciences; Cat# GAM007). The protein bands were detected
with a Pierce ECL western blotting substrate kit (Thermo Fisher
Scientific; Cat# R32209).

Sources for sequences and genome assemblies
The genomic sequences of human (hg38) were downloaded from
the University of California Santa Cruz (UCSC) Genome Browser36

(http://genome.ucsc.edu/). Known RNA sequences were retrieved
from the following databases: miRNA, miRbase (version 22.0)37;
tRNAs, Genomic tRNA Database (http://lowelab.ucsc.edu/
GtRNAdb); Y RNAs, rRNAs, 5.8 S, 18 S, 28 S and 45 S from NCBI
GenBank (http://www.ncbi.nlm.nih.gov/), 5 S from Ensembl (http://
www.ensembl.org/index.html); and snoRNAs, lncRNAs and mRNAs
from Ensembl (http://www.ensembl.org/index.html).

High throughput sequencing and data analyses of sncRNAs
All the cDNA libraries of sncRNAs were sequenced on NovaSeq
(Illumina). We used cutadapt to clip adapters and filter out low-
quality reads38. Reads failing to match the adaptor or reads with
lengths shorter than 17 nt were discarded. Redundant sequences
were collapsed as useful reads for further analysis39. Then, we
aligned the reads to reference sequences by bowtie40. The reads
that matched the 5’ start site of annotated miRNAs and matched
the 3’ ends with at most 3 nt deletions and/or 3 nt additional
sequences derived from pre-miRNAs were counted in the
abundance of miRNAs. The miRNA expression level was normal-
ized by size factor41. SncRNAs with more than one annotation
were characterized in the following order: miRNA, ysRNA, tsRNA
(tRNA-derived small non-coding RNA), rsRNA (rRNA-derived small
non-coding RNA), snRNA, snoRNA, lncRNA, and mRNA. Sequences
that were not annotated with any of the RNA categories above
were classified as others. The miRNA expression profiles in human
tissues were downloaded from TissueAtlas42. The gene ontology
enrichment analysis of miRNA’ target genes was performed by
miRPathDB43. miRNA’s target sites for corresponding genes were
predicted by TargetScan44. The miRNA expression patterns from
healthy to iRBD to PD samples were identified by R package
Mfuzz45.

Statistical analysis
We used the R software package for statistical analysis. Batch
correction was conducted by limma46. When differential expres-
sion analysis and classification were performed between PD and
Healthy or PD and iRBD groups, limma was used to correct for
gender bias46. Differentially expressed miRNAs were calculated by
limma46 (p value < 0.05, fold change>1.4). The adjusted p value
was calculated based on Benjamini-Hochberg (BH) correction. We
used the prcomp package for principal component analysis (PCA),
which was visualized by ggplot247. Unsupervised hierarchical
clustering analysis was conducted and visualized from pheat-
map48. The comparisons between two groups were performed
with a Wilcoxon rank sum test, whereas comparisons among three
or more groups were performed with a Kruskal-Wallis rank sum
test. The statistical tests were performed and visualized by ggplot2
and ggpurb49.
Features were selected with the R package Boruta to find all

relevant variables for machine learning50. We used the differen-
tially expressed miRNAs as input for Boruta feature selection. We
used a 5-fold cross-validation on the training set to assess the
accuracy rate for classification51. The diagnostic efficacy was
evaluated by receiver operating characteristic (ROC) curve analysis

for the training and validation cohorts52. The comparison between
areas under the curve (AUCs) of different classifiers was evaluated
by the bootstrap method with 100 iterations. For longitudinal
data, the endpoint was defined as the time from baseline RBD to
the conversion of PD/MSA. For miRNA predictor selection,
univariate Cox proportional hazards regression analysis was
repeated to identify miRNAs associated with RBD conversion,
and miRNAs with significant P values (p < 0.05) were selected as
candidates for Kaplan-Meier analysis. We used R survival and
surviminer packages to determine the best cut-off values for
dividing the patients into high- and low-level miRNA expression
groups and plotted Kaplan-Meier curves.

Reporting Summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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